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Abstract

As robots’ manipulation capabilities improve for
pick-and-place tasks (e.g., object packing, sort-
ing, and kitting), methods focused on understand-
ing human-acceptable object configurations remain
limited expressively with regard to capturing spa-
tial relationships important to humans. To advance
robotic understanding of human rules for object
arrangement, we introduce positionally-augmented
RCC (PARCC), a formal logic framework based
on region connection calculus (RCC) for describ-
ing the relative position of objects in space. Ad-
ditionally, we introduce an inference algorithm for
learning PARCC specifications via demonstrations.
Finally, we present the results from a human study,
which demonstrate our framework’s ability to cap-
ture a human’s intended specification and the bene-
fits of learning from demonstration approaches over
human-provided specifications.

1 Introduction

As robots become a mainstay of industrial and manufacturing
processes, pick-and-place tasks (e.g., packing, sorting, and
kitting objects) have become central to many of their appli-
cations [Sanneman er al., 2020]. While significant prior re-
search has explored control and manipulation for pick-and-
place tasks, less has examined how robots can understand
human preferences about object arrangement. Erbayrak et
al, for example, designed an algorithm to pack objects into
multiple bins while optimizing to keep as many objects of
the same predefined “family” together as possible [Erbayrak
et al., 2021]. Sun et al studied algorithms designed to in-
struct warehouse workers where to place items in a box,
and observed when workers knowingly deviated from the
algorithm’s plan [Sun er al., 2022]. The researchers then
proposed modified algorithms to minimize human deviation
from plans. While such approaches show promise in spe-
cific domains, they have limited expressiveness for required
spatial relationships during object placement tasks. There-
fore, in this work we present Positionally-Augmented Re-
gion Connection Calculus (PARCC), a spatial specification
language able to capture humans’ requirements during object

Figure 1: Two example configurations of apples, oranges, and cans
in a box.

placement tasks. Additionally, we introduce an inference al-
gorithm to infer PARCC specifications from demonstrations.

Broadly speaking, capturing humans’ understanding of ob-
jects’ spatial relationships in a scene is not a new topic to
research. Paul et al introduced a framework to “ground” hu-
man instructions in a world representation (e.g., understand-
ing the instruction “pick up the middle block in the row of
5 blocks™) [Paul ef al., 20181, while others have developed
methods to generate scenes or object arrangements from de-
scriptions, either via predefined propositions (e.g., “A is left
of B”) [Wiebrock et al., 2000] or through natural language
[Vasardani et al., 2013; Liu et al., 2022].

While these systems could theoretically be used by work-
ers to communicate specifications, there are a few underlying
limitations. First, these methods only describe one scene at
a time: for example, in Figure 1, prior methods may be able
to express that the can co is the furthest-north object in its
scene, or generate an approximation of a scene via descrip-
tion of each object’s placement. However, when considering
a specification describing both scenes, these methods cannot
communicate concepts such as “all cans are east of oranges”
or “all oranges must touch another orange to the north or
south.” Capturing these relational rules can ensure, for exam-
ple, that more fragile objects like apples or oranges are prop-
erly supported via contact or that there is consistent spatial
placing of objects that may be expected by human workers.
Additionally, methods capturing a human’s understanding of
a scene rely upon the human directly providing a description
of that scene [Wiebrock et al., 2000; Vasardani et al., 2013;
Liu et al., 2022]. However, humans often under-specify (or
misspecify) tasks, relative to what robots require, leading
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to undesired behavior when following a human’s directly-
provided specification [Gross ef al., 2016].

To address such limitations, PARCC is designed to both
capture descriptions over a ‘“class” of related objects (e.g.,
apples, oranges, or cans) and use Boolean logic to encode
specifications (e.g., “all oranges must touch another orange
to the north or south”). Additionally, we present an in-
ference framework to infer specifications from demonstra-
tions instead of relying upon human-provided specifications.
To demonstrate the effectiveness of our framework, we per-
formed a human study to test how well the inference method
captured specifications via demonstrations compared with di-
rect human-provided specifications. In the field, this method
can fit into a larger pipeline for automation of object place-
ment tasks including packing and sorting that maintains pat-
ters of human behavior. Continuing the box packing example
from Figure 1, a human can demonstrate multiple examples
of packing apples, cans, and oranges into boxes and a PARCC
specification of object relations can be inferred. In the future,
a robot performing the packing task can plan and execute ob-
ject placements satisfying the demonstrated specification.

2 Related Works

Within the field of task specification via formal logics, de-
scriptions of spatial specifications often use Signal Tempo-
ral Logic (STL), since its operation over continuous signals
makes it ideal for expressing spatial preferences [Maler and
Nickovic, 2004]. Application of STL to spatial problems ei-
ther uses standard STL operators to express positions and re-
gions as signals [Linard and Tumova, 2020] or modifies nota-
tion to include spatial-specific operators [Nenzi ef al., 2015;
Ma er al., 2020]. For example, Nenzi et al added two spa-
tial modalities (“somewhere” and “surrounds”) to STL that
operate over an undirected graph representing space (e.g.,
®18]4,,d,)P2 expresses that a region where ¢ is true is sur-
rounded by the region where ¢ is true) [Nenzi et al., 2015].

Other spatial specification languages use quad-tree repre-
sentations [Haghighi er al., 2015]. Here, space is recursively
partitioned into quadrants over which a specification reasons.
For example, a quad-tree may represent a city and the speci-
fication describes power grid requirements across the city.

While STL and quad-tree representations are highly ex-
pressive, they do not lend themselves to cleanly encoding
human-intuitive spatial relationships between objects, which
tend to use qualitative descriptors and small, countable val-
ues. Conversely, region connection calculus (RCC) is a
spatial-relational language introduced by Randel et al to for-
malize human-intuitive concepts of spatial relationships be-
tween regions [Randell et al., 1992]. The fundamental rela-
tion of RCC is C'(z,y) — read as ‘x connects with y’, mean-
ing that the topological closure of regions x and y share at
least one point. The two axioms for C are as follows:

Vz[C(x, )] (H
VavyC(z,y) — Cly, z)] )
The first axiom states that any region x must connect to it-

self; the second states that if y connects to x, © must con-
nect to y. This fundamental “connect” relation can be used to

describe many spatial relations, and several fragments have
been proposed for various purposes; RCCS, for example, is
a set of eight exhaustive and pairwise disjoint relationships
within the RCC framework. However, in this paper we focus
on the original 10 relations described in Technical Appendix
A. Technical Appendix B further discusses differences in ex-
pressing qualitative object relations using PARCC, STL, and
quad-trees; as an extension of RCC, PARCC expresses ob-
jects relations more easily than other languages.

While RCC itself is not based in logical specification, it
has been adopted into specification languages. Ven et al in-
troduced qualitative privacy description language (QPDL),
using RCC within linear temporal logic (LTL) to describe
technological privacy [van de Ven and Dylla, 2016]. Simi-
larly, spatio-temporal synthesis logic (STSL) combines SUy
(a spatial language similar to RCC) with STL to character-
ize spatio-temporal dynamic behaviors in applications such
as adaptive cruise control [Li et al., 2020]. However, neither
QPDL nor STSL can express specification over “classes” of
regions (i.e., “oranges are east of cans,” as shown in Figure
1), nor has an algorithm been proposed to infer such specifi-
cations from demonstration.

With respect to specification inference via demonstrations,
we take inspiration from Vazquez et al, who proposed an
inference framework over LTL via a maximum entropy ap-
proach [Vazquez-Chanlatte er al., 2018]. This framework de-
rives a likelihood model over specifications based on how
frequently demonstrations satisfy a specification versus the
probability that the specification would be satisfied by ran-
dom actions.

3 PARCC Formulation

Applying RCC directly to describe object relations provides
some insight into human-intuitive relationships between ob-
jects. For example, in Figure 1, RCC can describe that a
is in contact with a4 using the notation EC/(a1,a4); how-
ever, RCC fails to capture two aspects of the examples in Fig-
ure 1. First, RCC cannot communicate directionality: while
a human may naturally notice that a; is west of ¢; or that
o3 contacts o7 on the north side, RCC cannot capture these
distinctions. Second, while RCC describes the relationship
between individual objects (e.g., EC(01,03)), it fails to de-
scribe a pattern over a “class” of similar objects (e.g. apples
are west cans).

In order to include these two capabilities into PARCC, we
first define a subset of RCC relations useful for describing
object relationships (as opposed to abstract regions), and aug-
ment this subset to capture directional information. We then
use these object relations to describe patterns between all ob-
jects of a particular class using Boolean logic.

We constrain PARCC to exist over axis-aligned rectangular
objects on a flat plane; this choice is motivated by the ubiqui-
tous use of rectangular bounding boxes to represent the size
and location of objects in a scene [Ali and Zhang, 2024; Zen-
dehdel er al., 2023; He et al., 2021; Jia et al., 2021]. In this
paper, we define an object as a tuple, 0 = (01, 0, 0, 0y, 0c),
where o, is the object’s length, o,, is its height, o, and o, des-
ignate its position in space, and o, is the object’s “class” —
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a label provided to objects subject to the same specifications
(e.g., apples, oranges, and cans in Figure 1). In application,
this could designate fragile vs. non-fragile objects, shipping
destinations for packages, etc.

3.1 PARCC Relations

PARCC reasons over object relations via a subset of the
canonical RCC relations (Technical Appendix A) — specif-
ically with “discrete from” and “externally connected to”
(written as DR(z,y) and EC(z,y), respectively). As de-
scribed in Technical Appendix A, DR(x,y) implies the in-
teriors of 2 and y do not overlap, and EC(x,y) implies the
exterior boundaries x and y touch. We exclude the remain-
ing RCC relations since they describe some overlap between
regions (disallowed as our regions represent physical objects)
or can be described with DR and EC' themselves.

Definition 3.1 (PARCC object relation). PARCC object rela-
tions include the basic DR and EC relations, with a subscript
indicating the relative cardinal position of one object to an-
other (assuming north is aligned with the positive y axis). For
example, in Figure 1, we can say that DR (c2, ¢1); formally,
this requires the following:

DRy (ca2,c1) = DR(c2,¢1) A Yey = Yo,
V(ICmyCz) € ca, (‘Tcuycl) € (3)

meaning c is discrete from c¢;, and the y value of every
point in ¢y is greater than the y value of every point in ¢; .

In addition to the position-augmented object relations, our
language must also reason over relations between classes. For
this purpose, we define class relations as follows:

Definition 3.2 (PARCC class relation). PARCC class rela-
tions use the same notation as position-augmented object re-
lations, but operate over two classes. Given that A is the set
of objects in class A and B is the set of objects in class B,
our class DR relations require all objects in A to have the
provided relation with all objects in B. For example, a DR
North class relation would be as follows:

DRy(A,B) > DRy(a,b) Yac A YbeB (4)

This means that, for all objects a of class A and all objects
b of class B, DRy (a,b) must hold. Conversely, EC class
relations would require that all objects in A have the given
position augmented relation with at least one object in B. For
example, a EC' North class relation would be as follows:

ECN(A,B) > ECy(a,b) Yac A FbeB (5

This means that, for all objects a of class A, there exists an
object b of class B such that EC'x (a, b).

PARCC Formulas

Prior work has used RCC relations as propositions in logic
languages [van de Ven and Dylla, 2016]; we extend this to
Boolean logic over PARCC class relations.

Definition 3.3 (PARCC Formula). A PARCC formula is
a propositional logic formula over PARCC class relations.

Conjunction and disjunction over PARCC class relations can
be applied directly using the definitions of class relations in
Eqgs 4 and 5. For example:

DRx(A,B)V DRg(C, D)
(DRy(a,b)Va € AVb € B)V (DRs(c,d)Ve € CVd € D)
(6)

Negation of DR and EC PARCC class relations are defined
as follows:

-DR;(A,B) <> Pac A s.t.DRi(a,b)VbeB (7)
-EC;(A,B) < fac A st ECi(a,b)IbEB (8)

In order for ~DR;(A, B) to hold, there cannot exist an object
a of class A for which DR;(a, b) holds for all objects of class
B. Conversely, for ~EC; (A, B) to hold, there cannot exist an
object a of class A for which EC;(a, b) holds for any objects
of class B.

Demonstration
In this paper, we describe our inference algorithm over
“demonstrations” of objects in a given space.

Definition 3.4 (Demonstration). We define a demonstration
as the tuple D = (Op,Sp,Lp), where Op is the set of
objects in a particular demonstration, Sp is the space of
x, y points available for object placement (i.e., (04, 0,) €
SpVo € Op), and L is the set of classes to which objects
in Op belong. We notate (’)B as the subset of objects belong-
ingtoclass L € L.

Throughout this paper, we will use PARCC formulas to de-
scribe a demonstration, D. Specifically, we say D can satisfy
a formula, ¢, if all objects in Op satisfy ¢. For example, let
D be the demonstration of the example on the left in Figure
1, A be the class of apples, and C' be the class of cans. State-
ment D — DRpg(A, C) then evaluates to true, since every
apple is discrete from and east of every can. However, the
statement D — ECg(A, A) evaluates to false, since not all
apples are externally connected to another apple to the east.

4 Specification Inference

For our inference procedure, we assume access to k& demon-
strations from a human, notated D = {D;...Dj,}. We assume
each D; has the same space Sp and classes Lp; note, how-
ever, that demonstrations have different object sets, Op. We
also assume each demonstration D € D conforms to a spec-
ification ®j. Our goal is to infer a conjunctive normal-form
(CNF) PARCC formula, ®, that describes universal patterns
in D1....Dj, as intended by the demonstrator.

The inference process has two steps. First, we use a search-
based method to determine a set of disjunctive PARCC for-
mulas, C, such that for each ¢ € C, D — ¢ for all D € D,
these will form the disjunctive clauses of the CNF formula, ®.
Second, using a frequentist approach, we determine the prob-
ability that each formula ¢ € C was intended by the demon-
strator. We evaluate this probability using R, a set of “non-
specification” demonstrations generated without the human’s
specification, and calculate the probability that a demonstra-
tion would satisfy ¢ without intent.
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Algorithm 1: Candidate Disjunctive Formulas

Algorithm 2: Inferring Intended Formulas

1 Function FindDisjunctions (Dj...Dy, L, N):

2 | C=0;

3 forn=1.. Ndo

4 for ¢ € Template(L,n) do

5 if 3¢ € C s.t. ¢ — ¢ then

6 | continue ;

7 if D= ¢V De{D..D,} then
s | C.add(9);

9 | returnC

4.1 Finding Satisfying Disjunctive Formulas

Our inference procedure begins by finding a set of disjunc-
tive PARCC formulas, C, which satisfy all demonstrations, D
(Algorithm 1). We use an exhaustive search-based method
to determine C. While one can brute-force a search over
all possible disjunctive formulas, this would require checking
O(|L|?N4N) formulas. Therefore, we take inspiration from
Shah et al., and allow the use of production rule “templates”
limiting the search space based on domain knowledge (see
Section 5.2 for an example) [Shah er al., 2018].

This procedure takes in demonstrations (D) the set of ob-
ject classes (£) and the maximum length of the disjunctive
formulas (N). First, the algorithm initializes the set of dis-
junctive formulas, C, as the empty set (line 2); we then loop
over all possible lengths of the disjunctive phrase from 1 to
N (line 3). For each length, we loop over every disjunctive
formula of length n allowed by the production rule template
given the classes, £ (line 4). For each formula ¢, we check
whether a disjunction is already trivially implied by another
formula in C — and, if so, do not further consider it for C
(lines 5-6). Next, we check if ¢ is satisfied by all demonstra-
tions in D, and if so add it to C (lines 7-8). Finally, we return
the satisfying formulas, C (line 9).

4.2 Determining Intended Disjunctive Formulas

Once our algorithm finds C, we determine the formulas ¢ € C
that likely describe the demonstrator’s intent. To this end, we
calculate the probability that any demonstration D will un-
intentionally satisfy ¢, which we express as P(D — ¢|R),
where R is a set of “non-specification” demonstrations gen-
erated without the human’s intended specification, ®,.

Notice that D — ¢ if and only if the relations every object
o has with other objects in the demonstration satisfy ¢ (which
we will notate as o — ¢). Therefore, assuming the probabil-
ity that each object satisfies ¢ is independent, the probability
is as follows, where we use C' to notate the class of objects
relevant to ¢:

P(D = ¢|R) = [] Plo—4IR) ©)
OEOS

While not necessarily representative of reality, our in-
dependence assumption makes this probabilistic modeling
tractable, and provides good results in our human study (see

1 Function Inference (D, C, Per k)t

cC=10
R = { sampleRandDemo (D) |i € k;,}
for ¢ € C do

ps =lpep P(D — ¢[R)
if py < p. then
L C.add(¢)

s | return /\ ;. ¢

9 Function SampleRandDemo (D) :

10 R = ChooseRandom(D).copy()

1 for o € Og do

12 | (0s,04) = ChooseRandom(Sp)

13 return R

R T N L~ I S

Section 5). In order to approximate p(o — ¢|R), we calcu-
late the fraction of objects from R that satisfy formula ¢:

Plo— ¢|R) =
max | e 2rer Zo/eog M=) (10)
’ ERE’R Zo'eog 1

where € is a small number that prevents the probability from
being 0 (we use .01), and 1(o’ — ¢) is an indicator variable
setto 1 if o’ — ¢, and O otherwise. We substitute this proba-
bility back into Equation 9, which results in the following:

P(D — ¢|R) =

. > ReR Zo/eog 1(0" = ¢) (11
’ 2 Rer Zo’eog 1

Algorithm 2 describes the construction of ®. The algo-
rithm takes a set of human demonstrations (D), the num-
ber of non-specification demonstrations to generate (),
the set of disjunctive formulas found in Algorithm 1 (C),
and a cutoff probability parameter (p.). First, the algo-
rithm constructs an empty set, C (line 2). Then the algo-
rithm generates k, non-specification demonstrations via the
SampleRandDemo function (line 3). SampleRandDemo
copies a demonstration from D (line 10) and reassigns each
object a point in the demonstration space, Sp (line 12). Once
every object’s position is reassigned, the demonstration is re-
turned (line 13). (While the pseudo-random object placement
in SampleRandDemo may be distinct from human behav-
ior without a defined ®;,, experiments presented in Section 5
show the process described here provides a reasonable analog
to human-provided non-specification demonstrations.)

The algorithm then loops over every disjunctive formula
¢ € C, calculating the probability that all human demonstra-
tions unintentionally satisfied ¢ using Equation 11 (lines 4-5).
Next, the algorithm checks whether this probability is under
the cutoff probability p. (i.e., whether we are confident that
¢ was not randomly satisfied, we use p. = .05), and adds it
to C (lines 6-7) if so. Finally, the algorithm returns the full
specification as the conjunction of all formulas in C (line 8).
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Figure 2: The demonstration interface we used in our experiment.
The initial state (left) and completed state (right) is shown.

5 Experiment

We implemented the PARCC inference procedure and eval-
uated it with human subjects. This study tested the effec-
tiveness of the PARCC specification language and inference
framework to capture a human’s intent in specifying a spatial
configuration. Additionally, our experiment provides support
for the hypothesis that demonstration-based specification sys-
tems can mitigate issues related to under- or misspecification
arising from other modalities, such as natural language. We
do not compare against other specification languages com-
mon in spatial domains (e.g. STL) as they are ill-equipped to
represent object class relations (see Appendix B). !

5.1 Experimental Setup

For this study, we designed a box-packing environment as
a representative task (Figure 2). The environment initializes
with a brown square representing a table acting as the demon-
stration space, and four objects representing walls of an open
box. Off the table were two to four objects each of classes R
(red objects), G (green objects), and B (blue objects), which
the subject could move. For visual distinction in figures, we
shade red objects with horizontal lines, green objects with
vertical lines, and blue objects with diagonal lines. Once the
subject placed all objects on the table, a “done” button ap-
peared, allowing the subject to complete the demonstration.

The experiment procedure began with a participant train-
ing phase, during which we asked the participant to provide
five object placement demonstrations (training demonstra-
tions D) without having received any prompting with regard
to how to arrange the objects on the table. The remainder of
the process is shown in Figure 3, along with the notation for
demonstrations and specifications generated throughout the
experiment. After the training, we showed each participant a
set of eight pre-generated demonstrations D; (Figure 4). The
set of pre-generated demonstrations, Dj, were identical for
all participants and were created to satisfy a conjunction of
of 12 PARCC formulas described in Technical Appendix C.
Upon showing participants Dy, we requested three responses:
a set of in-kind demonstrations, and two specifications.

First, the subject provided eight demonstrations, Dp, at-
tempting to follow all spatial patterns they observed in Dj.
(Note we had not yet introduced the PARCC language to par-
ticipants, and they were free to consider “patterns” in what-
ever representation was most natural.) The participant then
provided a natural-language explanation of spatial patterns in

"For code and datasets: https:/github.com/AlexCuellar/PARCC

L

OEEEE
Digla mlg|»

L Initial Demonstrations

Human Response

@ Blue objects go in @

the upper left

corner..."
Subject Demonstrations Natural Language Subject Specification
T T

U Demonstration fron‘1\

Inference

(DR (R,G) v DR (R,B))A
® g ecG.B)v EC(GB)

Demonstration
from Specification

c, Fl

Specified Demonstration

(DR,(B.G) v DR_(R.B)) 7

@ ;) (EC.(G.0)V ECLGT) 0 CD El
Inferred Specification

Inferred Demonstration

o

Figure 3: A pipeline showing our human study procedure. Steps
directly involving human participation are numbered 1-5. Section
5.1 depicts the final questions given to the human.

Dp (again, the form of these “patterns” were determined en-
tirely by the participant). Finally, we introduced participants
to the PARCC language, and had them provide a PARCC
specification ®g that best described their demonstrations,
Dp. Our algorithm then generated two demonstrations: Cp,
which optimized satisfaction of the specification ® p inferred
from Dp; and C's, which optimized the specification ¢ g pro-
vided directly by the user. These computer-generated demon-
strations allowed us to probe subjects’ response to system be-
havior when following specifications inferred from demon-
strations (® p) versus those explicitly specified (®g). To gen-
erate Cp and Cg, we used a combination of mixed-integer
programming and Monte Carlo tree search, both of which
have been employed in box-packing domains [Erbayrak er
al., 2021; Edelkamp er al., 2014]. Finally, we showed the
participant both computer-generated demonstrations simulta-
neously, Cp on the left and Cs on the right, and asked the
following Likert-style questions:

Q1: The left image matches patterns in my demonstrations.
Q2: The right image matches patterns in my demonstrations.
Q3: Which computer generated demonstration do you think
better matches patterns in your demonstrations?

Questions were on a 1-5 scale. For Q1 and Q2, 1 indicated
“strongly disagree” and 5 indicated “strongly agree;” for Q3,
1 indicated “strongly left” and 5 indicated “strongly right.”

We performed this study in two groups for whom the infer-
ence procedure used different datasets for non-specification
demonstrations (notated as R in Section 4). Group A’s spec-
ifications were inferred using the SampleRandDemo pro-
cess (Algorithm 2); Group B’s inference used the demon-
strations Dy provided by subjects in Group A during envi-
ronment training as non-specification demonstrations K. For
each group, inference used 100 non-specification demonstra-
tions. Via this distinction, we can identify whether using ran-
dom object placements as non-specification demonstrations
(see Algorithm 2) provides a good enough analog for human
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Figure 4: Pre-generated demonstrations of the box packing environ-
ment initially shown to study subjects (Dy).

demonstrations without prompting for a specification.

We recruited 35 subjects, 20 in Group A and 15 in Group
B. All were aged between 18 and 34 years and had at least
a high-school education. The protocol was approved by
the MIT Committee on the Use of Humans as Experimen-
tal Subjects (protocol E-3748) and the United States Depart-
ment of Defense Human Research Protection Office (protocol
MITL20220002). All subjects provided informed consent be-
fore the experiment, and received $15 for their participation.

5.2 Choice of Search Template

For inference, we allow use of a “template” limiting the pos-
sible disjunctive formulas based on domain knowledge (Sec-
tion 4.1). For this experiment, we intuited that class relations
within disjunctive formulas would (1) share the same “re-
lated” class (i.e., the first class in a PARCC class relation) and
(2) always contain either EC or DC class relations, but not
both within the same disjunction. This intuition comes from
considering each disjunctive phrase as its own “constraint,”
all of which must be satisfied by the overall conjunction. In
this mindset, we found it likely that each “constraint” would
reason over one class and only consider one RCC relation.
Similar to Dwyer’s identification of LTL templates applica-
ble to many real-world tasks, this template is intended to limit
the search space to the most natural “constraints” for human
operators across domains [Dwyer et al., 1999]. While a full
investigation of template choice can constitute its own work,
we compare our choice of template to two others in Technical
Appendix D. One template is less restrictive than the one we
use (i.e. allowing a larger set of possible disjunctive formu-
las) and one is more restrictive (i.e. allowing a smaller set
of disjunctive formulas). The specifications inferred from hu-
man demonstrations (®p) are identical between our choice
of template and the less restrictive template, showing that
our template imposes minimal inductive bias on the specifica-
tions inferred in this experiment, and provides evidence that
our template represents rules relevant to human demonstra-
tors more generally. Additionally, we compare our template
to a more restrictive template to show how operators can in-
tentionally eliminate rules irrelevant to a particular domain.

5.3 Hypotheses

To evaluate the inference framework’s ability to capture hu-
mans’ specification, we proposed four hypotheses.

First, we expected that the inferred specification, ®p,
would capture a human’s intended specification, and there-
fore hypothesized that participants would respond to (Q1) by
asserting that C'p matched their demonstrations:

HI: Farticipants agree C'p matches patterns in Dp. (Q1)
Next, we expected that participants’ provided specification,
®g, would not capture their intended specification. There-
fore, we hypothesized that participants would respond to (Q2)
asserting that C's did not match their demonstrations:

H2: Farticipants disagree C's matches patterns in Dp. (Q2)
In our inference procedure (Algorithm 2), we automatically
generate non-specification data R; we expected this pro-
cess to provide a reasonable analog to human demonstrations
without prompting a specification. Therefore, we hypothe-
sized that Groups A and B would respond similarly to (Q1):
H3: Response to QI does not significantly vary between
groups A and B.

Finally, we expected direct specifications to differ from in-
ferred specifications due to under- or misspecification.

H4: Inferred specifications ®p are distinct from human-
provided specifications .

5.4 Results

Figure 5 and Table 1 summarize our major results. To charac-
terize how successfully the inference procedure captured par-
ticipants’ intended specification across both groups, we de-
termined via a Wilcoxon one-sample signed-rank test that re-
sponses to Q1 significantly exceeded 3 (i.e., that participants
responded either “agree” or “strongly agree”) (p = 5.1e—38),
implying that the inference algorithm captured the humans’
intended specifications, and supporting H 1.

Similarly, to characterize how successfully participants’
provided specification &g captured their own intended spec-
ification across both groups, a Wilcoxon one-sample signed-
rank test also revealed that responses to Q2 were significantly
less than 3 (i.e., that participants responded “disagree” or
“strongly disagree”) (p = 3.8e—7), implying that humans’
provided specifications differed from their intended specifi-
cations, and supporting H 2.

To determine whether the generation of non-specification
data in Algorithm 2 is an appropriate analog for human
demonstrations without prompting for a specification, we
computed whether the responses to Q1 were significantly dif-
ferent between groups A and B via a Mann-Whitney U test.
The results indicated no significant difference between the
groups’ responses (p = 0.87), supporting H3.

To determine any differences between the human’s pro-
vided specification (®g) and the inferred specification (®p),
we compared these two specifications to the specification em-
ployed when creating the pre-generated “initial” demonstra-
tions Dy (Figure 4). Dy used a specification of 12 PARCC
formulas (¢1...¢12) in conjunction with each other. These
12 formulas are described in Technical Appendix C. Table
1 shows the proportion of subjects for whom each of the 12
formulas appeared in @ p, and the proportion of subjects who
successfully encoded each formula in their specification ®g.
Across the 12 formulas, we used a two-sample Wilcoxon
signed-rank test to characterize significant difference in the
proportion of formulas specified by ®p and ®g, and found
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Inclusion of Initial Specification in Response Mode
G1 | P2 | 93 | Pa | G5 | 6 | 97 | P8 | P9 | 10 | P11 | P12
® p (Human Demonstrations) 1 1 1 1 1 1 88 | 91 | 91 | .77 | .74 | .88
® g (Human Specification) 0.86| 0.83/ 0.8 [ 02 |02 | 0.2 | 0.06] 0.06] 0.09| 0.03| 0.00| 0.03
Natural Language 0.94| 094| 094 0.83] 0.83] 0.83| .63 | 0.63| 0.63| 0.03| 0.03| 0.03

Table 1: Proportion of subjects including formulas ¢1...¢12 from D; across response types (see Technical Appendix C for the formulas). ®p
was inferred from subject demonstrations Dp. ®g is the human-provided PARCC specification. “Natural Language” refers to the human’s
written specification. The proportion of subjects including each formula in their demonstration ® p is higher than either direct specification
®s or natural language. This supports hypothesis H4, and shows that inferring human specifications from demonstrations is more reliable

than direct specification or language.
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Figure 5: Box and whisker plots of Likert responses. (left) Likert
responses to how well C'p matched patterns in subjects’ demonstra-
tions (Q1), and how well C's matched patterns in subjects’ demon-
strations (Q2). Responses to Q1 were significantly greater than 3
(p = 5.1e — 8), and responses to Q2 were significantly less than
3 (p = 3.8e — 7). (right) Likert responses indicating how well Cp
matched patterns in subjects’ demonstrations between Groups A and
B. Responses did not differ significantly between the two groups.

that significantly fewer formulas were correctly specified by
® g compared with @ (p = 4.8e—4), supporting H4.

5.5 Discussion

The statistical support for H1 and H2 confirms that obtain-
ing human PARCC specification via demonstrations provides
an advantage over direct specification. Additionally, support
for H4 suggests the perceived difference between C'p and C's
results from human misspecification, even when specification
is performed via a formal language with inherent semantics
translatable into natural language. This result is not surpris-
ing, given prior research demonstrates that humans often have
difficulty interpreting and providing specifications in formal
specification languages, with or without translation to natu-
ral language [Loomes and Vinter, 1997; Vinter et al., 1996;
Vinter, 1998; Greenman et al., 2023].

Our findings also suggest that human specification via nat-
ural language has shortfalls. Table 1 shows that subjects often
underspecified when using natural language (though deter-
mining one-to-one correlations between natural language and
PARCC specifications is subjective). Additionally, subjects’
natural language often contain inconsistencies with regard to
word choice; for example, some subjects described objects
of a class “clustering” around a corner of the box. However,
some such participants always placed objects in contact with
the walls comprising the corner, and some placed objects in
the corner’s vicinity. Such discrepancy shows natural lan-
guage is an imprecise way to capture humans’ intended spec-

ifications — and the underspecification of a human’s own in-
tention indicates that there would be shortcomings to this ap-
proach even if the language were precise.

Finally, support for H3 suggests that non-specification
demonstrations for inference do not significantly vary be-
tween pseudo-randomly generated and human-generated
data. Therefore, we conclude that pseudo-random object
placement for non-specification demonstrations R (as in Al-
gorithm 2) provides a reasonable analog for human-generated
non-specification demonstrations.

6 Limitations and Future Work

While PARCC and the inference method in this paper cap-
tures spatial specifications relevant to human demonstrators,
there are several open areas for future work. First, PARCC is
limited to rectangular objects in two dimensions. Extending
to three dimensions and more varied geometries can improve
applicability in situations where objects cannot be treated as
bounding boxes in an image. However, considering a third
dimension requires modeling object stacking and stability,
which is outside this paper’s scope. Second, the inference
procedure relies on search over all possible disjunctive for-
mulas allowed by a template. While this works for a few
object classes, it may be intractable for a larger number of
classes due to combinatorial explosion. In these cases, a sam-
ple based approach similar to Shah et al’s use of Markov
Chain Monte Carlo may be useful [Shah et al., 2018]. Fi-
nally, inference over PARCC only considers rules that exist
over all demonstrations. In many situations, learning prefer-
ences in addition to strict rules may provide a route to capture
more nuanced aspects of human demonstrations.

7 Conclusion

In this work, we presented Positionally Augmented RCC,
a specification language expressing spatial relationships be-
tween classes of objects. By utilizing RCC as the basis of our
language, our method expresses human-intuitive spatial rela-
tionships between objects more easily than traditional spatial
languages (e.g. STL). We also present an inference frame-
work to learn PARCC specifications from demonstrations. Fi-
nally, via a human study, we show our framework’s effective-
ness in capturing human-intended spatial specifications and
the advantage of learning-from-demonstration approaches to
specification over direct human specification due to humans’
tendency to mis- or under-specify.
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