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Abstract

The rapid improvement of deep learning mod-
els with the integration of the physical world has
dramatically improved embodied Al capabilities.
Meanwhile, the powerful embodied AI models and
their scales place an increasing burden on deploy-
ment efficiency. The efficiency issue is more ap-
parent on embodied Al platforms than on data cen-
ters because they have more limited computational
resources and memory bandwidth. Meanwhile,
most embodied Al scenarios, like autonomous driv-
ing and robotics, are more sensitive to fast re-
sponses. Theoretically, the traditional model com-
pression techniques can help embodied Al mod-
els with more efficient computation, lower mem-
ory and energy consumption, and reduced latency.
Because the embodied Al models are expected to
interact with the physical world, the correspond-
ing compressed models are also expected to resist
natural corruption caused by real-world events such
as blur, darkness, weather conditions, and even ad-
versarial corruption. This paper explores the novel
paradigm to boost the efficiency of the embodied
Al models and the robust compression boundary.
The efficacy of our method has been proven to find
the optimal balance between accuracy, efficiency,
and robustness in real-world conditions.

1 Introduction

As of 2025, the field of embodied Al is witnessing signifi-
cant advancements, driven by innovations in technology and
a growing understanding of how to integrate Al with physi-
cal systems. For example, various classification [Yang et al.,
2023b], object detection [Jiang ef al., 2023], and semantic
segmentation [Liu et al., 2023b] models help autonomous ve-
hicles perceive the surrounding environments better. Visual
SLAM and point cloud models further improve autonomous
vehicles’ positioning and navigation capabilities in a dynamic
environment.

Another good example is introducing the vision and lan-
guage foundation models [Touvron et al., 2023] into the
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control strategies learning for robotic manipulation. The
enormous robot manipulation datasets [Khazatsky er al.,
2024] only have 100K to IM examples, while the foun-
dation models are trained with Internet-scale pretraining
datasets [Laurencon et al., 2022]. By fully utilizing the gen-
eralization capabilities of the foundation models, the robots
may be able to extrapolate behaviors to different surround-
ing conditions (e.g., manipulation positions [Brohan et al.,
2022], lighting [Chi et al., 2023], scene distractors [Xie et
al., 2024]) and unseen situations (e.g., novel objects [Mees
et al., 2024], new task instruction [Walke et al., 2023]). Fol-
lowing this paradigm, a series of the vision-language- action
(VLA) models [Kim et al., 2024] are explored to enhance the
control and manipulation of robotics.

‘Rain’

‘Snow’

Figure 1: The autonomous driving models are expected to resist
against the natural corruption caused by real-world events such as
bad weather conditions and low-illumination in night.

The rapid development of large-scale neural models has
broadly and profoundly influenced the capabilities of em-
bodied Al. Meanwhile, large-scale neural models have draw-
backs [Yu, 20211, such as high computational cost and energy
consumption, limitations in response-sensitive scenarios, and
high memory requirements in the edge platforms of embodied
Al Considering the application characters and actual costs,
the computational core devices on embodied Al platforms
tend to use embedded systems with low power consumption,
limited computational power, and memory [Tinchev et al.,
2019] [Wan er al., 2021]. So, model compression [Abbasi et
al., 2022] [Li er al., 2022] is essential to alleviate the gaps
between the increasing scale and considerable resource con-
sumption of the models and their efficient deployment on the
limited-capacity embodied Al hardware platforms.

Considering the safety and robustness concerns in the em-
bodied Al application, e.g., autonomous driving area, when
we want to compress an autonomous driving model into com-
pressed form, we need to check further whether this com-
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Figure 2: Naive model compression technique which disentangles the model compression process (Upper) on the benign training dataset
with the against-corruption learning process (Lower) on the real or generated corrupted dataset.

pressed autonomous driving model is a qualified substitute
facing corruptions. In traffic, the autonomous driving models
are expected to resist natural corruption caused by real-world
events shown in Figure 1 such as blur, darkness, weather con-
ditions, and even the adversarial corruption to further guaran-
tee the safety of the compressed embodied Al models.

In this paper, we first review the prior arts of model com-
pression and their potential flaws when applied to embod-
ied AI models, which require good accuracy, efficient de-
ployment, safety, and robustness for corruption. Based on
the analysis of past efforts, we explore and propose a novel
paradigm for embodied Al models’ compression. We push
the robust compression boundary beyond the upper limita-
tions that come from the original dense model. Finally, we
evaluate our method on typical embodied Al models and
benchmarking tasks to show the efficacy of our method for
finding the optimal balance between accuracy, efficiency, and
robustness in real-world conditions.

2 Related Work

2.1 Model Compression Against Corruption

When we try to use a compressed embodied Al model as the
substitute for an original dense model, the typical strategy is
applying the compression technique to ensure this obtained
compressed model has a similar model accuracy and detec-
tion results with the original dense model on benign input
images, shown in the upper part of the Figure 2. In this
model compression process, only the weight parameters of
the target compressed embodied Al model will be updated.
The weight parameters of the original dense model are used

in initialization or some knowledge-distillation-based com-
pression techniques [Li ef al., 2023] [Yu et al., 2023b] as the
golden reference, so they are frozen.

After verifying the compressed models’ quality on the be-
nign dataset, the extra step is needed to evaluate whether the
compressed is a qualified substitute when facing corruption,
shown in the lower part of the Figure 2. Prior arts [Hnewa and
Radha, 2020] will collect the real corrupted images or gen-
erate the simulated corrupted images to cover natural [Chen
et al., 2018] and adversarial corruption [Shen er al., 2021]
cases. Then, these corrupted input images are used to evalu-
ate the compressed models’ accuracy and detection results. In
this case, the weight parameters of the target compressed em-
bodied AI model will also be frozen. Some prior arts [Shen
et al., 2021] [Diffenderfer et al., 2021] try to improve the ro-
bustness capabilities of the compressed embodied Al model,
so they divide the subset of the collected corrupted images
and unfrozen the weight parameters of the target compressed
embodied Al model for against-corruption finetuning.

Some prior works further explore the relationship between
model compression and robustness against corruption [Gui ef
al., 2019] [Wang et al., 2023]. Based on their exploration, the
previous workflow shown in Figure 2 disentangles the model
compression process with the against-corruption finetuning
process while simplifying the complexity of the workflow but
introducing flaws. The apparent flaw is that further finetun-
ing on the corrupted samples may lead to the accuracy regres-
sion on the benign samples. Compensation efforts [Yan et al.,
2018] [Wang et al., 2019] by recurrent training on individ-
ual benign and corrupted datasets or joint training on mixed
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Figure 3: Efficient contrast-learning-based robust model compression and evaluation process to guarantee the compressed embodied Al model
is a qualified substitute. (Upper) Check the detection results of the dense embodied Al model and the compressed counterpart, and guarantee
they have the similar behaviors. (Lower) Collect the real or generate the simulated corrupted images to cover the natural and adversarial
corruption cases. Check the detection results of the dense and the compressed counterpart on these corrupted images. Tuning the compressed
model if they have different behaviors, and finally to guarantee they have the similar behaviors on the corrupted images as well.

benign and corrupted samples are proposed, but also raising
concerns about more training cost and non-trivial efforts in
balancing the accuracy and robustness. The more efficient
workflow [Yu et al., 2023a] introduces contrast learning into
the robust model compression process, as shown in the Fig-
ure 3. During the normal model compression process, the
workflow will check the detection results of the dense em-
bodied Al model and the compressed counterpart on the cor-
rupted images. If they have different behaviors, we need to
tune the compressed model and finally guarantee they have
similar behaviors on the corrupted samples, as well as on the
benign samples.

2.2 Typical Embodied AI Models and Applications

Embodied Al represents a significant advancement in ar-
tificial intelligence, focusing on systems integrating cogni-
tive abilities with physical actions to interact with and learn
from their environments. Embodied Al has revolutionized
autonomous vehicles by enabling them to navigate complex
environments with human-like decision-making capabilities.
Autonomous vehicles can adapt to changing road conditions
and obstacles using advanced multi-modal perception sys-
tems. Robots equipped with embodied Al are used in man-
ufacturing for assembly and material transport tasks. They

can learn from their environment and adapt to changes in
real time, improving efficiency. The system called Robotic
Avatars [Luo et al., 2022] allow users to operate robots re-
motely, capturing environmental data for telepresence appli-
cations. This technology has potential uses in telemedicine
and hazardous environment operations.

With comparable and even superior effectiveness than
the traditional convolution neural models, more transformer-
based models [Liu et al., 2023b] [Yang et al., 2023a] [Liu et
al., 2023a] are explored and widely adopted in embodied Al
typical applications with state-of-the-art performance. How-
ever, large-scale transformer-based models are computation-
intensive and memory-intensive [Yu et al., 2023b], placing an
increasing burden on deployment efficiency.

3 Boost Robust Compression Boundary

By analyzing the prior model compression paradigms with a
against-corruption setting, we find there are two main short-
comings in prior approaches, include:

* The model compression techniques do not fully dig into
and utilize the difference between the benign and cor-
rupted training samples.

e The compressed model cannot exceed the robustness
boundary of the dense model because both the model
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Figure 4: Workflow for Boost Robust Compression Boundary (BRCB) (Left) Against-Corruption Mechanism to divide the original dense
model into the corruptions-stable and corruptions-sensitive parts in fine-granularity. (Right) Push the limitation of Robustness Boundary of
the dense model when facing corruption be introducing the BRCB gate layer in the corruption-sensitive model compression tuning process.

compression and contrast finetuning processes apply the
dense model as the golden reference.

We intend to improve these two shortcomings and propose
anew algorithm to compress the embodied Al models to push
their robustness boundary and efficiency. The new algorithm
is called Boost Robust Compression Boundary (BRCB).

3.1 Against-Corruption Mechanism

Traditional studies regard corrupted samples as domain trans-
formation. So, they usually use the corrupted samples for
domain adaptation or mix them with benign ones in adver-
sarial training. However, these prior solutions ignore whether
such a difference between the corrupted and benign samples
can be integrated and used for improving the model compres-
sion process. Inspired by this point, we design the against-
corruption mechanism for BRCB workflow.

When we get the natural or adversarial corrupted samples,
we first use them to calibrate the dense embodied Al model.
Because the corrupted samples can be regarded as benign
samples that concatenate the differences, the calibration, i.e.,
tiny tuning for the original dense embodied AI model, can
usually work well with the corrupted samples. In other words,
the differences between the original and the calibrated dense
weight tensors should be marginal. So, we can disassemble
the calibrated dense weight tensors as the similar weight part
and the diff weight part, e.g., rainy diff, snowy diff, dark diff,
and adversarial diff in the left side of Figure 4.

Then, the BRCB algorithm will concatenate all the diff

weight tensors to generate a concentrated diff weight. All
the elements in this concentrated diff weights are corruption-
sensitive. With this corruptions-sensitive diff weight, we can
transfer it as a corruptions-sensitive mask, using the bool el-
ements to indicate the positions of the corruptions-sensitive
elements. Because the corruptions-sensitive mask is in the
same shape as the original dense model’s weight, we can at-
tach them to filter out a new weight tensor that contains all
the corruptions-stable elements.

Because the input sample corruptions will less influence
the elements in the corruptions-stable weight tensors, we can
apply the combined sparse pruning and quantization tech-
niques as normal for weight compression. And we call it
the corruption-stable model compression path in the BRCB
algorithm. Usually, the corruptions-stable weight tensors
are more friendly to compression without out-of-range out-
liers. For the corruptions-sensitive diff weight, we will use
the collected corrupted samples to execute the corruptions-
sensitive model compression, with more details in the fol-
lowing section. Finally, the BRCB algorithm combines the
compressed weights from corruptions-stable and corruptions-
sensitive paths to obtain the final compressed embodied Al
model. The detailed against-corruption mechanism is shown
in the left side of Figure 4.

The key to BRCB’s against-corruption mechanism design
is a fine-granularity division for the corruptions-stable and
corruptions-sensitive elements from the original dense model.
For the corruptions-stable elements, which are friendly for
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Benign Samples

Rainy Corruption | Snowy Corruption | Dark Corruption

Model Method Format | \pG™ mAP | NDS  mAP NDS ~ mAP NDS mAP
BIRET FP32 | 517 416 414 322 25 329 373 275
MiniViT FP32 | 507 407 406 315 416 322 365 269
uve FP32 | 498 397 399 307 409 314 350 263
BEVFormer | FQ-ViT INTS | 501 400 401 309 411 316 361 264
PTQ-ViT  INTS | 503 40.1 403 310 413 317 363 265
GPUSQ-VIT INTS | 511 409 410 316 020 324 369 271
BRCB INTS | 513 411 462 358 473 366 21 312
Baseline FP32 | 553 460 443 356 454 364 399 304
MiniViT FP32 | 542 450 434 348 445 356 391 297
UvC FP32 | 533 439 027 340 437 348 384 290
BEVFormer v2 | FQ-ViT INTS | 53.6 442 429 342 440 350 386 292
PTQ-ViT  INTS | 53.8 443 431 343 442 351 388 293
GPUSQ-ViT INTS | 547 453 438 350 449 358 394 299
BRCB INTS | 549 454 494 396 505 405 450 346
BIRElAE FP32 | 714 685 572 53.0 586 54 515 453
MiniViT FP32 | 700 67.0 560 518 575 530 504 443
UvVC FP32 | 687 654 551 50.6 565 518 196 433
BEVFusion FQ-ViT INTS | 692 658 554 509 568 521 499 435
PTQ-ViT  INTS | 69.5 661 556 511 570 523 501 437
GPUSQ-VIiT INT8 | 70.6 674 566 521 580 533 509 44.6
BRCB INTS | 708  67.6 638 59.0 652 603 581 515

Table 1: Compare the BRCB with state-of-the-art compression methods on autonomous driving (3D object detection) task.

model compression, BRCB can compress them into a more
compact form. For the corruptions-sensitive elements, BRCB
fully utilizes the given corrupted training samples during their
compression process.

3.2 Push the Limitation of Robustness Boundary

In prior model compression techniques, the dense model’s be-
havior is used as the golden reference, and the target com-
pressed model is designed to mimic the dense model’s in-
ference results and feature maps. Suppose the dense model
makes the wrong inference result due to the perturbation
caused by changing from benign to adversarial samples. In
that case, the compressed model will have a high possibility
of making the same mistake. This principle design paradigm
limits the compressed model, which cannot exceed the ro-
bustness boundary of dense model when facing corruption.
BRCB breaks the robustness boundary in the corruption-
sensitive model compression path. Instead of mimicking the
dense model as the golden reference, it tries to solve this prob-
lem from the principle view. The main reason that the cor-
rupted samples bring misleading behavior to the embodied
Al model is that the normal feature maps (i.e., the output ac-
tivation tensors), when feeding the model with the benign in-
puts, have the out-of-range or out-of-distribution outliers in-
troduced by the corruption. So, the BRCB algorithm attaches
a BRCB gate layer before each compression target layer, like
the query, key, value, linear projection, and feed-forward lay-
ers in the transformer structure. The primary purpose of the
BRCB gate layer is to randomly mask out some elements in
the feature maps before feeding them into the compression
target layers during the corruption-sensitive model compres-
sion tuning process. With such regulation during training, the
final obtained compressed model can properly adjust when
meeting the outliers in inference with the corrupted samples.

We can find that the BRCB gate introduced in the
corruption-sensitive model compression process has no re-
liance on the original dense model as a golden reference. In
contrast, it enhances the robustness of the corruption for the
compressed model from the principle. In the following exper-
iments, we can see that the BRCB-compressed models can
even exceed the robustness boundary of the dense model.

4 Experiments and Results

For the experiments in this section, we choose PyTorch with
version 1.9.0 as the framework to train all baseline and effi-
cient neural models. All of the training experimental results
are obtained with A100 GPU clusters. All the accuracy re-
sults reported for our proposed method use INT8 as the de-
fault data type. All the reference algorithms use the default
data type provided in public repositories.

4.1 Compression Efficacy for Autonomous Driving

To evaluate the compression efficacy of BRCB and make the
comparison with prior arts on the autonomous driving, BEV-
Former & BEVFormer v2 [Yang et al., 2023a]! and BEVFu-
sion [Liu et al., 2023b]* are chosen as the experiment tar-
get models for 3D object detection task. BEVFusion is cho-
sen as the experiment target model for bird’s-eye view (BEV)
map segmentation task. For the state-of-the-art transformer-
based compression methods, we choose the MiniViT [Zhang
etal.,2022] and UVC [Yu ez al., 2022] as the reference sparse
pruning techniques, we choose the FQ-ViT [Lin et al., 2022]
and PTQ-VIiT [Liu et al., 2021b] as the reference quantiza-
tion techniques. We also choose the GPUSQ-VIiT [Yu et al.,

'https://github.com/fundamentalvision/BEVFormer
“https://github.com/mit-han-lab/bevfusion
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2023b] as the reference mixed-compression technique. The
comparison results for 3D object detection task and BEV
map segmentation task are shown in Tables 1 and 2.

Benign | Rainy | Snowy | Dark

Model Method Format mloU mloU | mIoU | mIoU
Baseline FP32 63.0 50.4 51.7 454
MiniViT FP32 (Sparse) | 61.1 48.9 50.1 44.0
uvce FP32 (Sparse) | 60.0 48.1 49.3 433
BEVFusion | FQ-ViT INT8 60.4 48.4 49.6 435
PTQ-ViT INT8 60.6 48.6 49.8 43.7

GPUSQ-ViT INTS (Sparse) | 61.9 49.6 50.9 44.7
BRCB INTS (Sparse) | 62.1 56.0 57.2 51.0

Table 2: Compare the BRCB with state-of-the-art compression
methods on autonomous driving (BEV map segmentation) task.

The comparison results shown in Tables 1 and 2 show that
BRCB can steadily provide a smaller accuracy drop for the
compressed models on benign samples than both sparse prun-
ing and quantization prior arts. And the accuracy drop com-
pared with the original dense baseline model is negligible in
most cases. There is an apparent accuracy drop when nat-
ural corruption like rain, snow, and darkness exists for the
original dense models. Not to mention, the compressed mod-
els were obtained using the prior model compression tech-
niques. However, the BRCB compressed counterparts have
an apparent lower accuracy drop than other compressed mod-
els, even against the original dense model. This phenomenon
proves the effectiveness of the against-corruption mechanism
designed in the BRCB method. Moreover, it confirms that
the compressed model can break the robustness boundary of
the dense model.

Tasks 3D Object Detection Segmentation

Model Method Attack Strength | 1% 10% 1% 10%
Metrics NDS mAP | NDS mAP | mloU | mIoU

Baseline FP32 522 463 | 41.8 358 | 46.1 37.8

MiniViT FP32 (Sparse) S51.1 452 | 410 350 | 447 36.7

uvce FP32 (Sparse) 503 442 | 403 342 | 439 36.1

BEVFusion | FQ-ViT INT8 50.6 445 | 405 344 | 442 36.3

PTQ-ViT INT8 50.8 446 | 40.7 345 444 36.4

GPUSQ-VIiT  INTS8 (Sparse) 51.6 455 | 414 352 | 453 37.2

BRCB INTS8 (Sparse) 589 524 | 472 405 51.7 424

Table 3: Compare the BRCB with state-of-the-art compression
methods on autonomous driving task with adversarial corruption.

In Table 3, we also evaluate the effectiveness of the BRCB
compression technique and compare it with the prior arts
when facing adversarial corruption. Because adversarial cor-
ruption is manually intended to perturb the judgment of the
embodied AI models, we can find the accuracy drops are
more evident than facing natural corruption. The comparison
results shown in Table 3 show that the BRCB compressed
models can still steadily provide a smaller accuracy drop for
the compressed models than prior arts, even against the orig-
inal dense model. This experiment further proves the effec-
tiveness of the against-corruption mechanism designed in the
BRCB method.

4.2 Compression Efficacy for Robotics

To evaluate the compression efficacy of BRCB on the
robotics, OpenVLA [Kim et al., 202413 is chosen as the ex-

*https://github.com/openvla/openvla

periment target model for various tasks. For the state-of-the-
art transformer-based compression method, we choose the
GPUSQ-VIiT [Yu ef al., 2023b]. The comparison results for
Robotics task are shown in Tables 4.

We evaluate on a comprehensive set of evaluation tasks
in each environment that covers various axes of generaliza-
tion, such as visual (unseen backgrounds, distractor objects,
colors/appearances of objects); motion (unseen object posi-
tions/orientations); physical (unseen object sizes/shapes); and
semantic (unseen target objects, instructions, and concepts
from the Internet) generalization. The comparison results
shown in Table 4 show that the BRCB compressed models
can still steadily provide better accuracy than the prior arts
compressed models. And when facing the unseen situations,
the generalization capabilities are even against the original
dense model. This experiment further proves the effective-
ness of the prposed BRCB method.

4.3 Visualization Experiments

For autonomous vehicle, real tasks are multidimensional and
more complicated. We also verify BRCB workflow and op-
timizing the deployment efficiency of UniverseNet [Shinya,
2021] on object detection task, CondLaneNet [Liu et al.,
2021a] on lane detection task, Mask2Former [Cheng et al.,
2022] on segmentation task, and SterecoDNN [Smolyanskiy
et al., 2018] on depth estimation task.

For the deployment efficiency, the BRCB-compressed
UniverseNet model, the BRCB-compressed CondLaneNet
model, the BRCB-compressed Mask2Former model and the
BRCB-compressed StereoDNN model can achieve 2.31x,
2.55%, 1.97x and 1.66x acceleration against their corre-
sponding dense counterparts on NVIDIA DRIVE AGX Orin
platform. The corresponding visualization results are shown
in Figure 5, Figure 6, and Figure 7. We can find all these au-
tonomous driving models keep their effectiveness while the
deployment efficiency is obviously improved.

5 Conclusions

In this paper, we have introduced a novel approach to enhance
the efficiency and robustness of embodied Al models through
the Boost Robust Compression Boundary (BRCB) algorithm.
Our findings demonstrate that traditional model compression
techniques often fall short when applied to the unique chal-
lenges faced by embodied Al systems, particularly in scenar-
ios requiring rapid responses and high reliability.

The BRCB algorithm addresses these shortcomings by
employing an innovative against-corruption mechanism that
distinguishes between corruptions-stable and corruptions-
sensitive model components. This fine-grained approach al-
lows for more effective compression while maintaining the
integrity of model performance across diverse conditions.
Our experimental results indicate that models compressed
using BRCB not only achieve comparable accuracy on be-
nign inputs but also exhibit significantly improved resilience
against various natural and adversarial corruptions.

Moreover, the BRCB method has shown a remarkable abil-
ity to push beyond the robustness boundaries established by
dense models, enabling compressed models to perform better
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Model Method Format Visual Generalization | Motion Generalization | Physical Generalization | Sementatic Generalization
Success Rate(%) Success Rate(%) Success Rate(%) Success Rate(%)
Baseline FP32 87.0 60.0 76.7 36.3
OpenVLA | GPUSQ-ViT INTS8 79.5 | 53.6 67.7 29.8
BRCB INTS 89.1 61.0 71.5 36.7

Table 4: Compare the BRCB with state-of-the-art compression method on robotics task.

Object Detection Lane Detection

Figure 5: (Left) Visualization results of compressed UniverseNet model in object detection and tracking tasks. (The six images are captured
with the surrounded cameras on the autonomous car.) (Right) Visualization results of compressed CondLaneNet model in lane detection task.

Downtown Crossroad Parking Garage

16 0 i3

Aad ¥l

Figure 6: Visualization for semantic object segmentation and instance segmentation results from the compressed Mask2Former model. (The
upper row shows the semantic object segmentation results. The lower row shows the instance segmentation results.)

Downtown Street Tunnel

Figure 7: Depth estimation results by visual odometer model (the compressed StereoDNN model) deployed on NVIDIA DRIVE AGX Orin.

than their uncompressed counterparts in challenging environ- method on BEYV, object detection, lane detection, segmenta-
ments. This advancement is particularly relevant for appli- tion, and depth estimation tasks with the real deployment ef-
cations in autonomous driving and robotics, where safety and ficiency on the DRIVE AGX Orin autonomous vehicle plat-
reliability are paramount. We also evaluate the efficacy of our ~ form.
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