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Abstract
Learning causal relationships in directed acyclic
graphs (DAGs) from multi-type event sequences
is a challenging task, especially in large-scale
telecommunication networks. Existing methods
struggle with the exponentially growing search
space and lack global exploration. Gradient-based
approaches are limited by their reliance on local
information and often fail to generalize. To ad-
dress these issues, we propose TCCD, a frame-
work that combines Monte Carlo Tree Search
(MCTS) with continuous gradient optimization.
TCCD balances global exploration and local opti-
mization, overcoming the shortcomings of purely
gradient-based methods and enhancing generaliza-
tion. By unifying various causal structure learn-
ing approaches, TCCD offers a scalable and effi-
cient solution for causal inference in complex net-
works. Extensive experiments validate its supe-
rior performance on both synthetic and real-world
datasets. Code and Appendix are available at
https://github.com/jzephyrl/TCCD.

1 Introduction
In various real-world applications, uncovering causal re-
lationships among event types within multi-type event se-
quences, which are often represented as Directed Acyclic
Graphs (DAGs), is a critical and inherently challenging task.
In modern telecommunication networks, a single fault can
trigger a cascade of alarm events across interconnected de-
vices, driven by complex topological relationships between
them. As the scale of networks expands and the complex-
ity of inter-device topologies increases, accurately discerning
the causal relationships among these alarm events becomes
increasingly challenging [Chickering, 1996; Li et al., 2022].

Recently, Granger causality analysis [Shojaie and Fox,
2022] has become central to causal structure learning. Ap-
proaches such as multivariate Hawkes processes [Liniger,
2009] and Poisson point processes [Itô, 1971] have been
demonstrated to effectively capture event dynamics and inter-
type interactions. However, traditional causal learning meth-

∗Corresponding author

ods [Spirtes and Glymour, 1991; Zhu et al., 2019; Idé et al.,
2021; Bhattacharjya et al., 2022; Qiao et al., 2023] typically
assume i.i.d. event sequences, which contradicts the topo-
logical dependencies in telecommunication networks. Con-
sequently, the task of effectively learning causal relationships
within such complex network topologies has become one of
the main challenges in causal learning for alarm-type events.

To overcome the problem of learning Granger causal struc-
tures from event sequences under the non-i.i.d. assumption,
[Cai et al., 2022] proposed the Topological Hawkes Pro-
cess (THP), which extends the traditional Hawkes process
to time-graph domains for modeling topological event se-
quences. However, THP struggles with capturing complex
generation mechanisms and nonlinear dependencies. Addi-
tionally, its reliance on gradient-free optimization and decou-
pled parameter learning results in inefficient training. To im-
prove modeling capabilities, [Liu et al., 2024] introduced the
Topological Neural Poisson Autoregressive model (TNPAR),
which utilizes neural point processes to better model event
sequences. Despite its enhanced expressiveness, TNPAR suf-
fers from limited training efficiency and scalability due to the
lack of analytical likelihood functions. In contrast, S2GCSL
[Li et al., 2024] employs a linear kernel to model event ac-
tivation effects and adopts gradient descent optimization to
improve the learning efficiency while maintaining model ex-
pressiveness.

Despite advances in causal structure learning, existing
methods face critical challenges in large-scale telecommuni-
cation networks: (1) The search space for causal structures
grows exponentially with network scale and event types, hin-
dering efficient explorations; (2) Dynamic topologies and in-
creasing event types limit the generalization ability of current
approaches, making it difficult to accurately estimate spatio-
temporal continuous parameters; (3) The lack of effective in-
tegration between structure search and parameter optimiza-
tion makes gradient-based methods fall into local optima,
constraining overall model performance.

In response to the above limitations, we present a novel
framework, namely TCCD, which integrates Monte Carlo
Tree Search (MCTS) with continuous optimization. This
combination fully utilizes the exploration-exploitation trade-
off of MCTS to adaptively balance global exploration and
local optimization, enabling effective joint optimization of
structure search and parameter estimation. Inspired by
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Figure 1: The example of Non-executable action and merged states.

S2GCSL [Li et al., 2024], we refine the likelihood function
design to transform the discrete DAG search problem into a
continuous optimization task, thereby enhancing the general-
izability of the model. Specifically, this hybrid approach en-
sures effective exploration of large-scale search spaces while
simultaneously improving the accuracy of causal structure in-
ference. Ultimately, our TCCD framework offers a novel so-
lution for large-scale causal structure learning in telecommu-
nications networks, enabling more precise and efficient han-
dling of complex causal relationships.

In summary, we provide the following key contributions:

• We design a tree-guided dynamic parameter learning
strategy to achieve joint optimization of structure search
and parameter estimation, providing richer search direc-
tions for gradient optimization and forming a hierarchi-
cal framework of global exploration and local optimiza-
tion;

• We propose a local optimization mechanism based on in-
fluence propagation that enables efficient parameter up-
dates by identifying the impact scope of causal structure
changes;

• We develop a hierarchical evaluation approach that uni-
fies different scoring methods, demonstrating strong
scalability for large-scale causal inference across multi-
ple event types, complex topologies, and dynamic char-
acteristics.

In light of this, we aim to effectively learn complex causal
structures when handling large-scale multi-event data, pro-
viding accurate fault prediction and diagnosis support for net-
work operators. Experiments on synthetic and real-world
telecommunication fault diagnosis datasets validate the accu-
racy of the inference results of the TCCD framework in large-
scale scenarios.

2 Related Work
Causal structure learning [Zheng et al., 2018; Tsamardinos
et al., 2006; Lachapelle et al., 2019; Wang et al., 2021;
Cheng et al., 2023] has emerged as a vital area of research
due to its wide-ranging applications. Broadly, existing meth-
ods are mainly categorized into constraint-based and score-
based approaches. The PC algorithm [Spirtes et al., 2000]
constructs causal graphs through conditional independence
tests, while score-based methods search for optimal DAGs
using criteria like Bayesian Information Criterion (BIC) or

Minimum Description Length (MDL). However, these con-
ventional approaches often struggle with large-scale data. Re-
cent work has focused on multi-type event sequences, par-
ticularly through multivariate Hawkes processes based on
Granger causality [Shojaie and Fox, 2022; Zhang et al., 2020;
Qiao et al., 2023; Xu et al., 2016; Achab et al., 2018]. ADM4
[Zhou et al., 2013] uses kernel methods and L1 regularization
for sparse learning, while deep point process methods like
RPPN [Zhang et al., 2020] and CAUSE incorporate atten-
tion mechanisms and neural networks. To handle non-i.i.d.
data, THP [Cai et al., 2022] accounts for topological influ-
ences, and TNPAR [Liu et al., 2024] combines topological
networks with Granger causality. Recently, S2GCSL [Li et
al., 2024] enhanced learning efficiency through linear ker-
nel modeling and gradient descent optimization. Building on
these advances, we propose a novel framework TCCD that uti-
lizes tree-guided continuous causal discovery through collab-
orative optimization of MCTS parameters, with the objective
of addressing the challenges of learning causal structures.

3 Preliminaries
In this work, we focus on revealing the causal structure
among various event types within sequences of events. Con-
cretely, a multi-type event dataset (or event stream) X =
{X (tj)}Mj=1 is a sequence of events, where each event
X (tj) = (dj , vj , tj) indicates the occurrence of an event la-
bel vj (or synonymously type or variable) at a spatial location
dj at a timestamp tj . Here, vj ∈ V denotes the event type,
dj ∈ D corresponds to the nodes in the topological graph
GD = (D, ED), where ED represents the edges in the graph,
and tj ∈ R+ is the event timestamp. The events occur se-
quentially in the continuous time interval [t1, tT ], with t1 <
t2 < · · · < tT . The objective is to explore the causal struc-
ture graph (or a directed acyclic graph) GV = (V, EV) among
event types, grounded in event sequences X and the topolog-
ical graph GD. V = {v1, v2, . . . } indicates the set of event
types and EV = {e1, e2, . . . } indicates the set of directed
edges in the causal graph, where each edge e1 : vi → vj
denotes vi causally influences vj .

Definition 1 (State space) S . The state space S repre-
sents the set of all possible Directed Acyclic Graphs (DAGs)
among event types. When prior causal knowledge Aprior is
available, state space S is constructed based on initial state s0
and Aprior. Specifically, causal relationships with vi,j = 1 in
Aprior are integrated to generate different DAGs, forming S .

Definition 2 (Action)A. The action setA consists of all ex-
ecutable edges that avoid forming cycles. When prior causal
knowledge Aprior exists,A is generated based on pairs where
vi,j = 0 in Aprior, allowing different edge connections. The
action space is defined as A = {av1,v2 : v1 → v2, ..., av4,v3 :
v4 → v3}. Each state s has a corresponding set of executable
actions A(s) ⊆ A ensuring acyclicity. As shown in Fig. 1,
which depicts the causal structures in different states and their
corresponding executable actions, blue arrows indicate ex-
ecutable actions, while the red ’X’ denotes non-executable
actions, such as a3 in state s1. It is important to note that,
since the optimal causal structure cannot be predefined, there

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

?
X

?
X

Root
Influence-driven

Local optimization

Pruning, admissable action

… …

…

Fully expansion
… …

…

… … … …

…

Selection
Repeated X  time

HPS

… …

…
Evaluate

Update

Update

Update

Update

Local optimization

Expansion Pruning Evaluation Backup

Figure 2: The overview of framework.

is no explicit termination state. Therefore, a termination ac-
tion Termination(â) is defined, indicating that the termi-
nation state has been reached when executed.

Definition 3 (MCTS Tree). The Monte Carlo Tree Search
(MCTS) tree consists of nodes and edges that store different
types of information. Node nlk : The k-th node at level l in
the search tree is defined as a tuple:

nlk = {slk , A(slk), N(slk), HPS(slk)} (1)

where slk represents the current state, A(slk) is the set of exe-
cutable actions including Termination(â), N(slk) tracks
visit frequency, and the Hierarchical Potential Score (HPS),
denoted as HPS(slk), quantifies the overall quality of the
state. Edge εlk : The edge information for transitions from
node nlk is defined as:

εlk = {Q(slk , alkvi,vj
), Θlk = (Sw,lk , µlk)} (2)

where Q(slk , alkvi,vj
) represents the action value for alkvi,vj

∈
A(slk), and Θlk contains the dynamically optimized causal
strength matrix Sw,lk ∈ Rn×n and baseline intensity vector
µlk ∈ Rn.

Definition 4 (Intensity function) λ. The event occur-
rence Ot

v,d depends on historical event sequences Xh =

{(di, vi, ti)|ti < t}, the state s ∈ S , and B0:k. Bk is a set of
binary |D| × |D| matrices representing physical connections
between devices at geodesic distance k, with Bk

di,dj
= 1 in-

dicating a connection. The event intensity λv,d
t for event type

v at device d is given by,

λv,d
t = µv,d +

∑
j∈Nei(d)∩Act(t)

αvj ,vsB
k
dj ,dϕ(t− tj)vj ,v (3)

where µv,d is the baseline intensity, Nei(d) represents the set
of neighbors for device d, Act(t) is the set of active event
types at time t, and αvj ,v is the impact of event type vj on
event v. ϕ(t − tj)vj ,v = e−β(t−tj) is a time-decaying func-
tion that models the influence of event vj on v at time t. For
simplicity, Nei(d) is abbreviated as N(d), and Act(t) will be
denoted as A(t), and we define AN(d, t) = Nei(d)∩Act(t) to
represent the active neighbors of d at time t.

4 Our TCCD Approach
In this section, we describe how the TCCD framework in-
tegrates MCTS with continuous parameter optimization to
jointly optimize the causal structure and parameters. In ad-
dition, a detailed algorithmic procedure is provided in Ap-
pendix A.

4.1 Overview of Our TCCD Approach
Traditional causal structure learning methods typically treat
structure search and parameter optimization as separate tasks.
In contrast, we propose the TCCD framework, which innova-
tively combines Monte Carlo Tree Search (MCTS) with con-
tinuous parameter optimization for collaborative optimiza-
tion. As shown in Fig. 2, TCCD initializes the root node
with influence-driven local optimization and employs a tree-
based dynamic parameter learning strategy, where parame-
ter estimation guides structure exploration, and structural up-
dates trigger efficient local parameter adjustments. Addition-
ally, TCCD introduces a Hierarchical Potential Score function
that combines BIC scores, likelihood values, and global con-
sistency to effectively guide the MCTS search and iterative
causal structure optimization.

4.2 Influence-Driven Local Optimization
To efficiently process large-scale telecommunication data, we
propose a localized optimization mechanism based on influ-
ence propagation. The optimization process consists of two
main components: log-likelihood function and local parame-
ter updates.
Log-Likelihood Function. Inspired by S2GCSL [Li et al.,
2024], we further design a log-likelihood function that inte-
grates current event occurrences X (t0), historical sequences
Xh = {(di, vi, ti)|ti < t}, and topological structure B0:k to
derive the weighted Granger causal matrix Sw

vi,vj
= αvi,vj

×
svi,vj captures the causal influence of event type vi on vj
through the Granger causality statistic αvi,vj . Combined with
the baseline intensity matrix µ, these parameters form the
set Θ = {Sw, µ}, which we optimize using event sequences
X = {(di, vi, ti)|i ∈ 1, . . . ,m} through the following likeli-
hood function,

L(Sw, µ) =
∑
d

( ∑
i:di=d

log λvi,d
ti −

∑
v

∫ T

0

λv,d
t dt

)

=
∑
d

( ∑
i:di=d

log
(
µvi,d +

∑
j∈AN(d,t)

Sw
vj ,vi

Bk
dj ,dϕ(ti − tj)

)
︸ ︷︷ ︸

Log-Likelihood

−
∑
v

∑
i:ti=d

∫ T

ti

∑
j∈N(d)

Sw
vj ,vi

Bk
dj ,dϕ(s− tj) ds︸ ︷︷ ︸

compensation integral term

)

−T
∑
v

µv,d

︸ ︷︷ ︸
baseline intensity

(4)
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Here, the log-likelihood represents the occurrence proba-
bility of the current event at time ti, considering both the
baseline intensity µvi,d and the weighted influence from
neighboring events (tj < ti and still active) through the ex-
ponential decay function ϕ(t) = e−βt. The baseline intensity
term reflects the intrinsic occurrence rate of event type v over
[0, T ], independent of external influences. The compensation
integral term corrects for potential future event impacts by in-
tegrating the decay effects and causal dynamics of neighbors
N(n) and active events A(ti). In addition, the steps to deduce
the integral term in the log-likelihood function are as follows,∫ T

ti

ϕ(s− tj) ds =

∫ T

ti

e−β·(s−tj) ds = eβtj ·
[
e−β·s

−β

]T
ti

= eβtj ·
[
e−βti − e−βT

β

]
=

e−β·(ti−tj) − e−β·(T−tj)

β
(5)

The final optimization problem follows the S2GCSL[Li et al.,
2024] and is defined as,

S⋆, µ⋆ = arg min
Sw,µ
−L(Sw, µ) + λ1||Sw||1 + λ2h(S

w) (6)

where λ1 and λ2 are regularization hyperparameters, ||A′||1
is the l1-norm of A′, promoting sparsity in the causal matrix
to reduce unnecessary connections and improve interpretabil-
ity, and h(A′) ensures that the deduced causal graph is a di-
rected acyclic graph (DAG) [Zheng et al., 2018].
Local Parameter Updates. To effectively combine contin-
uous optimization with search and improve search efficiency,
we propose a novel localized optimization mechanism that
dynamically updates parameters only for regions affected by
each action. For each action a(vi,vj), we identify the set
of affected nodes Naffected = {vi, vj} ∪ {vk | (vi, vk) ∈
EV or (vk, vj) ∈ EV } that includes both event-type nodes
vi, vj and their immediate neighbors.

Based on this, we then construct adaptive parameter masks
MS ∈ {0, 1}|V|×|V| and Mµ ∈ {0, 1}|V|×|D|, setting ele-
ments to 1 for affected nodes (rows and columns in MS and
corresponding elements in Mµ) and 0 otherwise. The opti-
mization process employs masked gradient updates with lo-
cal parameters by Slocal = Sopt⊙MS and µlocal = µopt⊙Mµ,
where ⊙ denotes the Hadamard product. During backprop-
agation, gradients are constrained to affected nodes through
∇Sopt = ∇Sopt ⊙ MS and ∇µopt = ∇µopt ⊙ Mµ. Local
optimization is performed using Eq.4, tracking the parameter
configuration that results in minimal loss. Finally, after the
optimization has been completed, only the optimal parame-
ters for the affected nodes are updated to the MCTS nodes.
This localized approach significantly reduces computational
complexity while maintaining optimization quality by focus-
ing only on relevant parameter subspaces.

4.3 Tree-Guided Continuous-Optimization Casual
Discovery

The Monte Carlo Tree Search (MCTS) aims to uncover causal
graph structures from observational data by introducing a
tree-guided dynamic parameter learning strategy that inte-
grates search and optimization. In the search tree, each

node nlk maintains the visit count N(slk), tracking the fre-
quency of visits to state slk , and the hierarchical potential
score HPS(slk), which evaluates the overall score of slk . For
each edge (slk , alk), assuming a transition from slk to s(l+1)k

along (slk , alk), the action value is defined as Q(slk , alk) =
HPS(s(l+1)k′ ) − HPS(slk). The Q-function Q(slk , alk) and
parameters Θlk = (Sw,lk , µlk) are recorded, where the causal
strength matrix Sw,lk ∈ Rn×n and baseline intensity vector
µlk ∈ Rn are dynamically optimized as the tree expands.
Furthermore, in each layer of child nodes, we incorporate the
action termination identifier Termination(â) to ensure the
optimal node is found.

The search process begins at the root state s0, progressively
selecting and expanding nodes by optimizing the combina-
tion of the value function and the exploration reward u(s).
Upon reaching a leaf node n′, all possible child nodes are
expanded based on the executable action set A(s′), where
each child node is evaluated by its hierarchical potential score
HPS(schild). These child nodes are then ranked and pruned
using a pruning mechanism, after which the updated Q-values
and node visit counts N(s) are propagated upwards. Rather
than starting with an empty root node, the search space is op-
timized using an influence-driven local optimization method.
Specifically, by utilizing the initialized root node parameters
Θinit = (Sw

init, µinit), the weight matrix Sw
pred = softplus(Sw)

is derived through global optimization, as prescribed by Eq.4,
since the root node state is an empty graph with no masks or
influence nodes. The action space is constrained by iteratively
removing edges with the smallest weights, where the edges to
remove are determined by,

eremove(vi,vj) = arg min
(vi,vj)∈A

Sw
pred[vi, vj ] (7)

After this transformation, the resulting binarized matrix is up-
dated to the root node n0 as the initial state s0 for the sub-
sequent tree search. This transformation reduces the search
space by constraining the action set A(s0) starting from
s0. Subsequently, tree-guided continuous optimization is em-
ployed to further guide causal discovery, instead of relying
solely on the results of continuous optimization. The entire
search process consists of five steps, as illustrated in Fig.2.
Selection. Starting from the root node, we employ the
Upper Confidence thresholds (UCB) algorithm [Kocsis and
Szepesvári, 2006] to select an unexplored node, striking a
balance between exploitation and exploration. At each step,
an action a is selected to move to a child node, continuing
until an unexplored node is found. The selected action a∗ is
determined by:

a∗ = arg max
a∈A(s)

[
Q(s, a) + C ·

√
N(s)

1 +N(s′)

]
(8)

where s′ is the state after action a∗ from state s, Q(s, a) de-
notes the value of action a, and C controls the exploration-
exploitation trade-off.
Expansion. For non-terminal leaf nodes, valid actions are
generated as:

A(s) = {a(vi,vj) | s[vi, vj ] = 0 and IsValid(s ∪ {a(vi,vj)})}
(9)
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Wireless-18 Micro-24 Micro-25
Methods Precision Recall F1 SHD Precision Recall F1 SHD Precision Recall F1 SHD
PC 0.5128 0.2899 0.3704 - 0.2553 0.1752 0.2078 155 0.2921 0.1757 0.2194 150
GES 0.5000 0.2464 0.3301 62 0.2605 0.2263 0.2422 160 0.2078 0.2162 0.2119 179
ADM4 0.3727 0.5942 0.4581 49 0.2671 0.8832 0.4102 135 0.2833 0.9189 0.4331 134
PCMCI 0.3402 0.4783 0.3976 60 0.3333 0.4307 0.3758 126 0.2477 0.3581 0.2928 168
Corl 0.5000 0.5362 0.6167 69 0.2778 0.0365 0.0645 135 0.2632 0.0338 0.0599 147
THP 0.7255 0.5362 0.6167 37 0.4632 0.3212 0.3793 128 0.4118 0.2365 0.3004 140
S2GCSL 0.6364 0.5072 0.5645 46 0.2540 0.6934 0.3718 155 0.4786 0.3784 0.4226 124
TCCD 0.7288 0.6232 0.6719 34 0.5470 0.4672 0.5039 115 0.4846 0.4257 0.4532 132

Table 1: Performance Results on Real-World datasets.

where IsValid checks action feasibility. Non-root nodes con-
sider a subset of initial state actions to reduce search space.
Each node generates a termination-action, Termination(â),
inheriting parent parameters and marked terminal. The se-
lected node s∗ is expanded with child nodes n initialized with
Q(s, a) = 0.

Evaluation. Each new node state s′ = s ∪ a(vi,vj) inherits
and local optimizes its parameters Θ of parent to obtain Θ′.
The potential score of node is measured by the Hierarchical
Potential Score (HPS) function:

HPS(s′) = α1 · BIC(s′) + α2 · Llocal(s
′) + α3 · Lglobal(s

′)
(10)

where α1, α2 and α3 are weights that balance the contribu-
tions of BIC, local likelihood and global likelihood in the
score function. Llocal(s

′) and Lglobal(s
′) are derived from

Eq.4, substituting Sw with Sw · s′, and BIC(s′) as in THP
[Cai et al., 2022]. Following this, the immediate reward is
r(s′) = HPS(s′)−HPS(s). Hierarchical normalization stan-
dardizes child node rewards for comparability, setting iden-
tical rewards to zero to indicate no advantage. For terminal
states, the potential score of the parent state is used, and visit
statistics are initialized for future decisions.

Pruning. After evaluation, a pruning step is conducted
to discard child nodes with lower potential scores.
Specifically, a threshold θ is determined as θ =
sorted(HPS(s), reverse=True)[⌊kthreshold × |HPS(s)|⌋], where
kthreshold represents the proportion of child nodes to retain.
This process ensures that only the most promising child
nodes, likely to yield high returns, are preserved, thereby fur-
ther reducing the search space.

Backup. During backpropagation, the visit counts N(·)
and Q-values for all nodes along the path from the leaf to the
root are updated iteratively. The updates propagate bottom-
up, ensuring that the parent nodes integrate the contributions
from their children. The immediate reward of child node
r(s′) is calculated as HPS(s′) − HPS(s), where it denotes
the difference between the HPS of a child node and its parent
node. The update rules are as follows: For terminal nodes,
the Q-value is set directly to the current reward:

Q(s, â)← r(s) (11)

For non-terminal nodes, the Q-value is updated iteratively
based on a weighted incremental formula:

Q(s, a)← Q(s, a) +

(
γdQ(s′, a)−Q(s, a)

)
N(s)

(12)

where s represents a node on the path, and after perform-
ing action â, its successor s′ (also on the path) becomes the
child node; d represents the depth of the node in the tree, γ is
the discount factor controlling the influence of rewards from
deeper nodes, and N(s)← N(s) + 1 denotes the visit count
of node s. The update process begins at the leaf node and
proceeds sequentially along the path up to the root using a
breadth-first traversal method. At each step, the cumulative
reward is adjusted using the discount factor γ, ensuring that
rewards closer to the leaf node contribute more significantly.
Furthermore, node expansion is prohibited after the execution
of Termination(â).

5 Experiments
5.1 Experimental Setup
Evaluation Metrics. We evaluated the performance of our
TCCD approach with comparison to baselines using real-
world metropolitan cellular network alarm data and synthetic
datasets. Similar to [Cai et al., 2022; Li et al., 2024], we
test the following metrics: Precision, Recall, F1 Score, and
Structural Hamming Distance (SHD). Precision measures the
proportion of predicted edges that are true among the to-
tal predicted edges. Recall quantifies the fraction of actual
edges that have been correctly predicted. F1 Score represents
the harmonic mean of Precision and Recall, calculated as
F1 = 2×Precision×Recall

Precision+Recall . SHD denotes the number of edge
insertions, deletions, or flips needed to transform a graph into
another graph. Also, the detailed implementation and hyper-
parameters of our experiments are provided in Appendix B.1.
Real-World Metropolitan Cellular Network Alarm Data.
We evaluate TCCD on three challenging datasets derived
from real-world metropolitan cellular networks, show-
cased in the PCIC 2021 competition1. The first dataset,
18V 55N Wireless (Wireless-18), consists of 18 alarm types,
55 topological network elements, and a total of 34,839

1https://competition.huaweicloud.com/information/
1000041487/dataset
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Figure 3: Sensitivity analysis of different methods with respect to various parameters.

alarm events. The other two datasets, 24V 439N Microwave
(Micro-24) and 25V 474N Microwave (Micro-25), contain
24 and 25 alarm types, 439 and 474 topological network el-
ements, and 64,599 and 48,573 alarm events, respectively.
Remarkably, the Wireless-18 lacks an underlying topologi-
cal network structure, which demonstrates the applicability
of our model. Causal discovery on such datasets aims to un-
cover causal relationships among alarm types, further vali-
dating the effectiveness and generalization capability of our
method. Detailed statistics of the datasets are shown in Ap-
pendix B.2.

Synthetic Datasets. In addtion, we generate a range of syn-
thetic datasets via the gcatle [Zhang et al., 2021] API, which
simulates event sequences using topological Hawkes process
[Cai et al., 2022]. The details of the synthetic data genera-
tion process and the parameter configurations are provided in
Appendix B.3.

Baselines. In experiments, we selected the following causal
discovery methods as baselines for comparison: GES [Chick-
ering, 2002], ADM4 [Zhou et al., 2013], PC [Spirtes et al.,
2001], PCMCI [Runge et al., 2019], Corl [Wang et al., 2021],
THP [Cai et al., 2022] and S2GCSL [Li et al., 2024]. For
fairness, we used the optimal parameters as specified in their
respective papers (Appendix C). We ran all experiments on
a platform with Ubuntu 16.04 on 256GB of memory and an
NVIDIA GeForce GTX 1080 Ti GPU.

5.2 Experimental Results
Results on Real-World datasets. Based on the experimen-
tal results in Table 1, TCCD consistently outperforms base-
lines across three real-world datasets. Methods utilizing
topological network structures (THP, S2GCSL, and TCCD)

Datasets Methods Pre Recall F1 SHD

Wireless-18 TCCD−MCTS 0.7273 0.5797 0.6452 37
TCCD 0.7288 0.6232 0.6719 34

Micro-24 TCCD−MCTS 0.5556 0.4380 0.4898 115
TCCD 0.5470 0.4672 0.5039 115

Micro-25 TCCD−MCTS 0.4841 0.4122 0.4453 132
TCCD 0.4846 0.4257 0.4532 132

Table 2: Ablation study on three real-world datasets.
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Figure 4: Performance of TCCD and TCCD−eremove on three datasets

achieve higher F1 scores than traditional point process-based
approaches (PC, GES, PCMCI), highlighting the importance
of spatiotemporal modeling. TCCD outperforms all baselines
with the highest F1 score, demonstrating a strong balance be-
tween Precision and Recall. On the Wireless-18 dataset, it
achieves an F1 of 0.6719, with high Precision 0.7288, Re-
call 0.6232, and the lowest SHD 34, ensuring accurate causal
graph reconstruction. For Micro-24, TCCD maintains opti-
mal performance with the highest F1 0.5039 and Precision
0.5470, alongside the lowest SHD 115, despite higher Recall
0.6934 of S2GCSL. In networks with 25 event types, TCCD
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leads with an F1 of 0.4516 and Precision of 0.4809, though
SHD is slightly higher than S2GCSL (132 vs. 124). Tradi-
tional methods (PC, GES) perform poorly (F1 < 0.37), and
ADM4 show high Recall but low Precision, indicating over-
sensitivity to weak causal signals. In general, TCCD effec-
tively balances inference accuracy and structural correctness,
establishing itself as a robust solution for large-scale causal
discovery in telecommunication networks.
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Figure 5: Experimental results of three cases.

Results on Synthetic Datasets. We further evaluate the
performance of TCCD and five baseline models across six di-
mensions on the synthetic datasets (Fig.3). Fig.3 shows the
F1 scores of different methods under various parameter set-
tings (α, µ, δ), with additional evaluation metrics provided in
Appendix E. Overall, our TCCD performs well in most cases,
achieving relatively high F1 scores across multiple parameter
configurations. In particular, it demonstrates strong stabil-
ity and generalization ability when the sample size is large
or the number of event types increases. Although THP [Cai
et al., 2022] and S2GCSL [Li et al., 2024] achieve slightly
higher F1 scores under certain specific parameter settings,
their overall performance is less stable compared to TCCD.
Notably, our method maintains superior generalization abil-
ity and causal structure learning performance, especially in
high-dimensional and complex event sequences.
Ablation Study. To validate the effectiveness of the pro-
posed TCCD framework, we conduct ablation experiments on
three real-world datasets. Table 2 presents the comparison ex-
perimental results between TCCD and its variant TCCD−MCTS,
where TCCD−MCTS denotes a simplified version of TCCD that
only uses influence-driven local optimization to obtain the
initial causal structure s0 without the MCTS-based structure
refinement. Additionally, Fig.4 shows the comparison results
for another variant TCCD−eremove , which removes the mecha-

nism of eliminating invalid edges from TCCD to assess the
impact of this mechanism. As shown in Table 2, one the
Wireless-18 dataset, TCCD outperforms TCCD−MCTS in Preci-
sion, Recall, and F1, with Recall increasing by 4.35% and F1
by 2.67%. On the more challenging Micro-24 and Micro-25
datasets , while overall performance decreases, TCCD consis-
tently surpasses TCCD−MCTS in Recall and F1. In Micro-24,
Recall improves by 2.92% and F1 by 2.41%, despite a slight
drop in Precision, indicating better causal recovery. In Micro-
25, Precision slightly increases, with Recall and F1 improv-
ing by 3.29% and 1.78%, respectively. Moreover, the identi-
cal SHD values for TCCD and TCCD−MCTS suggest that MCTS
enhances structural weights rather than altering causal edge
count. Even TCCD−MCTS outperforms the baseline S2GCSL
(Table 1), validating the effectiveness of our approach. The
superior performance of TCCD can be attributed to two key
factors: First, unlike S2GCSL, which primarily rely on statis-
tical correlations, our approach integrates network topology
and temporal decay to capture spatiotemporal causality; Sec-
ond, MCTS enables a more thorough exploration of causal
structures, avoiding local optima and improving inference ac-
curacy. Additionally, as shown in Fig.4, removing invalid
edges in TCCD−eremove significantly boosts F1 on Wireless-18,
highlighting its role in mitigating erroneous causal links. On
Micro-24 and Micro-25, TCCD−eremove remains competitive,
further confirming the contributions of each module in TCCD.
Case Study. Going deeper into the analysis, we evalu-
ate TCCD on three real-world causal networks with N =
{18, 24, 25} using True Causal Graph, Weighted Causal
Graph (Sw), and Estimated Causal Graph. Fig.5(a)(b)(c)
show how the method identifies local structures in the 18-
event network by capturing causal relationships 1→ 3, 16→
14, and 17→ 6 with high fidelity through locality-aware op-
timization based on influence propagation. For the Micro-24,
Fig.5(d)(e)(f) demonstrate effective identification of dense re-
gions (e.g., 8-13) while balancing detailed structural recov-
ery with global sparsity via MCTS. Fig.5(g)(h)(i) reveal the
robustness of the method in handling 25 event types. In par-
ticular, Fig.5(i) more accurately captures the key causal rela-
tionships around nodes 4-12 while reducing false positives in
the sparse regions around nodes 20-24. Ultimately, the TCCD
framework integrates MCTS with continuous optimization to
build accurate causal structures with precision across diverse
network scales.

6 Final Remarks
In this paper, we propose TCCD, a framework that com-
bines MCTS with continuous optimization for efficient causal
structure learning in large-scale telecommunication networks.
By utilizing MCTS’s exploration-exploitation strategy and
gradient-based optimization, TCCD balances global search
and local refinement. It extends the S2GCSL likelihood by in-
tegrating discrete DAG search with continuous learning, en-
abling dynamic feedback to enhance generalization. Future
work includes scaling MCTS to larger search spaces via logi-
cal action representations [Zhuo et al., 2011; Jin et al., 2022],
and adapting the framework to diverse event patterns and tem-
poral dynamics.
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