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A Primal-dual Perspective for Distributed TD-learning

Han-Dong Lim , Donghwan Lee
Department of Electrical Engineering, KAIST
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Abstract

The goal of this paper is to investigate distributed
temporal difference (TD) learning for a networked
multi-agent Markov decision process. The proposed
approach is based on distributed optimization algo-
rithms, which can be interpreted as primal-dual ordi-
nary differential equation (ODE) dynamics subject
to null-space constraints. Based on the exponen-
tial convergence behavior of the primal-dual ODE
dynamics subject to null-space constraints, we ex-
amine the behavior of the final iterate in various
distributed TD-learning scenarios, considering both
constant and diminishing step-sizes and incorporat-
ing both i.i.d. and Markovian observation models.
Unlike existing methods, the proposed algorithm
does not require the assumption that the underlying
communication network structure is characterized
by a doubly stochastic matrix.

1 Introduction
Temporal-difference (TD) learning [Sutton, 1988] aims to
solve the policy evaluation problem in Markov decision pro-
cesses (MDPs), serving as the foundational pillar for many
reinforcement learning (RL) algorithms [Mnih et al., 2015].
Following the empirical success of RL in various fields [Wang
et al., 2022], theoretical exploration of TD-learning has be-
come an active area of research. For instance, [Tsitsiklis
and Van Roy, 1996] studied the asymptotic convergence of
TD-learning, while non-asymptotic analysis has been ex-
amined in [Bhandari et al., 2018; Srikant and Ying, 2019;
Lee and Kim, 2022].

In contrast to the single-agent case, the theoretical under-
standing for TD-learning for networked multi-agent Markov
decision processes (MAMDPs) has not been fully explored so
far. In the networked MAMDPs, each agent follows its own
policy and receives different local rewards while sharing their
local learning parameters through communication networks.
Under this scenario, several distributed TD-learning algo-
rithms [Wang et al., 2020; Doan et al., 2019; Doan et al., 2021;
Sun et al., 2020; Zeng et al., 2022] have been developed based
on distributed optimization frameworks [Nedic and Ozdaglar,
2009; Pu and Nedić, 2021].

The main goal of this paper is to provide finite-time anal-
ysis of a distributed TD-learning algorithm for networked
MAMDPs from the perspectives of the primal-dual algo-
rithms [Wang and Elia, 2011]. The proposed algorithms are
inspired by the control system model for distributed optimiza-
tion problems [Wang and Elia, 2011; Lee, 2023], and it can
also be interpreted as the primal-dual gradient dynamics in [Qu
and Li, 2018]. In this respect, we first study finite-time analy-
sis of continuous-time primal-dual gradient dynamics in [Qu
and Li, 2018] with special nullity structures on the system ma-
trix. Based on the analysis of primal-dual gradient dynamics,
we further provide a finite-time analysis of the proposed dis-
tributed TD-learning under both i.i.d. observation and Markov
observation models. The main contributions are summarized
as follows:

1. An improved or comparable to the state of art conver-
gence rate for continuous-time primal-dual gradient dy-
namics [Qu and Li, 2018] with null-space constraints
under specific conditions: the results can be applied to
general classes of distributed optimization problems that
can be reformulated as saddle-point problems [Wang and
Elia, 2011];

2. Development of new distributed TD-learning algorithm
inspired by [Wang and Elia, 2011; Lee, 2023], which
does not require a double stochastic matrix. This offers a
significant advantage in specific scenarios, such as wire-
less ad hoc networks or broadcast-based communication,
where node degrees (number of neighbours) are often un-
known due to factors like message loss during transmis-
sion [Hendrickx and Tsitsiklis, 2015]. This uncertainty
makes it challenging to construct a doubly stochastic
matrix, as most existing methods rely on precise knowl-
edge of node degrees. In contrast, our algorithm does
not require such additional information and thus remains
effective in these environments;

3. New mean-squared error bounds of the distributed TD-
learning under our consideration for both i.i.d. and
Markovian observation models and under various con-
ditions of the step-sizes: the distributed TD-learning is
based on the control system model in [Wang and Elia,
2011; Lee, 2023] which does not require doubly stochas-
tic matrix corresponding to its associated network graph.
Note that the doubly stochastic assumption is required
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in other distributed TD-learning algorithms based on the
classical distributed optimization algorithms [Nedic and
Ozdaglar, 2009; Pu and Nedić, 2021];

4. Empirical demonstrations of both the convergence and
the rate of convergence of the algorithm are provided.

Related Works. Distributed optimization has been an active
research field. In this context, [Nedic and Ozdaglar, 2009]
investigated a distributed optimization algorithm over a com-
munication network whose structure graph is represented by
a doubly stochastic matrix. In this approach, each agent ex-
changes information with its neighbors, with the exchange
being weighted by the corresponding element in the dou-
bly stochastic matrix. Meanwhile, [Wang and Elia, 2011;
Notarnicola et al., 2023] provided control system approach to
study distributed optimization problem.

The asymptotic convergence of distributed TD-learning has
been studied in [Mathkar and Borkar, 2016; Stanković et al.,
2023]. [Doan et al., 2019] provided finite-time analysis of
distributed TD-learning based on the distributed optimization
algorithm [Nedic and Ozdaglar, 2009] with i.i.d. observa-
tion model. Their analysis was extended to the Markovian
observation model [Doan et al., 2021]. [Sun et al., 2020] stud-
ied distributed TD-learning based on [Nedic and Ozdaglar,
2009] with the Markovian observation model using multi-
step Lyapunov function [Wang et al., 2019]. [Wang et al.,
2020] studied distributed TD-learning motivated by the gra-
dient tracking method [Pu and Nedić, 2021]. [Zeng et al.,
2022] studied finite-time behavior of distributed stochastic
approximation algorithms [Robbins and Monro, 1951] with
general mapping including TD-learning and Q-learning, using
Lyapunov-Razumikhin function [Zhou and Luo, 2018].

In the context of policy evaluation, [Macua et al., 2014;
Lee et al., 2018; Wai et al., 2018; Cassano et al., 2020] stud-
ied distributed versions of gradient-TD [Sutton et al., 2009].
The Gradient-TD method is reformulated as saddle-point prob-
lem [Macua et al., 2014; Lee et al., 2022], and the aforemen-
tioned works can be understood as distributed optimization
over a saddle-point problem [Boyd and Vandenberghe, 2004].

2 Preliminaries
2.1 Markov Decision Process
Markov decision process (MDP) consists of five tuples
(S,A, γ,P, r), where S := {1, 2, . . . , |S|} is the collection of
states, A is the collection of actions, γ ∈ (0, 1) is the discount
factor, P : S × A × S → [0, 1] is the transition kernel, and
r : S ×A×S → R is the reward function. If action a ∈ A is
chosen at state s ∈ S , the transition to state s′ ∈ S occurs with
probability P(s, a, s′), and incurs reward r(s, a, s′). Given a
stochastic policy π : S × A → [0, 1], the quantity π(a | s)
denotes the probability of taking action a ∈ A at state s ∈ S .
We will denote Pπ(s, s′) :=

∑
a∈A P(s, a, s′)π(a | s), and

Rπ(s) :=
∑

a∈A
∑

s′∈S P(s, a, s′)π(a | s)r(s, a, s′), which
is the transition probability from state s ∈ S to s′ ∈ S un-
der policy π, and expected reward at state s ∈ S , respec-
tively. d : S → [0, 1] denotes the stationary distribution
of the state s ∈ S under policy π. The policy evaluation

problem aims to estimate the expected sum of discounted re-
wards following policy π, the so-called the value function,
vπ(s) = E

[∑∞
k=0 γ

kr(sk, ak, sk+1)
∣∣s0 = s, π

]
for s ∈ S .

Given a feature function ϕ : S → Rq, our aim
is to estimate the value function through learnable pa-
rameter θ, i.e., vπ(s) ≈ ϕ(s)⊤θ, for s ∈ S, which
can be achieved through solving the optimization problem,
minθ∈Rq

1
2 ∥R

π + γP πΦθ −Φθ∥2Dπ , where Dπ is a diago-
nal matrix whose elements are d(1), d(2), . . . , d(|S|), P π ∈
R|S|×|S| whose elements are [P π]ij := Pπ(i, j) for i, j ∈ S ,
Rπ ∈ R|S|, [Rπ]i := E [r(s, a, s′)|s = i] for i ∈ S, and
Φ :=

[
ϕ(1) ϕ(2) · · · ϕ(|S|)

]⊤ ∈ R|S|×q . The solution
of the optimization problem satisfies the so-called projected
Bellman equation [Sutton et al., 2009]:

Φ⊤DπΦθ = Φ⊤DπRπ + γΦ⊤DπP πΦθ.

Throughout the paper, we adopt the common assumption on
the feature matrix, which is widely used in the literature [Bhan-
dari et al., 2018; Wang et al., 2020].

Assumption 1. ∥ϕ(s)∥2 ≤ 1 for all s ∈ S and Φ is full-
column rank matrix.

2.2 Multi-Agent MDP

Multi-agent Markov decision process (MAMDP) considers a
set of agents cooperatively computing the value function for
a shared environment. Considering N agents, each agent can
be denoted by i ∈ V := {1, 2, . . . , N}, and the agents com-
municate over networks that can be described by a connected
and undirected simple graph G := (V, E), where E ⊂ V × V
is the set of edges. Ni ⊂ V denotes the neighbour of agent
i ∈ V , i.e., j ∈ Ni if and only if (i, j) ∈ E for i, j ∈ V .
Each agent i ∈ V has its local policy πi : S × Ai → [0, 1],
where Ai is the action space of agent i, and receives reward
following its local reward function ri : S × A × S → R
where A := ΠN

i=1Ai. MAMDP consists of five tuples
(S,A, γ,P, {ri}Ni=1), where P : S × A × S → [0, 1] is the
Markov transition kernel. The agents share the same state
s ∈ S, and when action a := (a1, a2, . . . , aN ) ∈ A is taken,
the state transits to s′ ∈ S with probability P(s,a, s′), and
for i ∈ V , agent i receives ri(s,a, s′). The aim of the pol-
icy evaluation under MAMDP is to estimate the expected
sum of discounted rewards averaged over N agents, i.e.,
vπ(s) = E

[∑∞
k=0 γ

k 1
N

∑N
i=1 r

i(sk,a, sk+1)
]
, for s ∈ S.

While learning, each agent i ∈ V can share its learning pa-
rameter over the communication network with its neighboring
agents j ∈ Ni. Following the spirit of single-agent MDP,
the aim of each agent is now to compute the solution of the
following equation:

Φ⊤DπΦθ = Φ⊤Dπ

(
1

N

N∑
i=1

Rπ
i + γP πΦθ

)
, (1)

where Rπ
i ∈ R|S| for i ∈ V , whose elements are [Rπ

i ]j =
E
[
ri(s,a, s′) | s = j

]
for j ∈ S . The equation (1) admits a
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unique solution θc ∈ Rq , given by

θc = (Φ⊤Dπ(Φ− γP πΦ))−1Φ⊤Dπ

(
1

N

N∑
i=1

Rπ
i

)
.

(2)

Note that the solution corresponds to the value
function associated with the global reward∑∞

k=0 γ
k 1
N

∑N
i=1 r

i(sk,ak, sk+1). Moreover, we will
denote, for 1 ≤ i ≤ N ,

A :=γΦ⊤DπΦ−Φ⊤DπP πΦ, bi := Φ⊤DπRπ
i , (3)

and w := λmin(Φ
⊤DπΦ). The bound on the reward will be

denoted by a positive constant Rmax ∈ R, i.e., |ri(s,a, s′)| ≤
Rmax, 1 ≤ i ≤ N, ∀s,a, s′ ∈ S ×A× S .

3 Analysis of Primal-Dual Gradient Dynamics
The so-called primal-dual gradient dynamics [Arrow et al.,
1958] will be the key tool for the analysis of the proposed
distributed TD-learning. The analysis provided in this section
will serve as the foundation for the subsequent analysis in
Section 4. This section establishes exponential convergent
behavior of the primal-dual gradient dynamics in terms of the
Lyapunov method. To this end, let us consider the following
constrained optimization problem:

min
θ∈Rn

f(θ) such that Mθ = 0n, (4)

where θ ∈ Rn, M ∈ Rn×n and f : Rn → R
is a differentiable, smooth, and strongly convex func-
tion [Boyd and Vandenberghe, 2004]. One of the pop-
ular approaches for solving (4) is to formulate it into
the saddle-point problem [Boyd and Vandenberghe, 2004],
L(θ,w) = minθ∈Rn maxw∈Rn(f(θ) +w⊤Mθ), whose so-
lution, θ∗,w∗ ∈ Rn, exists and is unique when M has full-
column rank [Qu and Li, 2018]. If M is rank-deficient, i.e., it
is not full-column rank, there exists multiple w∗ solving the
saddle-point problem. It is known that its solution θ∗,w∗ can
be obtained by investigating the solution θt,wt ∈ Rn of the
so-called primal-dual gradient dynamics [Qu and Li, 2018],
with initial points θ0,w0 ∈ Rn,

θ̇t =−∇f(θt)−M⊤wt, ẇt = Mθt.

[Qu and Li, 2018] studied exponential stability of the primal-
dual gradient dynamics when M is full column-rank, using
the classical Lyapunov approach [Sontag, 2013]. However, the
proof relies on the invertibility of M , and cannot be extended
to the case when M is rank-deficient. As for such case, [Oza-
slan and Jovanović, 2023; Cisneros-Velarde et al., 2020;
Gokhale et al., 2023] proved exponential convergence to a
particular solution θ∗,w∗ using the tools based on singular
value decomposition [Horn and Johnson, 2012]. In this paper,
we will consider the following particular scenarios:

1. ∇f(θt) = Uθt, where U ∈ Rn×n, which is positive
definite matrix, i.e., U +U⊤ ≻ 0;

2. M is symmetric and rank-deficient. Distributed algo-
rithms are typical examples satisfying such condition and
will be elaborated in subsequent sections.

We note that previous works considered general matrix M ,
not necessarily a symmetric matrix. Moreover, note that the
primal-dual gradient dynamics under such scenarios will ap-
pear in Section 4 as an ODE model of the proposed distributed
TD-learning. The corresponding system can be rewritten as

d

dt

[
θt
wt

]
=

[
−U −M⊤

M 0n×n

] [
θt
wt

]
, θ0,w0 ∈ Rn. (5)

To study its exponential stability, let us introduce the Lyapunov

function candidate V (θ,w) =

[
θ

MM †w

]⊤
S

[
θ

MM †w

]
,

where S ∈ R2n×2n is some symmetric positive definite matrix,
and θ,w ∈ Rn. The candidate Lyapunov function considers
projection of the iterate wt to the range space of M . As in
previous works, the difficulty coming from singularity of M
can be avoided by considering the range space and null space
conditions of M . In particular, [Ozaslan and Jovanović, 2023]
employed a Lyapunov function that involves the gradient of
the Lagrangian function, and considered the projected iter-
ate MM †wt, where MM † is the projection matrix onto
range space of M . [Cisneros-Velarde et al., 2020] exploited a
quadratic Lyapunov function in [Qu and Li, 2018] for the iter-
ate θt and V wt, where M := TΣV ⊤, which is the singular
value decomposition of M . [Gokhale et al., 2023] considered
a positive semi-definite matrix S and used semi-contraction
theory [De Pasquale et al., 2023] to prove exponential conver-
gence of the primal-dual gradient dynamics.

We will adopt the quadratic Lyapunov function in [Qu and
Li, 2018] with the projected iterate MM †wt, and leverage
the symmetric property of M to show improved or compa-
rable to the state of art convergence rate under the particular
conditions newly imposed in this paper. When M is sym-
metric, the fact that the projection onto the column space of
M and row space of M being identical simplifies the overall
bounds. We first present the following Lyapunov inequality.

Lemma 2. Let S :=

[
βIn M
M βIn

]
where β :=

max
{

2λmax(M)2+2+∥U∥2
2

λmin(U+U⊤)
, 4λmax(M)

}
. Then, β

2 I2n ≺
S ≺ 2βI2n, and we have, for any θ,w ∈ Rn,[

θ
MM †w

]⊤
S

[
−U −M
M 0n×n

] [
θ

MM †w

]
≤−min{1, λ+

min(M)2}
∥∥∥∥[ θ

MM †w

]∥∥∥∥2
2

.

The proof is given in 1Appendix Section C.1. Using the
above Lemma 2, we can now prove the exponential stability
of the ODE dynamics in (5).

Theorem 3. Let V (θ,w) =

[
θ

MM †w

]⊤
S

[
θ

MM †w

]
.

1The Appendix can be found in https://arxiv.org/pdf/2310.00638
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For θ0,w0 ∈ Rn and t ∈ R+, we have

V (θt,wt)

=O

exp

 −min{1, λ+
min(M)2}

max
{

2λmax(M)2+2+∥U∥2
2

λmin(U+U⊤)
, 4λmax(M)

} t
 .

The proof is given in Appendix Section C.2. We show that
the above bound enjoys sharper or comparable to the state
of the art convergence rate under particular conditions. With
slight modifications, the Lyapunov function becomes identi-
cal to that of [Gokhale et al., 2023]. However, we directly
rely on classical Lyapunov theory [Khalil, 2015] rather than
the result from semi-contraction theory [De Pasquale et al.,
2023] used in [Gokhale et al., 2023]. The classical Lyapunov
approach simplifies the proof steps compared to that of semi-
contraction theory. The detailed comparative analysis is in
Appendix Section D. The fact that M is symmetric and consid-
ering the projected iterate MM †wt, provides improved and
comparable bound. Furthermore, as will be clear in Section 4,
this enables us to extend the analysis to stochastic algorithms
(TD-learning) without introducing involved analysis including
(semi)-contraction theory or intricate Lyapunov function.

4 Distributed TD-Learning
In this section, we propose a new distributed TD-learning al-
gorithm to solve (1) based on the result in [Wang and Elia,
2011]. In this scenario, each agent keeps its own parameter
estimate θi ∈ Rq, 1 ≤ i ≤ N , and the goal of each agent
is to estimate the value function vπ(s) ≈ ϕ(s)⊤θc satisfy-
ing (1) (the value function associated with the global reward∑∞

k=0 γ
k 1
N

∑N
i=1 r

i) under the assumption that each agent
has access only to its local reward ri. The parameter of each
agent can be shared over the communication network whose
structure is represented by the graph G, i.e., agents can share
their parameters only with their neighbors over the network to
solve the global problem. The connections among the agents
can be represented by graph Laplacian matrix [Anderson Jr
and Morley, 1985], L ∈ R|S|×|S|, which characterizes the
graph G, i.e., [L]ij = −1 if (i, j) ∈ E and [L]ij = 0 if
(i, j) /∈ E , and [L]ii = |Ni| for i ∈ V . Note that L is symmet-
ric positive semi-definite matrix and L1|S| = 0. To proceed,
let us first introduce a set of matrix notations:

L̄ := L⊗ Iq, D̄π := IN ⊗Dπ, P̄ π := IN ⊗ P π,

R̄π =
[
(Rπ

1 )
⊤ (Rπ

2 )
⊤ · · · (Rπ

N )⊤
]⊤

, Φ̄ := IN ⊗Φ,

Ā = IN ⊗A, b̄ =


b1
b2
...

bN

 , θ̄ =


θ1

θ2

...
θN

 , w̄ =


w1

w2

...
wN

 ,

where ⊗ denotes Kronecker product, and w̄ is another col-
lection of learnable parameters {wi ∈ Rq}Ni=1, where wi

assigned to each agent i and bi is defined in (3).
Meanwhile, [Wang and Elia, 2011] studied distributed op-

timization algorithms [Tsitsiklis, 1984] from the control sys-
tem perspectives in continuous-time domain, which can be

Algorithm 1 Distributed TD-learning

Initialize α0 ∈ (0, 1), {θi
0,w

i
0 ∈ Rq}Ni=1, η ∈ (0,∞).

for k = 1, 2, . . . , T do
for i = 1, 2, . . . , N do

Agent i observes oik := (sk, s
′
k, r

i
k).

Update as follows:

δ(oik;θ
i
k) =rik + γϕ⊤(s′k)θ

i
k − ϕ⊤(sk)θ

i
k (6)

θi
k+1 =θi

k + αk(δ(o
i
k;θ

i
k)ϕ(sk)

− η(|Ni|θi
k −

∑
j∈Ni

θj
k)

− η(|Ni|wi
k −

∑
j∈Ni

wj
k)) (7)

wi
k+1 =wi

k + αkη(|Ni|θi
k −

∑
j∈Ni

θj
k) (8)

end for
end for

represented as an Lagrangian problem [Hestenes, 1969]. Com-
pared to other distributed optimization algorithms [Nedic and
Ozdaglar, 2009; Pu and Nedić, 2021], the method in [Wang
and Elia, 2011] does not require any specific initialization,
diminishing step-sizes, and doubly stochastic matrix that cor-
responds to the underlying communication graph. Due to
these advantages, this framework has been further studied
in [Hatanaka et al., 2018; Bin et al., 2022]. Inspired by [Wang
and Elia, 2011], [Lee, 2023] developed a continuous-time
distributed TD-learning algorithm. The analysis relies on Bar-
balat’s lemma [Khalil, 2015], which makes extension to the
non-asymptotic finite-time analysis difficult for its discrete-
time counterpart. Moreover, they focus on the deterministic
continuous-time algorithms. The corresponding discrete-time
distributed TD-learning is summarized in Algorithm 1, where
each agent updates its local parameter using the local TD-error
in (6). The updates in (7) and (8) in Algorithm 1 can be ob-
tained by discretizing the continuous-time ODE introduced
in [Wang and Elia, 2011] with stochastic samples.

Using the stacked vector representation, the updates in (7)
and (8) in Algorithm 1 can be rewritten in compact form:[

θ̄k+1

w̄k+1

]
=

[
θ̄k
w̄k

]
+ αk

[
Ā− ηL̄ −ηL̄

ηL̄ 0

] [
θ̄k
w̄k

]
+ αk

[
b̄
0

]
+ αkϵ̄(ok; θ̄k), (9)

where, ok := {oik}Ni=1, and for 1 ≤ i ≤ N ,

ϵi(oik;θ
i
k) :=δ(oik;θ

i
k)ϕ(sk)−Aθi

k − bi,

ϵ̄(ok; θ̄k) :=
[
ϵ1⊤k ϵ2⊤k · · · ϵN⊤

k 0⊤]⊤ , (10)

where we denoted ϵik := ϵi(oik;θ
i
k). Note that the super-

script of ϵik corresponds to the i-th agent. Compared to the
continuous-time algorithm in [Lee, 2023], we introduce an
additional positive variable η > 0 multiplied with the graph
Laplacian matrix, which results in the factor η multiplied with
the mixing part in Algorithm 1 in order to control the variance
of the update. We note that when the the number of neighbors
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of an agent i ∈ V is large, then so is the variance of the corre-
sponding updates of the agent. In this case, the variance can
be controlled by adjusting η to be small.

The behavior of stochastic algorithm is known to be closely
related to its continuous-time O.D.E. counterpart [Borkar and
Meyn, 2000; Srikant and Ying, 2019]. In this respect, the
corresponding O.D.E. model of (9) is given by

d

dt

[
θ̄t
w̄t

]
=

[
Ā− ηL̄ −ηL̄

ηL̄ 0

] [
θ̄t
w̄t

]
+

[
b̄
0

]
, (11)

for θ̄0, w̄0 ∈ RNq, and t ∈ R+. The above linear system
is closely related to the primal-dual gradient dynamics in (5)
in Section 3. Compared to (5), the difference lies in the fact
that the above system corresponds to the the dynamics of the
distributed TD-learning represented by matrix Ā instead of the
gradient of a particular objective function. It is straightforward
to check that the equilibrium point of the above system is
1N ⊗ θc and 1

η w̄∞ such that L̄w̄∞ = Ā(1N ⊗ θc) + b̄.
In what follows, we will analyze finite-time behavior of (9)

based on the Lyapunov equation in Lemma 4. For the analysis,
we will follow the spirit of [Srikant and Ying, 2019], which
studied the standard single-agent TD-learning based on the
Lyapunov method [Sontag, 2013]. To proceed further, let us
consider the coordinate change of θ̃k := θ̄k − 1N ⊗ θc and
w̃k := w̄k − 1

η w̄∞, with which we can rewrite (9) by[
θ̃k+1

w̃k+1

]
=

[
θ̃k
w̃k

]
+ αk

[
Ā− ηL̄ −ηL̄

ηL̄ 0

] [
θ̃k
w̃k

]
+ αkϵ̄(ok; θ̄k). (12)

We will now derive a Lyapunov inequality for the above sys-
tem based on the results in Lemma 4, To this end, we will rely
on the analysis in [Qu and Li, 2018], which proved exponen-
tial convergence of the continuous-time primal-dual gradient
dynamics based on the Lyapunov method. However, the newly
introduced singularity of L̄ imposes difficulty in directly ap-
plying the results from [Qu and Li, 2018] which does not allow
the singularity. To overcome this difficulty, we will multiply
L̄L̄† to the dual update w̃k+1 in (12), which is the projection
to the range space of L̄. The symmetric assumption of L̄ helps
to construct an explicit solution of the Lyapunov inequality in
Lemma 4. Multiplying L̄L̄† to w̃k+1 in (12) yields[

θ̃k+1

L̄L̄†w̃k+1

]
=

(
I2N + αk

[
Ā− ηL̄ −ηL̄

ηL̄ 0

])[
θ̃k

L̄L̄†w̃k

]
+ αkϵ̄k(ok; θ̄k), (13)

which can be proved using Lemma 2 in the Appendix C. For
this system, we now derive the following Lyapunov inequality.
Lemma 4. There exists a positive symmetric definite matrix
G ∈ R2Nq×2Nq such that 8+η+4η2λmax(L̄)2

2η(1−γ)w I2Nq ≺ G ≺

2 8+η+4η2λmax(L̄)2

η(1−γ)w I2Nq , and for θ̃, w̃ ∈ RNq ,

2

[
θ̃

L̄L̄†w̃

]⊤
G

[
Ā− ηL̄ −ηL̄

ηL̄ 0,

] [
θ̃

L̄L̄†w̃

]
≤−min{1, ηλ+

min(L̄)2}
∥∥∥∥[ θ̃

L̄L̄†w̃

]∥∥∥∥2
2

.

The proof is given in Appendix Section D.1. The proof can
be done by noting that Ā− ηL̄ is negative semi-definite and
L̄ is rank-deficient, and applying Lemma 2.

4.1 I.I.D. Observation Case
We are now in position to provide the first main result, a
finite-time analysis of Algorithm 1 under the i.i.d. observation
model, which is a common assumption in the literature, and
provides simple and clean theoretical insights.
Theorem 5. 1. Suppose we use constant step-size α0 =

α1 = · · · = αk for k ∈ N0, and α0 ≤ ᾱ for some
positive constant ᾱ ∈ (0, 1). Then, we have

1

N
E

[∥∥∥∥[ θ̃k+1

L̄L̄†w̃k+1

]∥∥∥∥2
2

]

=O

(
exp

(
−(1− γ)w

min{1, ηλ+
min(L̄)2}

8
η + 4ηλmax(L̄)2

kα0

))

+O
(
α0

R2
max

w3(1− γ)3
2 + η2λmax(L̄)2

ηmin{1, ηλmin(L̄)2}

)
.

2. Suppose we have αk = h1

k+h2
. There exist h̄1 and h̄2 such

that letting h1 = Θ(h̄1) and h2 = Θ(h̄2) yields

1

N
E

[∥∥∥∥[ θ̃k+1

L̄L̄†w̃k+1

]∥∥∥∥2
2

]

=O
(
1

k

(2 + η2λmax(L̄)2)2

η2 min{1, ηλ+
min(L̄)2}2

R2
max

w4(1− γ)4

)
.

The proof and the exact constants can be found in Ap-
pendix Section E.1. Using constant step-size, we can guar-
antee exponential convergence rate with small bias term
O
(
α0

R2
maxλmax(L̄)
w3(1−γ)3

)
when η ≈

√
2

λmax(L̄)
and λ+

min(L̄)2 ≥
√
2λmax(L̄). Appropriate choice of η allows wider range of

step-size, and this will be clear in the experimental results
in Section 5. Furthermore, the algorithm’s performance is
closely tied to the properties of the graph structure. λ+

min(L̄),
the smallest non-zero eigenvalue of graph Laplacian, character-
izes the connectivity of the graph [Chung, 1997], and a graph
with lower connectivity will yield slower convergence rate and
larger bias. λmax(L̄) is the largest eigenvalue of the graph
Laplacian, and it can be upper bounded by twice the maximum
degree of the graph [Anderson Jr and Morley, 1985]. That is, a
graph with higher maximum degree could incur slower conver-
gence rate and larger bias. However, compared to λ+

min(M),
we experimentally verify in Section 5 that λmax(L̄) does not
appear to be an important factor under particular cases, and
there could exist a tighter bound without λmax(L̄). As for di-
minishing step-size, we achieve O

(
1
k

)
convergence rate from

the second item in Theorem 5, and similar observations hold
as in the constant step-size, i.e., the convergence rate depends
on the smallest non-zero and maximum eigenvalue of graph
Laplacian. Lastly, as in [Wang et al., 2020], our bound does
not explicitly depend on the number of agents, N , compared
to the bound in [Doan et al., 2019] and [Sun et al., 2020],
where the bound scales at the order of N .
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Furthermore, the known constant error bound for (single-
agent) TD-learning, which is Theorem 2 of [Bhandari et al.,
2018] is O

(
1

(1−γ)4w2

)
. Meanwhile our bound in Theorem

4.2 is O
(

1
(1−γ)3w3

)
for the constant step-size case. The

difference only comes from the choice on the bound in θc,
the solution of the Bellman equation. We use the bound
∥θc∥2 ≤ O

(
1

(1−γ)w

)
in Lemma 6 in Appendix C, whereas

the bound O

(
1

(1−γ)
3
2 w

1
2

)
is used in [Bhandari et al., 2018].

4.2 Markovian Observation Case
In this section, we consider the Markovian observation model,
where the sequence of observations {sk}∞k=1 follows a Markov
chain. Compared to the i.i.d. observation model, the cor-
relation between the observation and the updated iterates
imposes difficulty in the analysis. To overcome this is-
sue, an assumption on the Markov chain that ensures a ge-
ometric mixing property is helpful. In particular, the so-
called ergodic Markov chain can be characterized by the met-
ric called total variation distance [Levin and Peres, 2017],
dTV(P,Q) = 1

2

∑
x∈S |P (x) − Q(x)|, where P and Q is

probability measure on S. A Markov chain is said to be
ergodic if it is irreducible and aperiodic [Levin and Peres,
2017]. An ergodic Markov chain is known to converge to
its unique stationary exponentially fast, i.e., for k ∈ N0,
sup1≤i≤|S| dTV(e

⊤
i (P

π)k, µ∞) ≤ mρk, where ei ∈ R|S|

for 1 ≤ i ≤ N is the |S|-dimensional vector whose i-th ele-
ment is one and others are zero, µ∞ ∈ R|S| is the stationary
distribution of the Markov chain induced by transition ma-
trix P π, m ∈ R is a positive constant, and ρ ∈ (0, 1). The
assumption on the geometric mixing property of the Markov
chain is common in the literature [Srikant and Ying, 2019;
Wang et al., 2020]. The mixing time of Markov chain is an
important quantity of a Markov chain, defined as

τ(δ) := min{k ∈ N | mρk ≤ δ}. (14)

For simplicity, we will use τ := τ(αT ), where T ∈ N0

denotes the total number of iterations, and αk, is the step-size
at k-th iteration. If we use the step-size αk = 1

1+k , the mixing
time τ only contributes to the logarithmic factor, log T in the
finite-time bound [Bhandari et al., 2018]. As in the proof of
i.i.d. case, using the Lypaunov argument in Lemma 4, we
can prove the finite-time bound on the mean-squared error,
following the spirit of [Srikant and Ying, 2019]. To simplify
the proof, we will investigate the case η = 1.
Theorem 6. 1. Suppose we use constant step-size α0 =

α1 = · · · = αT such that α0 ≤ ᾱ for some positive
constant ᾱ ∈ (0, 1). Then, we have, for τ ≤ k ≤ T ,

1

N
E

[∥∥∥∥[ θ̃k+1

L̄L̄†w̃k+1

]∥∥∥∥2
2

]
=

O
(
exp

(
− (1− γ)wmin{1, λ+

min(L)2}
λmax(L)2

α0(k − τ)

))
+O

(
α0τ

R2
max

w3(1− γ)3
λmax(L)2

min{1, λ+
min(L)2}

)
.

2. Considering diminishing step-size, with αk = h1

k+h2
for

k ∈ N0, there exits h̄1 and h̄2 such that for h1 = Θ(h̄1)
and h2 = Θ(h̄2), we have for τ ≤ k ≤ T ,

1

N
E

[∥∥∥∥[ θ̃k+1

L̄L̄†w̃k+1

]∥∥∥∥2
2

]

=O
(
τ

k

qR2
max

w4(1− γ)4
λmax(L)5

min{1, λ+
min(L)2}2

)
.

The proof and the exact values can be found in Appendix F.1.
For the constant step-size, we can see that the bounds have
additional mixing time factors compared to the i.i.d. case.
Considering diminishing step-size, the convergence rate of
O
(
τ
k

)
can be verified, incorporating a multiplication by the

mixing time τ .
As summarized in Table 1, the proposed distributed TD-

learning does not require doubly stochastic matrix or any
specific initializations. The algorithms requiring the doubly
stochastic matrix, whose definition is given in Appendix B,
face challenges when extending to directed graph and time-
varying graph scenarios. However, our algorithm does not
require major modifications. Meanwhile, push-sum [Nedić
and Olshevsky, 2014] or push-pull [Pu et al., 2020] algorithms
have been developed to cope with the assumption of doubly
stochastic matrix in directed graph scenario. Nonetheless,
both methods require knowledge of out-degree, which are
often difficult to know in presence including broadcast com-
munications [Hendrickx and Tsitsiklis, 2015]. Moreover, the
performance of the algorithm is sensitive to the choice of
doubly stochastic matrix as can be seen in Appendix G.

5 Experiments
2This section provides the experimental results of Algorithm 1.
First, we give an explanation of the MAMDP setup, where the
number of states is three and the dimension of the feature is
two. An agent can transit to every state with uniform prob-

ability. The feature matrix is set as Φ⊤ =

[
1 0 1
0 1 0

]
. The

rewards are generated uniformly random between the interval
(0, 10). The discount factor is set as 0.8.

For each experiment with N ∈ {23, 25} number of
agents, we construct a cycle, a graph G consisting of V :=
{1, 2, . . . , N} and E := {(i, i+1)}N−1

i=1 ∪{(N, 1)}. The small-
est non-zero eigenvalue of graph Laplacian corresponding to
a cycle with even number of vertices decreases as the num-
ber of vertices increases, while maximum eigenvalue remains
same. The smallest non-zero eigenvalue is 2 − 2 cos

(
2π
N

)
,

and the largest eigenvalue is four [Mohar, 1997]. As N gets
larger, the smallest non-zero eigenvalue gets smaller, which
becomes 0.59 and 0.04 for N = 23, 25, respectively. There-
fore, as number of agents increases, the convergence rate will
be slower as expected in Theorem 5, and this can be verified
in Figure (1a) and Figure (3) in the Appendix. The plots show
the result for constant step-size α0 ∈ {2−3, 2−4, 2−5, 2−6}.
Moreover, the convergence under a diminishing step-size can

2The code is provided in this link.
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Method Observation model Step-size Requirement Doubly stochastic matrix

[Doan et al., 2019] [Nedic and Ozdaglar, 2009] i.i.d. Constant/ 1√
k+1

Projection ✓
[Doan et al., 2021] [Nedic and Ozdaglar, 2009] Markovian Constant/ h1

k+1 ✗ ✓
[Sun et al., 2020] [Nedic and Ozdaglar, 2009] i.i.d./Markovian Constant ✗ ✓
[Zeng et al., 2022] [Nedic and Ozdaglar, 2009] i.i.d./Markovian Constant ✗ ✓
[Wang et al., 2020] [Pu and Nedić, 2021] i.i.d./Markovian Constant Specific initialization ✓

Ours [Wang and Elia, 2011] i.i.d./Markovian Constant/ h1

k+h2
✗ ✗

Table 1: Comparison with existing works.

(a) The result shows mean-squared error
with η = 1 and α = 0.125 on cycle graph.

(b) The result shows mean-squared error for
the step-size, αk = N2

N3+k
on cycle graph.

(c) The result shows mean-squared error of
the iterates of Algorithm 1 on random graph
with N = 32, and different values of η.

(d) N = 8, α = 0.1 on random graph with
different values of η. If η = 2, the algorithm
diverges.

(e) Mean squared error of Algorithm 1 on
star graph after 10,000 iterations. We set
η = 1 with step-size 1/25.

(f) Mean squared error of Algorithm 1 on
star graph after 10,000 iterations. We set
η = 1 with step-size 1/25.

Figure 1: Experiment results of Algorithm 1. The experiments were averaged over 50 runs.

be seen in Figure (1b). To investigate the effect of λmax(L̄),
we construct a star graph, where one vertex has degree N − 1
and the others have degree one. The maximum eigenvalue
of star graph is N and the smallest non-zero eigenvalue is
one [Nica, 2016]. Even though N gets larger, we could see
in Figure (1e) and (1f) that the convergence rate or bias term
does not vary. Therefore, we can expect that there could be a
tighter bound without λmax(L̄) under particular cases.

To verify the effect of η, we use a random graph
model [Erdős et al., 1960], where among possible N(N−1)/2
edges, (N − 3)(N − 4)/2 edges are randomly selected. Fig-
ure (1c) shows the evolution of the mean squared error for
N = 32, and step-size 0.1 with different η values. When
η = 0.5 or η = 1, the algorithm diverges. Moreover, the bias
gets smaller around

√
2

λmax(L) ≈ 0.046. This implies that appro-
priate choice of η can control the variance when the number
of neighbors is large but if η is too small or large, Algorithm 1

may cause divergence or large bias. This matches the result of
the bound in Theorem 5. Similar arguments hold when N = 8,
and the result is given in Figure (1d).

Lastly, the comparison with other algorithms are given in
Appendix G. In summary, while no single algorithm consis-
tently outperforms the others, the performance of methods that
rely on the doubly stochastic matrix is highly sensitive to the
choice of this matrix.

6 Conclusion
In this study, we have studied primal-dual gradient dynam-
ics subject to some null-space constraints and its application
to a distributed TD-learning. We have derived finite-time
bounds for both the gradient dynamics and the distributed TD-
learning. The results have been experimentally demonstrated.
Future studies include extending the analysis to distributed
TD-learning with nonlinear function approximation.
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