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Abstract

Breast diseases pose a significant threat to women’s
health. Automatic lesion segmentation in breast ul-
trasound images (BUSI) plays a crucial role in fast
diagnosis. While various enhanced U-Net-based
models have achieved success in multi-scale fea-
ture analysis and handling blurred boundaries, two
key challenges persist that could guide the improve-
ment of BUSI segmentation networks: 1) signifi-
cant fluctuations in pixel intensity dis tribution sim-
ilarity between the lesion and surrounding tissues,
and 2) inconsistent transmission of spatial detail
due to multi-scale lesion sampling. These issues
highlight the necessity of semantic elasticity un-
derstanding and consistency control. To this end,
we propose ElaD-Net, an Elastic Semantic Decou-
pling Network for lesion segmentation in BUSI.
This network uses the pre-trained EfficientNet-B2
for multi-scale encoding of BUSI. The decoding
stage features two key modules: Elastic Seman-
tic Decoupling (ESD) and Spatial Semantic Recon-
struction (SSR). ESD learns and decouples multi-
frequency semantics in multi-scale channels with a
self-calibration mechanism, enabling dynamic ad-
justment of receptive depth to resist similarity fluc-
tuations. SSR further optimizes ESD outputs via
feature branching, compression, and excitation to
ensure spatial semantic consistency, thereby sepa-
rately reconstructing edge and body.

1 Introduction

Breast cancer is a leading cause of cancer-related deaths in
women [Wilcock and Webster, 2021]. Automated breast ul-
trasound image (BUSI) segmentation is a key tool to assist
early diagnosis and treatment planning. Convolutional neu-
ral networks (CNNs) [O’Shea and Nash, 2015] are widely
used for medical image segmentation, but traditional CNN's
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Figure 1: Foreground-surroundings similarity quantification.

struggle with pixel-level classification. To address this, Ron-
neberger et al. [Ronneberger et al., 2015] proposed U-Net, an
encoder-decoder architecture with skip connections that pre-
serves spatial details and integrates multi-level features.

In addition, several U-Net enhancements, such as U?-
Net [Qin et al., 20201, AAU-Net [Chen et al., 2023al, and
Swin-Unet [Cao et al., 2022], integrate residual structures,
multi-scale analysis, and attention mechanisms to capture in-
tricate image details. However, these methods mainly focus
on texture [Geirhos et al., 2019al, making it difficult to cap-
ture global shape information in BUSI with blurred bound-
aries. Thus, strategies like multi-scale fusion and deep su-
pervision, as seen in UNet++ [Zhou er al., 2018], have been
proposed. Yet, these approaches still struggle with the unique
challenges of BUSI, hindering precise lesion segmentation.

1) Significant similarity fluctuations in pixel intensity
distributions of foreground and surroundings. A major
challenge in BUSI segmentation is the blurred edges of le-
sions. To elucidate the nature of this blur, we quantitatively
analyze the similarity between the foreground (lesion) and
surroundings. Figure 1 presents results from five random
samples, where the lesion (in red) and surrounding tissue (in
blue) exhibit similar morphological features (semantics). To
quantify this, we calculate the Wasserstein Distance (WD) be-
tween their pixel intensity distributions, shown in grayscale
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Figure 2: Spatial detail segmentation: U-Net vs. ElaD-Net.

histograms. Sample 2 demonstrates significantly higher se-
mantic similarity than others (e.g., samples 1, 3, and 4) ac-
cording to the proportion of overlapping areas. Additionally,
even for the same lesion (e.g., sample 1), different edge po-
sitions show noticeable variations in similarity. We term this
fluctuation in semantic similarity, a core challenge in address-
ing blurred boundaries often overlooked in existing studies.

2) Inconsistency in spatial details transmission caused
by sampling of multi-scale lesions. U-Net, while founda-
tional, relies heavily on downsampling, leading to the loss of
key features [Rahman er al., 2024] and difficulty in recover-
ing critical details. As shown in Figure 2, edge details are
often captured roughly, with regions frequently missed. This
issue arises from the challenge of maintaining spatial seman-
tic consistency during transmission, as varying lesion sizes
in BUSI complicate dynamic adaptation. Misalignment be-
tween edge and internal structure sampling disrupts semantic
consistency, preventing accurate restoration of spatial details.

The core challenge lies in ensuring the elastic and con-
sistent information preservation during semantic decoupling.
Our main goal is to answer how to adaptively decouple se-
mantics despite fluctuations in intensity similarity between
the lesion and surroundings, while maintaining consistent
spatial semantics across multi-scale lesions during sampling.

To this end, we propose an Elastic semantic Decoupled
Network (ElaD-Net) for lesion segmentation in BUSI. ElaD-
Net utilizes EfficientNet-B2 for downsampling BUSI, with
mobile inverted bottleneck convolutions to suppress noise and
extract key features. Each upsampling step incorporates two
modules: Elastic Semantic Decoupling (ESD) and Spatial Se-
mantic Reconstruction (SSR), addressing similarity fluctua-
tions and spatial detail inconsistencies. ESD creates multi-
scale channels, performs self-calibrated decoupling through
multiple branches within each channel, and fuses correlated
features to generate the overall map. SSR decomposes this
map into edge and body semantic feature maps, which are
optimized separately and reconstruct the feature maps for pre-
dicting the edge and body. Losses for body, edge, and overall
features are balanced during experimentation.

Our main contributions are: 1) An elastic semantic decou-
pling module resists fluctuations in the pixel intensity distri-
bution similarity between foreground and surroundings, en-
hancing semantic understanding in complex cases. 2) Spa-
tial semantic reconstruction refines the feature maps gener-
ated by ESD, maintaining consistency in spatial detail trans-
mission during sampling. 3) Extensive experiments on three
real BUSI datasets demonstrate superior segmentation perfor-
mance and robustness of the proposed method ElaD-Net.

2 Related Work

Feature Enhancement for BUSI Segmentation. U-Net-
based methods have achieved notable success in medical
image segmentation [Dong et al., 2023; Ning et al., 2022;
Lin et al., 2022]. However, in BUSI, the foreground and
surroundings have similar distributions, leading to blurred
boundaries. To this end, some studies have introduced at-
tention mechanisms and multi-scale feature fusion strategies.
For example, Attention U-Net [Oktay et al., 2018] enhances
focus on important regions through self-attention mecha-
nisms. ESKnet [Chen er al., 2024a] designs enhanced selec-
tive kernel convolutions that integrate multiple feature map
regions and adaptively recalibrate their weights from both
channel and spatial dimensions, mitigating interference from
less relevant areas. Moreover, to effectively suppressing irrel-
evant features in BUSI, Punn et al. [Punn and Agarwal, 2022]
introduce residual initial convolutions (RIC) and cross-spatial
attention (CSA) blocks into U-net. Liu et al. [Liu et al.,
2024a] propose CMFF-Net, which combines Transformer’s
global context information with CNN-extracted local spatial
information via cross-attention feature fusion. It enhances the
feature representation. Lee et al. [Lee ef al., 2020] introduce
channel attention modules to improve U-Net’s performance.

Information Loss Alleviating. Information loss during
upsampling and downsampling is common in U-Net-based
models for BUSI segmentation. To address this, some stud-
ies propose non-stride or dilated convolutions to retain spa-
tial details. For example, DeepLab [Chen et al., 2015;
Chen et al., 2018a; Chen et al., 2018b] addresses information
loss with dilated convolutions and multi-scale context aggre-
gation. In addition, some studies focus on designing recon-
struction modules to recover the edge information lost during
downsampling. Chen et al. [Chen et al., 2024b] use adaptive
low-pass filter (ALPF) generators and adaptive high-pass fil-
ter (AHPF) generators to reduce position shifts caused by up-
sampling and recover high-frequency edge details lost during
downsampling. BATFormer [Lin et al., 2023]ensures accu-
rate edge information learning at different scales by provid-
ing supervision signals. Moreover, SegNet [Badrinarayanan
et al., 2017] proposes max-pooling indices, where the de-
coder uses indices computed by the encoder to upsample low-
resolution feature maps, achieving precise pixel-level recov-
ery. Also, it effectively mitigates information loss.

However, the issues of fluctuations in the similarity of in-
tensity distribution between the foreground and surroundings,
as well as the inconsistencies in multi-scale spatial detail
transmission, remain unresolved, making flexible semantic
understanding and segmentation of BUSI challenging.

3 Method

3.1 Semantic Encoding

The similar morphological features between lesions and sur-
rounding tissues pose challenges for sampling (semantic en-
coding). EfficientNet [Tan and Le, 2019] adopts a compound
scaling strategy to adjust depth, width, and resolution, en-
abling efficient multi-scale feature extraction and noise sup-
pression. EfficientNet-B2, using Mobile Inverted Bottleneck
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Figure 3: The overall architecture of ElaD-Net.

Stege 1 Conv Channels | Size
Stege 1|Stem(7x7 Conv, Stride=2), Block1 16 172
Stege 2 Block 2 24 1/4
Stege 3 Block 3 48 1/8
Stege 4 Block 4 88 1/16
Stege 5 Block 5, Block 6, Block 7 1408 |1/32

Table 1: Detailed parmeters setting for each stage of encoder.

Convolution (MBConv) as its core building block, is chosen
for our encoder design, as shown in the upper-left of Figure 3.
To address the cold start problem on BUSI and capture gen-
eral image features, we pre-trained EfficientNet-B2 on Ima-
geNet [Russakovsky et al., 2015]. The encoder details at each
downsampling stage are shown in Table 1. Outputs e; from
each stage are passed to the corresponding decoder via skip
connections and mixed with decoupled semantics from the
previous stage to preserve spatial details, as follows:

xT; = [Upz((io) : 61] ifi =1, [Up2<532,1) : 62‘] ifi>1, (1)

where [a : b] is concatenation, and Up,, (-) denotes upsam-
pling by a factor of u through a transpose convolution.

3.2 Elastic Semantic Decoupling (ESD)

The pixel intensity similarity between lesions and surround-
ing tissues in BUSI varies significantly, known as the F'P
problem (Section 1). Since fixed decoupling criteria are im-
practical for such mixed contexts, we expand branching in
multi-scale channels and introduce elasticity into the decou-
pling process. Inspired by the multi-frequency segmentation

strategy under multi-scale attention from [Nam et al., 2024],
we further extend this idea by designing the Elastic Semantic
Decoupling module, which introduces adaptive semantic dis-
entanglement and dynamic frequency calibration for robust
handling of foreground—background similarity fluctuations.

Multi-Scale Semantic Extraction

Breast lesions vary in scale, requiring dynamic adjustment of
the proportion of key information extracted. We employ three
convolutional layers with different kernel sizes, termed multi-
scale attention [Nam et al., 2024], for semantic extraction:

x5 = Conv2Dy,(Down, (z;)) € RE*H/sxW/s = (2)

where z; € REXHXW denotes the feature map at the i-th
decoder layer and k € {3,5,7} the kernel size. Down(-)
indicates downsampling by a factor of s € {1,2,4}, corre-
sponding to no/2x/4x downsampling.

Self-Calibrating Elastic Decoupling (SCED)

Multiscale extraction allows the model to dynamically adjust
its receptive field. If we treat the domain of similarity fluc-
tuations as image depth, the next step is to endow the model
with the ability to adjust this receptive depth. Features of dif-
ferent semantics can be emphasized by their corresponding
frequencies [Azad et al., 2021; Geirhos et al., 2019b]. We
believe that adjusting the focus of the model’s decoupled se-
mantics by utilizing frequency at different depths will help
achieve the desired outcome.

We use the Laplacian pyramid mechanism [Lai e al.,
2017] to map convolutional feature maps to the frequency
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domain, dynamically adjusting their weights based on fre-
quency component importance. Low-frequency captures
overall structure, while high-frequency captures edges and
textures. Specifically, we approximate the Laplacian with the
Difference of Gaussian (DoG). Starting from z;, we extract
”L + 17 levels (branches) of Gaussian representations with

incrementally increasing variances 1, @2, ..., QL:
Gi(z}) = G(s 1) * 27, (3)
Gl dai ) = —me 2 0
 J2; @) = e .
J15J2; P (p\/ﬂ

Above, G(+) is the Gaussian filter, with * denoting convolu-
tion, and j1, jo as spatial positions in the feature space.

The Laplacian Pyramid LP is constructed by calculating
differences between adjacent Gaussian representations:

R {Gl(xf)—GlH(me ifl1<I<L
LPz 1= . )

' Gi(x%), ifl=1L
where L P/, is the output of the [-th layer L P from the i-th de-
coder layer and scale s. For each spectral feature map LP;},
we apply average pooling to mitigate noise, max pooling to
emphasize locally salient features, and min pooling to capture
dark areas or negative outliers. This multi-pooling strategy
enhances discriminative power for elastic decoupling:

®

4 GlobalAveragePooling(LP});), if p = avg
Z{%" = { GlobalMaxPooling(LF;)), if p = max , (6)
—GlobalMaxPooling(—LF;;), if p=min
where Z (S Y ¢ RC:-*1X1 We then average these poolin
g p g

results across all pyramid levels to yield combined features:

i 1 g S,%
70 = < Szl 7
=1

To dynamically adjust the importance of frequency com-
ponents, we compute an attention matrix from the pooling
results to calibrate the original semantics. Specifically, the
pooled features are first passed through two fully connected
layers for self-calibration: FC1 reduces the dimension to C'/r
with reduction rate r, while FC2 restores it to C'. Here, § de-
notes the ReLLU activation function. The attention matrix M
is then generated by adding and activating with the Sigmoid
function (), enabling debiasing in the fluctuation (depth)-

based elastic semantic decoupling, as follows:

& = o @ M e ROV, (®)
]va =0 (Zp€{avg,max,min} FCZ(‘S(FCI(ZI(’SJ))))) € RO:x1x1, (9)

Correlation Feature Fusion (CFF)

To aggregate the correlated foreground details from multi-
scale semantics while distinguishing the surroundings, we de-
veloped an improved multi-scale feature fusion mechanism
inspired by [Nam er al., 2024], generating attention maps for
both foreground and surroundings. We established two inde-
pendent attention leaves for &

F? = o(Conv2D, (#3)) ® &f € RO HXW, (10)
B =(1-F})®&; € RO->HXW, (11)
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Figure 4: Squeeze-and-Excitation (SE) layer.

Squeeze-and-Excitation (SE) layer, illustrated in Figure 4,
is designed here to suppress irrelevant features and highlight
important ones within each leaf. SE utilizes Global Average
Pooling (GAP) to convert the input into a vector, with dimen-
sion C representing the leaf’s size. Two convolution layers
are then applied: one reduces the size from C to r, and the
other restores it to C'. Afterward, the Sigmoid function gen-
erates quantized values, which are multiplied element-wise
with original input to suppress or enhance features. The pro-
cess is defined as follows:

5, = SE(FY) =
5, = SE(B) =

o(Cov2D?(GAP(
o(Cov2D?(GAP(

Ff))) ®F1{g c ]RC><H><W7 (12)
Bf))) ® Bf € ROXHEXW  (13)

The feature maps are integrated and upsampled to maintain
dimensional consistency across different scale channels.

z{ = Conv2D3(&f; + &7,) € ROH>W, (14)
i = Up (T5) € ROHXW, (15)

Finally, we fuse the spatially refined feature maps from all
scales with learnable weights W:

3
b=y Wi (16)
s=1

3.3 Spatial Semantic Reconfiguration (SSR)

To address spatial detail inconsistency (Section 1), we pro-
pose to enhance the transmission process by decomposing it
into three key steps: decomposition, optimization, and recon-
struction, thereby recovering the lost spatial details.
Decomposition. Thanks to ESD’s semantic decoupling,
we can easily separate the body component sbo ¥ and the edge

component 52" from the stage feature mapz;, as follows:

s = AvgPool(i;), 5% = i; — sV A7)

7 g 7 ’

where AvgPool is a 5x5 average pooling with stride =
1,padding = 2. This facilitates the independent transmis-
sion of the two components to reduce spatial detail loss.
Optimization. To mitigate body component attenuation
during the cross-scale transmission, we introduce a transmis-
sion optimization mechanism to enhance spatial semantics:

Abody SE( body) (18)
§;Ib0dy _ UPZ(A//body + Abody) (19)

Here, SE is employed to amplify key features while suppress-
ing irrelevant ones, and integrate legacy information from the
previous level to restore finer details, ultimately achieving a
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finely tuned body component §2’b°dy. The same approach is

applied to tune the edge component §;/edge:

5% = SE(s5"), (20
= Up, (57 + 5. 1)

~lledge
S; €

Reconstruction. We reintegrate the two components with
the final semantic feature map z; decoupled from SSR, form-
ing a cohesive whole that effectively recovers the spatial de-
tails lost during downsampling, as follows:

Po = ConV2D, (8% 4 5% 4 7)) (22)

Both 5/°®° and 5" are passed through a 1x1 convolution
to obtain the predicted edge probability map p. and the body
probability map py, respectively.

3.4 Loss Function

To enable more comprehensive segmentation, we compute
the loss for three segmentation results p., py and py:

'CE =X [fDice (pe> le)» (23)
Ly = Lysce(Po: lb) + Lwiou (Db, ), (24)
Lo = Lysce(Po, lo) + Lwiou (Pos lo)- (25)

Above, I, Iy, and [, are the ground truth. Considering the
class imbalance in edge information, the Dice loss [Milletari
et al., 2016] Lpi. is utilized to ensure the accuracy of edge
detection. The weighted binary cross-entropy loss Lypcg and
the weighted intersection over union (IoU) loss Lyju are
combined to enhance the model’s ability to learn different
classes and complex shapes. Finally, we calculate the total
loss by assigning weights, i.e., a, 3, u, to the aforementioned
components: Lg = aLo + SLE + pLsp.-

4 Experiments

4.1 Experimental Setup

Datasets Experiments are conducted on three publicly BUSI
datasets (Table 2): the BUSI-E9 [Al-Dhabyani e al., 2020]
dataset from Bahia Hospital, Dataset B [Yap et al., 2020] ac-
quired using the Siemens ACUSON Sequoia C512 system,
and the STU [Zhuang er al., 2019] dataset from the Imaging
Department of Shantou University Medical Center.
Evaluation Metrics We adopt five common segmentation
metrics to evaluate performance: Jaccard Index (IoU), Preci-
sion, Recall, Specificity, and Dice Coefficient (DC).
Experimental Details We employ a four-fold cross-
validation approach in experiments. We use the Adamax opti-
mizer with an initial learning rate of 0.002 to train our model.
The hyperparameters for loss calculation, «, 3, and u, are set
to 0.4, 0.3, and 0.3, respectively. The epoch is set to 300, and
the batch size is 6. The experimental environment includes
PyTorch 1.13, Python 3.8, and an NVIDIA RTX 4090 GPU.

4.2 Ablation Study

Parameter Ablation. To evaluate the impact of different loss
weight configurations on segmentation performance, we de-
signed a series of ablation experiments testing various « : 3 :

Dataset ‘ Benign Malignant Normal Total‘External-validation

BUSI-E9| 437 210 133 780 False
Dataset B| 110 53 No 163 True
STU |Unknow Unknow No 42 True

Table 2: Sample distribution of the three public BUSI datasets.

. Experimental results shown in Table 3 indicate that when
the weights are set to 0.4 : 0.3 : 0.3, the segmentation ac-
curacy reaches the optimal state on BUSI-E9 and Dataset B
because the edge loss and body loss are properly balanced.

Pre Rec Spec DC

80.62 85.10 97.66 81.18
73.86 82.58 84.56 97.78 81.96
73.59 82.07 85.70 97.66 81.87
75.81 83.23 89.06 99.29 84.48
77.25 83.85 89.56 99.36 85.38
77.16 84.07 89.66 99.10 85.17

Table 3: Ablation study of different Loss.

Method | oU Pre Rec Spec DC
U-Net 60.70 71.88 76.30 96.18 70.10
Efficient UNet 71.11 81.02 82.69 98.78 80.31
Efficient Unet+ESD 72.77 81.37 84.56 98.88 81.31

Efficient U-Net+ESD+SSR | 73.86 82.58 84.56 97.78 81.96

Table 4: Ablation study of network components on BUSI-E9.

Evaluation of Module Effectiveness. 1) To systemati-
cally verify the impact of different modules on model per-
formance, we conducted ablation studies (Table 4) on the
BUSI-E9 dataset using four-fold cross-validation. Replacing
traditional U-Net with EfficientNet-B2 led to significant im-
provements across all metrics, with the Dice coefficient ris-
ing from 70.1 to 80.31. As ESD and SSR were progressively
introduced, segmentation performance further improved, ow-
ing to FP problem resistance from multi-scale feature extrac-
tion, self-calibrated elastic semantic decoupling, and spatial
semantic consistency from SSR. 2) To assess the impact of
edge and body reconstruction within SSR, we test three vari-
ants: w/o edge (no edge branch), w/o body (no body branch),
and w/ body-edge (both branches). Results in Table 5 show
that the w/ body-edge variant yields the best segmentation,
with the Jaccard index rising from 72.87 (w/o edge) and 73.49
(w/o body) to 73.86. Adding either branch improves perfor-
mance, though not as much as using both.

Variants | IoU Pre Rec  Spec DC
w/o edge 72.87 81.22 84.59 97.71 80.96
w/o body 7349 8144 8592 97.58 81.72

w/ body-edge | 73.86 82.58 84.56 97.78 81.96

Table 5: Ablation study of body-edge on BUSI-E9.
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Method ‘ BUSI-E9 ‘ Dataset B
| IoU Pre Rec Spec DC | IoU Pre Rec Spec DC
U-Net 60.70+£2.36 71.88+2.41 76.30+£2.48 96.18+0.55 70.10£2.20 | 58.44+4.26 70.27+£6.11 75.32+2.85 98.44+0.40 68.20+4.23
Att U-Net 57.09+£1.22 78.78+4.67 66.97+4.08 96.87+0.83 67.99+1.18 | 59.93+4.53 70.40+6.05 76.15+4.21 98.43+0.33 69.30+4.07
U-Net++ 61.38+1.73 79.68+3.07 71.44+2.77 97.04+0.54 71.58+2.09 | 61.19+£5.86 68.32+5.73 79.64+3.84 98.44+0.41 69.77+5.30
SegNet 67.31£1.87 76.09£2.00 79.85+1.03 96.99+0.53 75.64+1.80 | 62.83+2.20 71.72+1.70 80.15+3.90 98.59+0.30 72.16+1.52
BASNet 69.49+2.30* 78.25+£3.07 82.28+1.72* 97.21+£0.62 77.75+£2.51%| 68.27+4.09 77.05+4.70 82.83+4.27* 98.81+0.44 77.17+£3.22
AAU-Net 68.82+0.44 79.61£1.07 81.10£0.52 97.57+0.24 77.51+0.68 |69.10+£2.98* 78.83+2.40* 82.22+3.84 98.82+0.35 78.14+2.41*
ESK-net 70.20+£2.28 79.57+1.65 82.41+£2.84 97.47+0.35 78.71£2.37 | 71.65£2.39 81.01£3.91 82.66+1.40 99.01+0.35 79.92+2.21
NU-Net 70.35+1.54 79.56%1.17 82.46+1.02 97.48+0.49 78.62+1.38 | 72.03+0.82 81.49+0.44 84.13+1.73 98.96+0.17 80.80+0.57
Rolling-Unet| 67.31+2.44 81.77+2.01 77.20+£1.36 98.75+0.44 76.65+1.42 | 64.81+3.31 79.43£2.92 74.47+£2.45 99.39+0.26 73.84+2.77
Ours 73.86+2.17 82.58+1.54 84.56+2.02 97.78+0.62 81.96+2.01 | 77.25+2.98 83.85+4.29 89.56+0.87 99.36+0.35 85.38+2.59
Table 6: Segmentation results (Mean + Std) of different methods on BUSI-E9 and Dataset B.
Method | Benign Lesions | Malignant Lesions
| IoU Pre Rec Spec DC | 1IoU Pre Rec Spec DC
U-Net 61.53£3.98 74.97£2.80 73.97£5.81 97.72+0.59 70.49+£3.23 | 51.11+£2.62 64.96+2.55 68.86+4.27 93.63+1.28 63.47+2.38
Att U-Net 65.03£2.05 75.24+1.68 79.444+2.84 97.68+0.62 73.30+2.00 | 51.12+42.35 61.62+0.97 72.57+£2.17 93.12+1.00 62.95+2.14
U-Net++ 68.25+2.75 75.93+3.66 81.58+1.09 97.74+0.62 75.56%2.79 | 54.03£3.03 65.50+£2.94 73.43+2.10 93.73%£1.31 65.52+2.75
SegNet 67.894£3.31 76.96+3.11 79.574£2.21 97.98+0.46 75.47+2.91 | 54.89+1.78 63.79+£2.65 77.25+4.02* 94.00£1.14 65.90+1.97
BASNet 70.55+£2.38 78.00+2.83 82.25%1.17 98.13+0.54 77.78+2.29 | 58.94+1.71 68.68+2.15 76.30+3.36 94.79+0.90 69.27+1.51
AAU-Net |73.33+2.09%* 82.70+£2.90* 83.14+0.87* 98.39+0.47* 80.88+2.06*|60.60+1.70* 72.62+3.13* 76.13£5.66 95.11£1.27* 71.54+1.74*
ESK-net 72.73£2.12 81.50+£2.62 82.69+0.40 98.29+0.40 80.17£1.79 | 59.63+£1.57 71.52+3.40 74.71£3.21 95.24+1.31 70.43+1.32
NU-Net 74.3442.83 82.91+2.42 85.56+3.59 98.43+0.40 81.43+2.85|61.37+0.96 72.88+1.90 77.41+2.99 95.15+1.14 72.15+0.70
Rolling-Unet| 67.86+£2.67 81.24+2.33 80.26+1.75 98.44+0.47 77.86+2.31 | 56.80+£2.17 73.96+£2.42 71.59+1.96 95.86+1.43 68.63+£1.62
Ours 77.2242.41 84.89+2.56 87.38+1.93 98.53+0.55 84.56+2.20 | 66.94+1.18 75.26+3.85 80.24+4.20 94.87+1.72 75.07+1.05

Table 7: Comparison of segmentation results for benign and malignant lesions on the BUSI dataset.

4.3 Segmentation Results

To evaluate the effectiveness of ElaD-Net, we select several
state-of-the-art methods as baselines, including U-Net [Ron-
neberger et al., 2015], Att U-Net [Oktay et al., 2018], U-
Net++ [Zhou et al., 2018], SegNet [Badrinarayanan et al.,
20171, BasNet [Qin et al., 20211, AAU-Net [Chen et al.,
2023a], NU-Net [Chen et al., 2023b], ESKnet [Chen et al.,
2024a] and Rolling-Unet [Liu et al., 2024b].

Comparison of Segmentation Results. The experimen-
tal results are summarized in Table 6. Bold and underline
represent the best and second-best performance results, re-
spectively. Asterisks (x+ : p < 0.05) indicates a signifi-
cant difference via a paired t-test. U-Net and Att U-Net per-
form the worst, since they fall short in precisely capturing
the lesion features and distinguishing interference in BUSI.
U-Net++ leverages deep supervision by utilizing intermedi-
ate layer outputs for auxiliary loss calculations, yet it strug-
gles to maintain edge information. SegNet mitigates informa-
tion loss from downsampling via max-pooling indices but still
lacks precision in segmenting fine structures in BUSI. Other
methods (e.g., BasNet, AAU-Net, NU-Net, and ESKnet) have
improved segmentation performance but often rely on spe-
cific contextual information or local feature extraction, lim-
iting their adaptability for variably shaped lesions. In con-
trast, ElaD-Net exhibits significant advantages across multi-
ple aspects. Its IoU value improves by 4.9% on BUSI and
7.2% on Dataset B compared to the second-best method, NU-

Net. it achieves elastic semantic decoupling through the ESD
module, allowing it to more accurately capture lesion fea-
tures and differentiate from surrounding environmental inter-
ference. Additionally, the SSR model optimizes the trans-
mission of body and edge information, addressing the issue
of spatial detail loss caused by downsampling.

Qualitative Comparison. Figure 5 illustrates a visual
comparison of different segmentation methods, featuring ex-
amples with varying lesion scales and foreground-surrounds
intensity distribution similarities. It is clear that our method
(last column) produces segmentation results that are closer to
the ground truth (second column). Other methods, particu-
larly U-Net, AttU-Net, U-Net++, SegNet, and ESKNet, per-
form poorly in complex scenarios (rows 2, 3, 5, and 6). This
further highlights the robustness of our method.

4.4 Robustness Analysis

Robustness on Benign and Malignant Lesions. Benign le-
sions have regular shapes and clear boundaries, while malig-
nant lesions are irregular, with fuzzy boundaries and complex
intensity distributions, demanding higher segmentation capa-
bilities from the model. As shown in Table 7, our method
achieved the best results in both benign and malignant lesion
segmentation. The IoU for benign and malignant lesions were
77.22 and 66.94, respectively, demonstrating the robustness
of the method in handling the complex morphology of malig-
nant lesions. In contrast, methods like U-Net and Att U-Net
struggled with malignant lesions due to their reliance on sim-
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Figure 5: Qualitative comparison of segmentation results on BUSI-E9.

Methcy | Dataset B on BUSI-E9 | STU on Dataset B
‘ IoU Pre Rec Spec DC ‘ IoU Pre Rec Spec DC

U-Net 42.7244.65 63.44+5.55 54.48+6.86 98.17+0.70 53.31+4.31| 58.90+3.75 66.27+5.46 86.88+1.60 94.54+0.74 71.41+3.67
Att U-Net  |38.48+4.19 47.72+5.37 58.38+4.06 97.38+0.71 47.36£5.57| 52.65£2.29 59.26+2.86 86.35+1.29 93.41+0.41 65.19+2.73
U-Net++ 46.05+£3.54 54.14£5.96 61.94+4.52 97.84+0.77 54.89+4.21|59.18+4.21 64.86+5.36 89.67+£1.59 94.33+0.83 70.70+4.19
SegNet 42.56£8.30 63.39+£10.94 51.59+9.73 98.29+0.87 51.61+9.02| 62.70+3.09 66.57+3.05 91.36+£0.38 95.04+0.49 73.50+3.62
BASNet 50.86+4.67 69.27£6.62 60.63+3.74 98.66+0.78 59.60+4.87|72.19+3.11* 77.87+3.71* 92.01+1.42 96.30+0.29* 82.12+2.92*
AAU-Net  |51.27+5.52 79.71£1.73* 56.13+6.60 98.91+0.61* 61.34£5.65| 68.99+3.29 74.91+3.18 92.12+0.75* 95.94+0.71 80.23+2.60
ESK-net 58.36+2.62 81.21+3.71 66.60+2.42 98.97+0.71 67.92+3.48| 72.63+2.77 79.23+£3.39 92.01+0.81 96.57+0.53 82.72+1.70
NU-Net 57.60£2.77 80.50£4.59 64.91+2.51 99.01+0.61 67.56+2.88| 74.06+0.82 79.87+£1.10 92.38+1.07 96.80+0.24 84.10+0.76
Rolling-Unet|54.23+1.26 61.2942.9 75.96+5.6 96.98+0.86 63.33+1.34| 67.80+4.27 87.70+2.76 77.24+6.74 98.63+£0.05 79.04+3.98
Ours 64.79+0.46 68.71+0.95 89.34+0.95 97.64+0.19 74.15+0.43| 77.26+1.66 84.34+2.73 86.72+0.87 97.76+0.37 84.57+2.03

Table 8: Comparison of segmentation results for cross-dataset validation.

pler contextual information, resulting in poor segmentation
with missed detections and false positives.

Cross-Dataset Validation. To evaluate the model’s gen-
eralization, we conducted cross-dataset validation (Table 8).
Our method outperformed all others, achieving a Dice coeffi-
cient of 74.15, Precision of 89.34 on Dataset B (using a model
trained on BUSI-E9). On the STU dataset, it achieved a Dice
of 84.57 and Specificity of 97.76, demonstrating strong ro-
bustness. In contrast, methods like Att U-Net and U-Net++
showed significant performance degradation, highlighting our
method’s superior generalization.

5 Conclusion

This study presents ElaD-Net, a novel model for BUSI seg-
mentation that tackles complex backgrounds, similarity fluc-

tuations, and spatial detail loss. Built on a pre-trained
EfficientNet-B2 encoder, ElaD-Net integrates two key mod-
ules: Elastic Semantic Decoupling (ESD) and Spatial Seman-
tic Reconstruction (SSR). ESD enables multi-scale extrac-
tion, self-calibration, and feature fusion to improve robust-
ness against FP issues. SSR decouples body and edge fea-
tures, then optimizes and reconstructs them to preserve spa-
tial consistency. We balance losses across body, edge, and
full outputs to enhance accuracy. Extensive experiments on
three real BUSI datasets validate each module’s effectiveness,
showing superior performance and robustness. Future work
will focus on accelerating segmentation for clinical use.
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