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Abstract
Depth estimation plays a crucial role in 3D scene
understanding and is extensively used in a wide
range of vision tasks. Image-based methods strug-
gle in challenging scenarios, while event cameras
offer high dynamic range and temporal resolution
but face difficulties with sparse data. Combining
event and image data provides significant advan-
tages, yet effective integration remains challeng-
ing. Existing CNN-based fusion methods struggle
with occlusions and depth disparities due to lim-
ited receptive fields, while Transformer-based fu-
sion methods often lack deep modality interaction.
To address these issues, we propose UniCT Depth,
an event-image fusion method that unifies CNNs
and Transformers to model local and global fea-
tures. We propose the Convolution-compensated
ViT Dual SA (CcViT-DA) Block, designed for
the encoder, which integrates Context Modeling
Self-Attention (CMSA) to capture spatial depen-
dencies and Modal Fusion Self-Attention (MFSA)
for effective cross-modal fusion. Furthermore,
we design the tailored Detail Compensation Con-
volution (DCC) Block to improve texture details
and enhances edge representations. Experiments
show that UniCT Depth outperforms existing im-
age, event, and fusion-based monocular depth esti-
mation methods across key metrics.

1 Introduction
Depth estimation is crucial for understanding 3D scene struc-
tures, with broad applications in areas like autonomous driv-
ing and medical imaging [2022; 2024a]. While image-based
methods have achieved significant success, they encounter
limitations under extreme lighting conditions, where critical
scene details may be lost. Event cameras, which respond
to pixel-level intensity changes, provide advantages such as
wide dynamic range and high temporal resolution, making

∗Corresponding Author

Figure 1: Effects of our methods. Blue boxes highlight objects that
exist only in one modality. Our method enhances depth estimation
accuracy for occluded areas even in only one modality.

them well-suited for challenging scenarios [2014]. However,
the asynchronous and sparse nature of event data poses signif-
icant challenges in generating dense predictions from sparse
features. To address these challenges, recent studies have
explored event and image modality fusion to combine their
strengths [2021; 2023b; 2024]. These fusion-based methods
utilize the dynamic range and temporal resolution of event
cameras alongside the detailed scene information from inten-
sity cameras, achieving more accurate and robust depth esti-
mation in challenging scenarios.

CNNs are widely used for event-frame fusion in depth es-
timation tasks [2021; 2023b; 2023]. While effective at cap-
turing local features, they struggle with modeling long-range
dependencies, leading to poor performance in scenes with
occlusions or significant depth disparities, such as the oc-
clusion between the street lamp and the building shown in
Figure 1. Some approaches use CNNs with recurrent struc-
tures for temporal modeling but face challenges such as gra-
dient vanishing and exploding [2011]. Transformers excel
at capturing long-range dependencies. Some methods design
event representations suitable for Transformer, but they pro-
cess modality features independently, limiting cross-modal
interaction[2022; 2023; 2023]. SRFNet [2024] introduces an
attention-based interactive fusion module to merge modality
features with spatial priors, but it neglects channel-wise con-
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tribution, limiting its effectiveness in fully capturing cross-
modal dependencies. Recently proposed Transformer-based
[2024] uses a single Transformer encoder to capture cross-
modal dependencies. However, it rely on standard self-
attention over concatenated modality tokens, resulting in high
computational costs and coarse modality fusion, which is sus-
ceptible to interference from long-range noise.

In this paper, we propose an event-image fusion-based
depth estimation method, UniCT Depth, which adopts a uni-
fied conv-transformer architecture to collaboratively model
local spatial features and global dependencies. In the en-
coder, we adopt a unified feature extraction and fusion de-
sign to reduce redundancy and repetitive computation in tra-
ditional separated designs, enhancing cross-modal interaction
efficiency and joint representation expressiveness. We in-
troduce the Convolution-compensated ViT Dual SA (CcViT-
DA) Block as the core unit in the encoder. This block in-
tegrates Context Modeling Self-Attention (CMSA) branch
and Modal Fusion Self-Attention (MFSA) branch to optimize
cross-modal collaborative representation. Spatially, CMSA
captures contextual dependencies to improve depth estima-
tion in complex scenes, while channel-wise, MFSA cap-
tures global dependencies and establishes correlations be-
tween modalities, facilitating effective cross-modal fusion.
To further enhance the CcViT-DA Block, the tailored Detail
Compensation Convolution (DCC) block refines local fea-
tures, improves texture detail extraction, and emphasizes en-
hanced edge information in multimodal features. The contri-
butions of this work are as follows:

• We propose UniCT Depth, an event-image fusion depth
estimation with a CNN-Transformer architecture that
combines local and global feature modeling. Its unified
feature extraction and fusion design reduces redundancy
and enhances cross-modal interaction for robust depth
estimation.

• We design CcViT-DA Block to optimize cross-modal
representation, integrating CMSA for spatial dependen-
cies and MFSA for modal fusion. The tailored DCC
block refines local features, improving depth details and
edge representations of concatenated modalities.

• We conduct experiments using both public real-world
datasets and simulated datasets. The results demonstrate
that our method outperforms monocular depth estima-
tion algorithms based on events, images, and their fu-
sion, delivering better performance on key metrics.

2 Related Work
2.1 Image-based Depth Estimation
Early image-based methods employed probabilistic and
feature-based methods. Yet, these approaches often per-
formed poorly in non-aligned settings, especially when hor-
izontal alignment conditions were not met. Learning-based
methods, primarily using CNNs, have made significant
progress and achieved outstanding results in depth estimation.
Eigen et al. [2014] used a multi-scale convolutional neural
network for monocular depth estimation, showing the feasi-
bility of neural networks and inspiring further research into

complex models [2015; 2016], loss functions [2018; 2020a;
2019], and auxiliary information [2020b; 2020] for improved
accuracy. Recently, Transformers have achieved impressive
results in computer vision [2020]. Ranftl et al. [2021] pro-
posed dense prediction transformer (DPT), demonstrating the
efficacy of Vision Transformers in dense vision tasks. Since
then, transformer-based methods have been widely explored
[2022; 2024]. While image-based methods excel in static or
slowly evolving environments, they face considerable chal-
lenges under extreme lighting conditions or in the presence
of rapidly moving objects.

2.2 Event-based Depth Estimation
Model-based methods jointly optimize pose and mapping by
solving nonlinear optimization problems, yet typically pro-
duce only semi-dense depth [2016; 2018; 2018]. Learning-
based methods significantly improve the performance of
event-based monocular depth estimation, exhibiting strong
generalization [2019; 2019; 2020; 2023a]. Zhu et al. [2019]
employed a feed-forward neural network to jointly predict
camera position and pixel disparity, but it produces only
semi-dense depth estimates by applying a mask only to pix-
els where events occur. Tulyakov et al. [2019] generated
dense metric depth maps by fusing data from stereo setups,
while this method still depends on stereo setups and standard
feed-forward structures. Hidalgo-Carrió et al. [2020] pro-
posed a recurrent neural network with temporal consistency
supervision, achieving real-time monocular dense depth esti-
mation. Shi et al. [2023a] improved the accuracy of event-
based monocular dense depth estimation by utilizing optical
flow information between consecutive event frames. How-
ever, event-based methods struggle with high-resolution tex-
ture information due to the inherent sparsity of asynchronous
event streams and their limited ability to capture scene details.

2.3 Event-image Fusion Depth Estimation
Due to the complementary nature of event and image frames,
researchers have developed methods to fuse the two modali-
ties. CNNs exhibit generalizability in learning local seman-
tics [2024b], which leads to their widespread adoption for
depth estimation in event-image fusion. Gehrig et al. [2021]
proposed a fully convolutional recurrent asynchronous mul-
timodal network for depth estimation that can process im-
ages and event data. Zhu et al. [2023] proposed a self-
supervised event-based estimation using cross-modal consis-
tency between aligned frames and events for training. Shi
et al. [2023b] proposed a three-stage monocular depth es-
timation framework with a low-light enhancement module,
suitable for challenging nighttime conditions. CNNs-based
methods rely on convolutional networks with limited recep-
tive fields, leading to poor performance in multi-scale or oc-
cluded scenes. Recently, transformer-based methods have
gained significant attention in event-image fusion for depth
estimation. Sabater et al. [2022; 2023] proposed patch-based
event representation for transformer architectures. Ham-
aguchi et al. [2023] employed a multi-level memory hier-
archy to process event streams, designing an attention-based
representation to encode event data. However, these meth-
ods treat each modality independently, leading to suboptimal
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Figure 2: Overview of our proposed UniCT Depth. It processes a time-synchronized pair of event frames and intensity image frames to
generate a corresponding depth estimation map. The network architecture comprises three main components. Preprocessor: Extracts and
concatenates two modal features from the input data. Encoder: Constructed with residual blocks and CcViT-DA blocks, progressively
downsamples the features while extracting high-level semantic representations. Decoder: Upsamples the encoded features and gradually
restores spatial resolution, finally producing pixel-wise depth predictions. The skip connection with channel concatenation is used to fuse
features between symmetric layers of the encoder and decoder.

modality fusion and reduced depth estimation accuracy. Pan
et al. [2024] proposed a Spatial Reliability-oriented Fusion,
which features an attention-based interactive fusion module
that learns consensus regions to guide feature fusion, but
it overlooks channel-wise information. The most relevant
work to ours is Transformer-based [2024], which uses a sin-
gle Transformer to fuse event and image data. However, it
employs a basic self-attention mechanism, which is compu-
tationally expensive and lacks targeted modality fusion. Fur-
thermore, it relies on ConvLSTM to process events, which is
susceptibility to gradient when dealing with long-range de-
pendencies.

In this paper, we propose a CNN-Transformer architecture
that combines the strengths of local feature representation and
global context modeling, effectively handling multi-scale and
occluded complex scenes. In the encoder, we introduce ViT
Dual SA block that analyzes the spatial and channel dimen-
sions of modalities. This block not only balances long-range
modeling performance and computational efficiency, but also
promotes modality fusion by adaptively weighting channels.
Besides, we design a DDC Block to enhance the local feature
extraction capability, improving the model’s ability to capture
high-texture objects in complex scenes.

3 Method
In this section, we present our method for estimating dense
depth maps from the given image and asynchronous event

streams. We begin by transforming the event stream into an
image-like representation. Then we present our network ar-
chitecture and discuss the loss function used for training the
network.

3.1 Event Representation

Given the high temporal resolution of event cameras, numer-
ous events can occur in a short span, resulting in a sparse
stream. We encode the event stream as a spatio-temporal
voxel grid, discretizing the time domain to better preserve
temporal information and reduce motion blur [Zhu et al.,
2019]. Specifically, for an event 𝑒 = (𝑥, 𝑦, 𝑡, 𝑝), (𝑥, 𝑦) de-
notes the pixel location, 𝑡 the timestamp, and 𝑝 the polarity.
The voxel grid is defined as a 3D tensor V ∈ R𝐻×𝑊×𝐵, where
𝐻 and 𝑊 are the height and width of the grid, respectively,
and 𝐵 is the number of time bins. For every time bin, the
timestamps of occurred events 𝐸𝑘 = {𝑒𝑖}𝑀−1

𝑖=0 are scaled to
the range [0, 𝐵 − 1]. Events are then accumulated to the cor-
responding voxel grid by bilinear interpolation. The voxel
grid V𝑘 (𝑥, 𝑦, 𝑡) is defined as follows:

V𝑘 (𝑥, 𝑦, 𝑡) =
∑︁
𝑖

𝑝𝑖𝛿(𝑥 − 𝑥𝑖 , 𝑦 − 𝑦𝑖) max{0, 1 − |𝑡 − 𝑡∗𝑖 |} (1)

Here, 𝑡∗
𝑖
= 𝐵−1

Δ𝑇
(𝑡𝑖 − 𝑡0). We set the height and width of the

grid to match the resolution of the image.
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Method Ourdoor day1 Ourdoor night1 Ourdoor night2 Ourdoor night3 Mean Avg.Error
10m 20m 30m 10m 20m 30m 10m 20m 30m 10m 20m 30m 10m 20m 30m

Image based

MonoDepth[2017] 3.44 7.02 10.03 3.49 6.33 9.31 5.15 7.80 10.03 4.67 8.96 13.36 4.19 7.53 10.68
MegaDepth[2018] 2.37 4.06 5.38 2.54 4.15 5.60 3.92 5.78 7.05 4.15 6.00 7.24 3.25 5.00 6.32
MonoVit[2022] 3.24 5.04 5.82 3.43 5.03 6.04 3.75 4.92 5.82 4.02 4.66 5.68 3.61 4.91 5.84
MonoDEVS[2021] 1.47 2.49 3.13 2.99 3.71 5.08 1.77 3.17 4.66 1.40 3.01 4.68 1.91 3.10 4.39
DPT[2021] 1.44 2.40 2.82 1.80 2.67 3.22 1.68 2.59 3.06 1.57 2.45 2.94 1.62 2.53 3.01
IEBins[2024] 1.50 2.31 2.69 2.97 3.87 4.30 2.16 3.03 3.59 1.77 2.62 3.34 2.10 2.96 3.48

Event based

Zhu et al.[2019] 2.72 3.84 4.40 3.13 4.02 4.89 2.19 3.15 3.92 2.86 4.46 5.05 2.73 3.87 4.57
DTL-[2021] 2.00 2.91 3.35 2.61 3.11 3.82 1.74 2.50 3.29 1.54 2.37 3.26 1.97 2.72 3.43
E2Depth[2020] 1.85 2.64 3.13 3.38 3.82 4.46 1.67 2.63 3.58 1.42 2.33 3.18 2.08 2.86 3.59
Mixed-EF2DNet[2023a] 1.50 2.39 2.91 2.16 2.91 3.43 1.94 2.79 3.36 1.72 2.43 2.99 1.83 2.63 3.17

Fusion based

RAM Net[2021] 1.39 2.17 2.76 2.50 3.19 3.82 1.21 2.31 3.28 1.01 2.34 3.43 1.53 2.50 3.32
EMoDepth[2023] 1.40 2.07 2.65 2.18 2.70 3.64 2.06 2.76 3.42 2.09 2.82 3.52 1.93 2.59 3.31
EVT+[2023] 1.24 1.91 2.36 1.45 2.10 2.88 1.48 2.13 2.90 1.38 2.03 2.77 1.39 2.04 2.72
HMNet[2023] 1.22 2.21 2.68 1.50 2.48 3.19 1.36 2.25 2.96 1.27 2.17 2.86 1.34 2.28 2.92
Transformer-based[2024] 1.34 2.25 2.62 1.58 2.24 2.78 1.54 2.23 2.95 1.24 1.96 2.81 1.43 2.17 2.79
SRF Net[2024] 0.96 1.77 2.37 1.26 1.95 3.01 1.19 2.13 3.22 1.01 2.12 3.52 1.11 1.99 3.03
Ours 0.96 1.74 2.25 1.39 1.96 2.86 1.16 1.95 2.95 0.84 1.69 2.79 1.09 1.84 2.71

Table 1: Quantitative results on the MVSEC dataset. Average absolute depth error (Avg.Error, lower is better) at different cut-off depth
distances in meters. The best results are bolded, and the second-best results are underlined. Across all sequences, our method achieves the
lowest mean Avg.Error at all cut-off distances, demonstrating both robustness and accuracy.

3.2 Network Architecture
As shown in Figure 2, our method utilizes a U-Net-like archi-
tecture [Ronneberger et al., 2015] comprising a preprocessor,
encoder, and decoder. The preprocessor conducts convolu-
tion on both event and image separately, extracting features
from each modality to produce full-resolution feature maps.
These maps are then concatenated and further convolved to
merge features, yielding the full-resolution feature map.

The encoder comprises two residual blocks and four
Convolution-compensated ViT Dual Self-Attention (CcViT-
DA) modules, enabling efficient communication across multi-
scale feature representations. To address the computational
load of Transformers with high-resolution images, residual
blocks are used to downsample the feature maps, producing
half-resolution features. The proposed CcViT-DA modules
then serve as the core units to build the encoder. CcViT-DA
block downsamples the feature map by a patch embedding
layer, which passes the input feature map through a convo-
lution layer with a 3 × 3 kernel and stride of 2, generating a
feature map with the resolution halved. In the encoder, the
output feature maps have resolutions relative to the input im-
age of { 1

2 ,
1
4 ,

1
8 ,

1
16 ,

1
32 }, respectively.

The decoder comprises five decoder blocks. Each decoder
block includes a deconvolution layer with a kernel size of 3
and a stride of 2, used to double the size of the input features.
In the decoder, the output features have resolutions relative to
the input image of { 1

16 ,
1
8 ,

1
4 ,

1
2 ,

1
1 }, respectively. The network

is designed with skip connections that concatenate features
across layers, enhancing the representation of models.

CCViT-DA Block. The CcViT-DA block comprises a
patch embedding layer, a ViT Dual self-Attention (ViT Dual
SA) block, and a Detail Compensation Convolution (DCC)
block. Figure 2 (a)illustrates the architecture of the CcViT-
DA block. We first apply patch embedding and positional
embedding to the input feature maps. The patch embedding

divides the input into non-overlapping patches, which are lin-
early transformed into tokens. Positional embedding encodes
spatial information. The outputs of both embeddings are then
combined to form the input for subsequent processing.

We introduce the ViT Dual SA block with two paral-
lel branches: the Context Modeling Self-Attention (CMSA)
branch for contextual dependencies and the Modal Fusion
Self-Attention (MFSA) branch for global modal correlations.
These branches jointly enhance cross-modal fusion by refin-
ing joint representations along spatial and channel dimen-
sions. To further improve local feature representation, we de-
sign a DCC Block tailored for the ViT Dual SA block. Specif-
ically, the outputs from both branches are dot-multiplied with
the DCC Block outputs, concatenated, and passed through a
merge layer to produce the final feature representation.
Context Modeling Self-Attention. The CMSA branch is
designed to capture contextual dependencies within the spa-
tial dimension and adapt to local depth variations. By di-
viding the image into non-overlapping windows, the network
focuses on relevant regions within each window, helping to
handle depth variations in challenging scenarios like occlu-
sions. As shown in Figure 2(b), the CMSA block [Ding et al.,
2022] calculates multi-head attention within localized win-
dows. The image is partitioned into 𝑁𝑤 non-overlapping win-
dows, each containing 𝑃𝑤 patches, such that the total number
of patches 𝑃 is 𝑃 = 𝑃𝑤 × 𝑁𝑤 . The attention operation within
each window is computed as follows:

A𝑤𝑖𝑛𝑑𝑜𝑤 (𝑄, 𝐾,𝑉) = {𝐴(𝑄𝑖 , 𝐾𝑖 , 𝑉𝑖)}𝑁𝑤

𝑖=0 ,

𝐴(𝑄𝑖 , 𝐾𝑖 , 𝑉𝑖) = Concat(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, ..., ℎ𝑒𝑎𝑑𝑁ℎ
),

𝑤ℎ𝑒𝑟𝑒 ℎ𝑒𝑎𝑑 𝑗 = Attention(𝑄 𝑗

𝑖
, 𝐾

𝑗

𝑖
, 𝑉

𝑗

𝑖
)

= softmax(
𝑄

𝑗

𝑖
(𝐾 𝑗

𝑖
)𝑇

√
𝐶ℎ

)𝑉 𝑗

𝑖

(2)
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Method Outdoor day1 Outdoor night1
Abs. Rel ↓ RMSE log ↓ 𝛿<1.25 ↑ 𝛿<1.252 ↑ 𝛿<1.253 ↑ Abs. Rel ↓ RMSE log ↓ 𝛿<1.25 ↑ 𝛿<1.252 ↑ 𝛿<1.253 ↑

IEBins[2024] 0.294 0.497 0.638 0.839 0.932 0.503 0.497 0.470 0.697 0.833
DTL-[2021] 0.390 0.436 0.510 0.757 0.876 0.474 0.555 0.429 0.657 0.791
E2Depth[2020] 0.346 0.421 0.567 0.772 0.876 0.591 0.646 0.408 0.615 0.754
Mixed-EF2DNet[2023a] 0.319 0.389 0.600 0.799 0.897 0.428 0.467 0.529 0.725 0.849
RAM Net[2021] 0.282 0.435 0.548 0.769 0.871 0.452 0.537 0.425 0.646 0.786
Transform-based[2024] 0.287 —— 0.351 0.437 0.480 0.348 —— 0.319 0.440 0.523
SRFNet[2024] 0.234 0.364 0.634 0.814 0.922 0.335 0.544 0.465 0.667 0.787
Ours 0.221 0.320 0.665 0.853 0.934 0.311 0.463 0.540 0.722 0.837

Table 2: Detailed comparison of our method with state-of-the-art methods on the MVSEC dataset. ↓ indicates lower is better and ↑ higher is
better. Our method achieved the best results in 10 out of 12 scores.

where 𝑄𝑖 , 𝐾𝑖 , 𝑉𝑖 ∈ R𝑃𝑤×𝐶ℎ denote the query, key, and value
of the 𝑗-th attention head in the 𝑖-th window, respectively. 𝐶ℎ

denotes the number of channels for each attention head.
Modal Fusion Self-Attention. The MFSA branch adaptively
models cross-modal feature relationships along the channel
dimension, capturing dependencies between modalities. It
enhances the contributions of reliable modalities while sup-
pressing noisy features, thereby improving modality fusion
and model robustness. As shown in Figure 2(c), MFSA block
[Ding et al., 2022] applies the self-attention on a patch-level
transposed token, capturing global information along the spa-
tial dimensions by setting the number of attention heads to
1. Each transposed token abstracts the global information.
Channels are grouped, and self-attention is applied within
these groups to reduce computational complexity. Let 𝑁𝑔

denote the number of groups, and 𝐶𝑔 denote the number of
channels per group, thus 𝐶 = 𝑁𝑔 ×𝐶𝑔. The channel attention
mechanism is defined as follows:

A𝑐ℎ𝑎𝑛𝑛𝑒𝑙 (𝑄, 𝐾,𝑉) = {𝐴𝑔𝑟𝑜𝑢𝑝 (𝑄𝑖 , 𝐾𝑖 , 𝑉𝑖)𝑇 }
𝑁𝑔

𝑖=0,

A𝑔𝑟𝑜𝑢𝑝 (𝑄𝑖 , 𝐾𝑖 , 𝑉𝑖) = softmax(
𝑄𝑇

𝑖
𝐾𝑖√︁
𝐶𝑔

)𝑉𝑇
𝑖

(3)

where 𝑄𝑖 , 𝐾𝑖 , 𝑉𝑖 ∈ R𝑃×𝐶𝑔 are grouped channel-wise image-
level queries, keys, and values, respectively.

Unlike the standard self-attention mechanism with
quadratic complexity [Cui et al., 2023], the proposed CMSA
block and MFSA blocks reduce the computational complex-
ity from 𝑂 (𝑃2𝑑) to 𝑂 (𝑃𝑃𝑤𝑑) and 𝑂 (𝑃𝐶𝐶𝑔) respectively,
significantly improving computational efficiency.
Detail Compensation Conv Block. We introduce a DCC
block that enables the CcViT-DA block to consider both
global and local information about the scene. We design a
weighted module to facilitate the integration of the convolu-
tion and ViT self-attention. Figure 2 (d) illustrates the ar-
chitecture of DCC Block, which aggregates the channel di-
mensions of the input feature maps to encode spatial regions
for emphasis or suppression. Specially, the channel informa-
tion of the input features is aggregated using channel-based
global maximum pooling and global average pooling, and the
two feature maps are concatenated in the channel dimension.
Then, they are transformed into a single channel using a con-
volution layer, and the initial spatial attention map is gener-
ated after a sigmoid activation function. The initial spatial

Method Avg. Error Abs. Rel ↓ RMSE log ↓10m 20m 30m
DPT[2021] 0.53 1.04 1.75 0.17 0.34
IEBins[2024] 0.54 1.05 1.78 0.21 0.32
DTL-[2021] 0.84 1.46 2.16 0.26 0.42
E2depth[2020] 0.61 1.45 2.42 0.22 0.32
Mixed-EF2DNet[2023a] 0.30 1.23 2.18 0.19 0.37
RAM Net[2021] 0.34 1.00 2.10 0.19 0.35
Transformer-based[2024] 1.04 1.87 3.65 0.22 0.30
SRFNet[2024] 1.50 3.56 6.11 0.51 0.69
Ours 0.26 0.70 1.56 0.18 0.36

Table 3: Quantitative results on the DENSE dataset. Our method
achieves the best results on all cut-off Avg. Error and performs com-
parably to the best results in Abs. Rel.

attention map are dot product to the input feature map to en-
hance the input feature space representation. Finally, the fea-
ture map is generated as a weighted output with the shape of
𝐻 ×𝑊 × 1, processed through two convolutional layers and
activation functions.

3.3 Loss Function
The network is trained in a supervised manner, utilizing a loss
function that incorporates both L1 and L2 losses. Through-
out the training process, the network aims to minimize the
loss function at each timestep. Given a sequence of pre-
dicted depth maps denoted as {𝐷𝑘}, we define the discrep-
ancy 𝑅𝑘 = 𝐷∗

𝑘
− 𝐷𝑘 , where 𝐷∗

𝑘
and 𝐷𝑘 represent the ground

truth and predicted depth values, respectively. The loss func-
tion is defined as: 𝐿 = 1

𝑛

∑
𝑢 (𝑅𝑘 (𝑥, 𝑦) + 𝑅𝑘 (𝑥, 𝑦)2), where

𝑛 represents the number of valid pixels in the ground truth
depth values.

4 Experiments
4.1 Datasets and Evaluation Protocol
Due to the absence of event data in traditional image datasets
like KITTI and NYU, we followed prior work and utilized
event camera public datasets for our experiments. Specif-
ically, we conducted primary experiments on the MVSEC
dataset [Zhu et al., 2018] to evaluate our method in real-world
daytime and challenging nighttime conditions. Besides, we
also conducted experiments on the simulated DENSE dataset
[Hidalgo-Carrió et al., 2020] to verify the generalization of
methods.
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Figure 3: Qualitative comparison for the MVSEC dataset. Compared with baseline methods, our method effectively merges image and event
data for more accurate depth estimation and performs well under occlusions.

Our model was implemented in PyTorch, utilizing two
NVIDIA GeForce RTX 3090 GPUs. We choose a learn-
ing rate of 0.0002 for MVSEC and 0.002 for DENSE. The
ADAMW optimizer and MultiStepLR learning scheduler was
used for training, with a batch size of 16. The model was
trained on the dataset over 50 epochs, with the learning rate
being reduced by a factor of 0.5 at the 10th, 20th and 30th
epochs. The input image size was configured to 224 × 224.
The number of voxel grid time bins was set to 5, which we
found to be a good balance between temporal resolution and
computational cost. The weights for the L1 and L2 loss func-
tions were set to 1.

4.2 Comparison with SOTA Methods
MVSEC dataset. We compare our method with image-based
methods, event-based methods, and fusion-based methods on
the MVSEC dataset. Following previous work, we evaluate
the average absolute depth errors (Avg. Error) of the meth-
ods at 10m, 20m, 30m cutoff distances. In Table 1, our
method achieves the best performance across all cutoff dis-
tances on sequence average. In Table 2, we provide a detailed
comparison of our method with state-of-the-art approaches
on the MVSEC dataset. We employ commonly used metrics
in depth estimation, including absolute relative error (Abs.
Rel.), logarithmic mean squared error (RMSE log), and ac-
curacy 𝛿𝑛 (𝛿<1.25𝑛, 𝑛 = 1, 2, 3). Our method achieves the
best results in 10 out of 12 scores and remains highly com-
petitive in the remaining two. On the most valuable metric,
Abs. Rel., our method improves by 5.56% and 7.16% rel-
ative to the second-best method, SRFNet, on day and night
scenes, respectively. Figure 3 presents a qualitative compar-
ison on the MVSEC dataset. In low-light conditions, image-
based methods like DPT tend to lose objects, such as trees

and cars in the third and fourth rows. Event-based meth-
ods lack sufficient texture information, resulting in poor per-
formance in both detail prediction and overall depth estima-
tion of the scene. Compared to the fusion method, RAMNet,
our approach effectively merges the two modalities, enabling
more accurate depth estimation even for information present
in only one modality (e.g., cars in the first row and trees in
the third row). Besides, our method outperforms all others in
separating foreground and background, especially under oc-
clusions.

DENSE dataset. Table 3 shows that our method achieves
the best results on all cut-off Avg. Error, improving by 13.3%
at 10m, 30% at 20m, and 10.9% at 30m compared to the
second-best values. Furthermore, our method performs com-
parably to the best results in Abs. Rel metric. Figure 4 shows
the comparison of the qualitative results of different methods
on the DENSE dataset. Compared to the baseline, our method
provides a more complete estimation of scene information,
demonstrating the effectiveness of model fusion. Addition-
ally, in regions with occlusions, our method more accurately
estimates the depth differences between foreground objects
and the background. For objects within the scene, such as
trees, utility poles, and traffic lights, our method offers more
precise depth estimations.

4.3 Ablation Study
We conducted an ablation study on the proposed CcViT-DA
block. Table 4 compares different configurations of the ViT
Dual SA and DCC block, with (1) to (5) examining the ViT
Dual SA block and (6) to (8) assessing the DCC block. Fur-
thermore, an additional ablation study on the input modalities
is presented in Table 5.
ViT Dual Self-Attention Block. (1), employing a fully
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Figure 4: Qualitative comparison for DENSE. Our proposed method provides a more complete and accurate depth estimation of objects, such
as trees, telegraph poles, and traffic lights, especially excelling in differentiating foreground objects from the background in occluded regions.

Method ViT Dual SA Block DCC Block Outdoor day1 Outdoor night1 Mean Avg.Error FPS ↑CMSA MFSA 10m 20m 30m 10m 20m 30m 10m 20m 30m
(1) Convolution Convolution × × 1.03 2.00 2.53 1.73 2.36 3.35 1.380 2.180 2.940 47
(2) Self-Attention Self-Attention × × 1.00 1.83 2.39 1.59 2.15 3.13 1.295 1.990 2.760 13
(3) CMSA CMSA × × 1.03 2.03 2.62 1.60 2.24 3.02 1.315 2.135 2.820 22
(4) MFSA MFSA × × 0.97 1.80 2.41 1.47 2.16 3.02 1.220 1.980 2.715 26
(5) MFSA CMSA × × 1.02 1.82 2.36 1.41 2.05 2.94 1.215 1.935 2.650 25
(6) MFSA CMSA ✓ × 1.00 1.76 2.25 1.44 1.96 2.93 1.220 1.860 2.590 25
(7) MFSA CMSA × ✓ 1.07 1.93 2.47 1.41 1.99 2.99 1.240 1.960 2.730 25
(8) MFSA CMSA ✓ ✓ 0.96 1.74 2.25 1.39 1.96 2.86 1.175 1.850 2.555 25

Table 4: Ablation study on CcViT-DA Block. Evaluate different methods using Avg.Error and FPS on MVSEC. The runtime was measured
on RTX 3090 GPU. Our method achieves the lowest error at an acceptable real-time rate.

Method Outdoor day1 Outdoor night1 Average
𝛿1 ↑ 𝛿2 ↑ 𝛿3 ↑ 𝛿1 ↑ 𝛿2 ↑ 𝛿3 ↑ 𝛿1 ↑ 𝛿2 ↑ 𝛿3 ↑

E 0.602 0.816 0.918 0.483 0.708 0.853 0.542 0.762 0.885
I 0.684 0.845 0.926 0.479 0.676 0.791 0.582 0.761 0.859

Ours 0.665 0.853 0.934 0.540 0.722 0.837 0.603 0.788 0.886

Table 5: Ablation study on input modalities. 𝛿𝑛 denotes the short-
hand for 𝛿 < 1.25𝑛. E and I represent using only event and intensity
image data, respectively. Our method achieves the best results.

convolutional network, achieves the highest frame rate but
also the highest error. (2), which employs traditional self-
attention, lowers errors but incurs the lowest frame rate due
to significant computation overhead. (3) and (4) improve
the frame rate compared to (2). The combination of the
MFSA and CMSA branches in (5) results in the lowest errors
among configurations (1) to (5) while maintaining an accept-
able speed, demonstrating the efficacy of our designed block.
Detail Compensation Convolution Block. (8) outperformed
(6) and (7) in terms of Avg. Error across all cut-off depth
distances in both day and night scenes, demonstrating the ef-
fectiveness of the DCC block. Compared to all other con-
figurations, our method (8) achieved the best depth estima-
tion results while maintaining an acceptable real-time speed.
Specifically, compared to (2), the Mean Avg. Error of (8) was

reduced by 9.27%, 7.04%, and 7.43% at 10m, 20m, and 30m
cut-off distances, respectively.
Modalities. Table 5 demonstrates that, when used indepen-
dently, the event modality outperforms the image modality
in night scenes, while the image modality achieves superior
performance in daytime scenes. However, the combination of
both modalities yields the best results in both types of scenes.

5 Conclusion
In this paper, we introduce UniCT Depth, a novel monocu-
lar depth estimation model that integrates asynchronous event
data with images for improved depth accuracy in challenging
lighting conditions. Our method combines ViT with CNNs
to overcome the shortcomings of traditional CNNs methods,
especially in complex multi-scale and occlusion scenarios. It
features a dual self-attention block with spatial and channel-
wise branches for enhanced pixel relationship modeling and
data interaction, significantly enhancing performance. Addi-
tionally, a detail compensation convolution boosts local fea-
ture extraction, improving the detection of high-texture ob-
jects. Our comprehensive experiments on public datasets
show that UniCT Depth outperforms existing methods in key
metrics. This work improves depth estimation and introduces
a new strategy for data fusion across different modalities.
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