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SSTrack: Sample-interval Scheduling for Lightweight Visual Object Tracking
Yutong Kou1,2,3, Shubo Lin1,2,3, Liang Li5, Bing Li1,3,6, Weiming Hu1,2,3,4 and Jin Gao1,2,3∗

1State Key Laboratory of Multimodal Artificial Intelligence Systems (MAIS), CASIA
2School of Artificial Intelligence, University of Chinese Academy of Sciences

3Beijing Key Laboratory of Super Intelligent Security of Multi-Modal Information
4School of Information Science and Technology, ShanghaiTech University

5Beijing Institute of Basic Medical Sciences
6People AI, Inc

{kouyutong2021,linshubo2023}@ia.ac.cn, {jin.gao,bli,wmhu}@nlpr.ia.ac.cn, liang.li.brain@aliyun.com

Abstract
In recent years, CPU real-time object tracking has
gained significant attention due to its broad appli-
cations such as UAV-tracking. To maintain com-
putational efficiency, most existing CPU real-time
object trackers rely on lightweight backbones and
employ a single initial template image without in-
termediate online templates. Although the ap-
pearance variance between the template and the
search is larger under this single template set-
ting, the representation ability of lightweight back-
bones is weaker which poses a challenge when
training lightweight object trackers. To address
this issue, we propose SSTrack, a new easier-to-
harder training schedule for the lightweight object
tracker. From the data perspective, our method
designed a success-aware sample scheduler that
gradually increases difficult training samples with
longer template-search time intervals and reduces
the amount of the easier samples so the training
cost remains unchanged. From the optimization
perspective, we utilized a gradient scaling strategy
that retains the original training objective of eas-
ier samples despite the reduction in their quanti-
ties. With the collective effort from both perspec-
tives, our method achieves State-of-the-Art CPU-
real-time accuracy on 5 UAV-tracking benchmarks
and 5 general object tracking benchmarks. Codes
and models will be available at https://github.com/
Kou-99/SSTrack.

1 Introduction
Visual object tracking is a fundamental computer vision prob-
lem that aims to locate an arbitrary object in a video se-
quence given its first frame location. With the advance of
deep learning techniques, visual object tracking has seen sig-
nificant progress in recent years. Most deep-learning ob-
ject trackers follow a template matching paradigm [Bertinetto
et al., 2016] that matches the search region and the first

∗Corresponding author

SSTrack

（Ours）

HiT-Base

MixFormerV2
HCAT

E.T.Track

TransT
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SwinTrackMixFormer x3 Faster

LightTrack
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Non-real-time Real-time

Figure 1: Comparison of the proposed SSTrack with other trackers
on LaSOT in terms of CPU tracking speed and success score (SUC).
Our method pushes forward the speed-accuracy trade-off by a large
margin.

frame template with a deep neural network (DNN). Although
this simple paradigm proves to be effective, it also poses a
high demand on the representation quality of the DNN, es-
pecially when the time interval between the template image
and the search image is large. To solve this issue, some
methods introduce more complicated matching networks like
transformer matching [Chen et al., 2021], learning-based
matching [Zhang et al., 2021], one-stream matching [Ye
et al., 2022], etc. Another approach is leveraging differ-
ent kinds of temporal information, including dynamic online
template [Yan et al., 2021a], temporal memory readout [Fu et
al., 2021b], spatiotemporal prompts [Wei et al., 2023], dense
temporal token [Zheng et al., 2024], etc.

Despite the high performance, the complex network and
the additional temporal information inevitably bring heavy
computational overhead which hinders their application in
real-world applications like UAV-tracking. To satisfy real-
world applications, many strategies are proposed to im-
prove the efficiency of object trackers, including model de-
sign [Yan et al., 2021b; Kang et al., 2023; Cao et al., 2021;
Gopal and Amer, 2024], model distillation [Cui et al., 2024],
dynamic inference [Li et al., 2023; Li et al., 2024], pre-
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processing [Kou et al., 2023]. Although the strategies are
diverse, most of these methods only use one template from
the initial frame and employ a lightweight backbone to en-
sure high efficiency. Without temporal context, this single
template setting poses a high demand for representation qual-
ity, especially when the time interval between the template
and search image is large. However, lightweight backbones
are usually more struggled to capture large appearance varia-
tions compared with bigger backbones. This conflict between
the hard training setting and weak model capability can be
troublesome during training. Thus, it is natural to ask the
question: Is it possible to customize a training schedule for
lightweight trackers to compensate for their weaker repre-
sentation ability?

To this end, we proposed a customized training frame-
work, termed Sample-Interval Scheduling Track (SSTrack),
for lightweight object trackers that emphasize compensating
for the weaker representation ability of lightweight models
via easier-to-harder sample schedule. As shown in Fig3,
the proposed framework handles the challenge from both
data and optimization perspectives. From the data perspec-
tive, we identify training samples with longer template-search
time intervals as harder samples due to their larger appear-
ance variance. As a result, the training difficulty can be ad-
justed by changing the sampling frequency of samples with
different template-search time intervals. To determine the
ideal sampling frequency for every epoch, we proposed a
novel success-aware sample scheduler that considers both the
model’s learning progress and the predefined easier-to-harder
behavior. The success-aware sample scheduler only uses the
latest epoch’s training statistics so no significant overhead is
introduced. To keep the training cost unchanged, the number
of easier short-interval samples is inevitably reduced. From
the optimization perspective, we employed a gradient scal-
ing strategy to compensate for this reduction. By up-scaling
the gradient of samples with reduced sampling frequency, the
original training objective on easier samples can be retained.
The gradient of samples with increased sampling frequency
is unchanged to enjoy the benefit of increased harder exam-
ples. The collective effort from both data and optimization
perspectives enables our method to achieve State-Of-The-
Art CPU-real-time tracking performance on 5 general object
tracking benchmarks and 5 UAV-tracking benchmarks.

Our contribution can be concluded as follows: (i) We an-
alyze the difficulty of training lightweight trackers on sam-
ples with long template-search time intervals at early train-
ing stages owing to the weaker representation ability of
lightweight backbones; (ii) We designed a success-aware
sample scheduler that gradually introduces more hard long-
interval samples based on both the model’s learning progress
and the predefined easier-to-harder behavior. To compensate
for the reduced easy samples, we additionally employed a
gradient scaling strategy that up-scales the gradient of short-
interval samples to retain their original training objective; (iii)
Our method achieves State-of-the-Art CPU real-time tracking
performance on 5 general object tracking and 5 UAV-tracking
benchmarks.

2 Related Work

2.1 Lightweight Object Tracking

In real-world applications like UAV-tracking or robotics, ob-
ject trackers are deployed to edge devices with limited com-
putational power and memory. Thus, many efforts have been
made to boost the efficiency of object trackers. Early attempts
focus on finding more efficient architectures for Siamese
trackers. LightTrack [Yan et al., 2021b] uses NAS to search
for efficient subnets for object tracking. FEAR [Borsuk et al.,
2022] designs a dual-template representation and a pixel-wise
fusion block to improve both the efficiency and the accuracy
of Siamese trackers. With the rise of transformer trackers,
some methods attempt to design more efficient transformers
for visual tracking. HCAT [Chen et al., 2022] designs a hi-
erarchical cross-attention transformer for lightweight feature
interaction, while Kang et al. explores modern lightweight
transformers for efficient one-stream tracking. Some methods
also employ model compression techniques to reduce model
size. MixFormerV2 [Cui et al., 2024] presents a distillation-
based model reduction paradigm that sequentially reduces the
width and depth of the tracker. Another widely explored
approach for lightweight tracking is the dynamic inference
of the tracking model. Aba-ViTrack [Li et al., 2023] adap-
tively discards image tokens based on learned halting proba-
bilities, whereas AVTrack [Li et al., 2024] dynamically acti-
vates transformer blocks to balance the efficiency and accu-
racy. AVTrack [Li et al., 2024] also proposed a mutual infor-
mation maximization loss to facilitate learning view-invariant
representations. These methods mainly focus on improving
the model design or the supervision, while our method fo-
cuses on improving the training data and the optimization.

2.2 Sampling Strategy in Object Tracking

Many object tracking methods [Bertinetto et al., 2016; Ye
et al., 2022; Li et al., 2024; Zheng et al., 2024] follow a
random sampling strategy that first randomly samples a tem-
plate frame as the base frame, then randomly samples search
frames after the base frame. The maximum time interval be-
tween the initial template frame and the search frame (tem-
poral range) is restricted to be lower than a threshold to
avoid unstable training. To increase the temporal range with-
out disturbing training, some methods [Yan et al., 2021a;
Cui et al., 2022] introduce online frames only ensuring the
maximum time interval between the search image and the
latest online frame is within a threshold. The temporal
range can be safely increased because the online frames pro-
vide sufficient recent appearance information. Following this
paradigm, TCTrack++ [Cao et al., 2023] proposed an easy-to-
hard curriculum strategy that increases the number of online
frames at 33% and 50% of total epochs to improve accuracy.
However, their strategy cannot be applied to the vast majority
of lightweight trackers without online frames and they switch
to harder samples at predefined timesteps. In contrast, our
method is customized for lightweight trackers without online
frames and automatically adjusts difficulty based on the train-
ing status every epoch.
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Figure 2: Representation similarity between the same object at dif-
ferent times as heatmaps. Brighter blocks mean the representation is
more similar. The result is averaged across videos from LaSOT [Fan
et al., 2019] training split.

3 Method
We present SSTrack, a customized training schedule for
lightweight object trackers aiming to compensate for the
weaker representation ability of lightweight models from
both data and optimization perspective. This section first
presents an analysis of the necessity of an easier-to-harder
training schedule for lightweight models. Next, we detailed
the proposed success-aware sampler scheduler for easier-to-
harder training, followed by the introduction of the gradient
scaling strategy which retains the original training objective
on reduced easier samples.

3.1 Problem Analysis
Object trackers usually follow an image pair matching
paradigm [Bertinetto et al., 2016]. Specifically, a lightweight
visual object tracker ϕθ(z, x) takes a template image patch
z and a search image patch x as input and predicts the tar-
get bounding box. Instead of training from random initial-
ization, object trackers typically fine-tune a pretrained back-
bone network and incorporate an additional localization head
to leverage the robust feature representations from large-scale
pretraining. For the sake of tracking speed, lightweight ob-
ject trackers use lightweight pretrained backbones which of-
ten yield less robust representations due to their reduced pa-
rameters and computational budget. To quantify this dif-
ference in representation quality, we compute the represen-
tation similarity of the same object across different times
in videos with a lightweight model ViT-Tiny [Wang et al.,
2023] and a heavy model ViT-Base [He et al., 2022] us-
ing Centered Kernel Alignment(CKA) [Cortes et al., 2012;
Nguyen et al., 2020]. The result is shown in Fig. 2. For
both models, the representation similarity decreases as the
time interval between images increases. Compared with the
large model(ViT-Base), the representation extracted by the
lightweight model (ViT-Tiny) is less consistent for the same
object across time, especially when the time interval is large
(top-left corner and bottom-right corner). The messages from
the above observations are twofold: (i) The training pairs
with larger time intervals are naturally more difficult. (ii)
The lightweight pretrain model is more inadequate to cap-
ture large appearance variation, especially under longer time
intervals, which makes training on long-interval samples dif-

ficult in the early epochs.
Following the above analysis, we aim to design an easy-to-

hard training schedule that gradually increases harder training
samples with longer template-search time intervals to com-
pensate for the weaker representation ability of lightweight
backbones. Next, we detail our proposed success-aware sam-
ple scheduler and gradient scaling strategy.

3.2 Easier-to-harder Training via Success-aware
Sample Scheduling

In this section, we demonstrate a success-aware sample
scheduler for lightweight trackers. We start with an interval-
based sampler that allows for adjusting training difficulty by
changing the sampling frequency of different samples. Then,
we elaborate on the success-aware sample schedule that al-
ters the training difficulty based on both the model’s learning
progress and the predefined easier-to-harder behavior.

Interval-based Sampler
To generate training samples during training, most methods
follow a random sampling strategy which first randomly se-
lects a template frame at tz and then selects a search frame
at tx ensuring the interval tx − tz ∈ [0,M), where M is the
maximum sample interval. Under this random sampling strat-
egy, the distribution of the interval tx− tz is fixed throughout
training thus the difficulty level remains the same.

To dynamically alter the difficulty, we proposed to use an
interval-based sampler that generates image pairs according
to a sampling distribution Q = (q1, · · · , qr), 0 ≤ qi ≤
1,
∑r

i qi = 1. Specifically, given the maximum sample in-
terval M , we part [0,M) into bins with equal spacing m,
resulting in r = ⌈M/m⌉ bins such that i-th bin bi corre-
spond to [li, ui), where the lower bound is li = mi and
the upper bond is ui = min(m(i + 1),M). With proba-
bility qi the interval-based sampler generate a sample with
interval tx − tz ∈ [li, ui) by first uniformly samples a train-
ing video (denote its length as L), then sample the template
image at tz ∈ [0, L − li] ∪ [li, L] and the search image at
tx ∈ [max(tz −ui+1, 0),max(tz − li+1, 0))∪ [min(tz +
li, L),min(tz + ui, L)).

Given this interval-based sampler, we are able to adjust
the training difficulty by changing the sampling frequency Q.
Next, we will demonstrate a success-aware sample scheduler
that dynamically adjusts training difficulty according to the
training dynamics during training.

Success-aware Sample Scheduler
We begin by outlining the workflow of the sample scheduler.
After each training epoch, the scheduler evaluates the model’s
performance at the current difficulty level and adjusts the dif-
ficulty for the next epoch based on this measurement. The key
to the sample scheduler’s design lies in its performance mea-
surement which should consider both the model’s learning
progress and the predefined easier-to-harder behavior. Ad-
ditionally, to minimize computational overhead, it is optimal
to perform performance measurement solely using training
statistics, eliminating the need for additional validation data.

Inspired by the commonly used object tracking metric:
success score, we proposed an expected success measure-
ment to satisfy the above design philosophy. To minimize
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Figure 3: The framework of SSTrack. The Interval-based Sampler generates easier-to-harder training samples following the sample distribu-
tion determined by the Success-aware sample scheduler. The gradient scaling strategy scales the gradient of the short-interval samples whose
sampling frequency is reduced and keeps other samples’ gradients unchanged.

computational overhead, we use the training samples’ IoU
to estimate the training progress of the corresponding sam-
ples. Specifically, given a success threshold τ , we calcu-
late the success rate of all the latest epoch training sam-
ples from bin bi and use the success rate as an estimation
of the probability(denoted as pτi ) that the current model suc-
cessfully tracks any sample within bi. With this estimation,
we can treat all the samples within bi as a single “general
frame” fi with probability pτi to success. The proposed mea-
surement is the expected success over the “general video”
{f1, · · · , fr}. Specifically, the success score of the current
model on each “general frame” can be seen as a random vari-
able Xτ

i ∈ {0, 1}. The sequence of success score formulates
a discrete-time stochastic process {Xτ

i } with countable state
space E = {0, 1}. As the current frame prediction solely re-
lies on the current frame and the previous frame’s prediction,
we can assume {Xτ

i } follows the Markov property and the
transition matrix T τ

i from time i to i + 1 can be written as
follows

T τ
i =

(
pτi 1− pτi
dpτi 1− dpτi

)
, (1)

where d ∈ [0, 1] is a hyperparameter that can be intuitively
understood as the probability of re-detecting the target after
tracking failure.

The state distribution at i can be calculated as πτ
i =

πτ
0T1 · · ·Ti−1, where πτ

0 = (1, 0) is the initial distribu-
tion. With the distribution πτ

i , the expected success at i is
E{Xτ

i } = πτ
i (1, 0)

T . And the expected success over the
“general video” {f1, · · · , fr} is Sτ =

∑r
i=1 E{Xτ

i }/r.
Next, we adjust the difficulty by generating a new sample

distribution Q. Samples that contribute more to Sτ should
be sampled more frequently so that they are better trained.
Therefore, we use ∂Sτ/∂pτi to determine the sampling fre-
quency for bin bi. The final sampling distribution is obtained
as qi =

∂Sτ/∂pτ
i∑r

i=1 ∂Sτ/∂pτ
i

.
There are two hyperparameters τ and d in the formula-

tion of the expected success. First, we use τ to consider the
model’s learning progress. The success threshold τ affects
the difficulty by changing pτi . Ideally, τ should grow as the
model gains better tracking ability. We set τ to the mean IoU
of the latest epoch’s training samples. The underlying reason
is that the mean IoU can provide precise information about
the training dynamics of the tracker which facilitates the sam-
ple scheduler to determine a more appropriate difficulty.

Secondly, we use d to inject predefined easier-to-harder
behavior. When d → 0, ∂Sτ/∂pτi → 1/r, so qi is the
same for every i. Consider pi = c for every i, when
d → 1, ∂Sτ/∂pτi →

∑r−1
m=i−1 c

m/r, so qi significantly de-
creases as i grows up. Therefore, by adjusting d from 0 to
1, an easier-to-harder behavior can be obtained. The pace of
introducing harder samples can be regulated by controlling
how quickly d approaches 1. We use d(e) =

p√
e
E as the

schedule function, where e is the current epoch and E is the
total epoch, p is the order of the schedule function. The ben-
efit of choosing this schedule function is that we can control
the pace of increasing hard samples with a single parameter.
Specifically, a large p means introducing harder samples more
quickly and vice versa.

The success-aware sample scheduler only uses training
samples’ IoUs and the current training epoch as the indicators
to decide the sample schedule. Since the IoU is a byproduct
of the loss calculation, no significant additional computation
is introduced during training. The wall clock time for train-
ing is almost the same as compared with training using the
random sampler.

3.3 Retain Original Training Objective on Easier
Samples via Gradient Scaling

To keep the number of total training samples fixed, the easier-
to-harder sample scheduling inevitably reduces the number of
short-interval easy samples to increase harder long-interval
samples causing a shifted optimization objective, which can
potentially undermine the short-term tracking accuracy. Al-
though carefully designed sample schedulers can partly alle-
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viate this issue, inspired by infoBatch [Qin et al., 2023], we
propose a gradient scaling technique to further mitigate this
problem.

Denoting the data sampled by the Random Sampler (RS)
with sampling distribution qR(i) as DR and data sampled by
Interval-based sampler (IS) at epoch t with sampling distri-
bution qIt (i) as DI

t . DI
t can be seen as a scaled version of

DR, where the sampling frequency for bin bi is scaled by
st(i) = (qR(i) − qIt (i))/q

R(i). For a sample v ∈ bi, it is a
pruned sample if st(i) ≥ 0, otherwise an enhanced sample.
We define St(v) = st(i), v ∈ bi as the scaling ratio of a sam-
ple v. Consequently, Pt(v) = max(St(v), 0) is the pruning
ratio and Et(v) = St(v) − Pt(v) is the enhance ratio. The
gradient scaling strategy enlarges the gradient of pruned sam-
ples and keeps the gradient of enhanced samples unchanged.
Specifically, The scaling ratio of each sample v is determined
by a scaling function Γt(v) = 1/(1 − Pt(v)). The scaling
function is directly multiplied by the original loss L(v, θ) as
Γt(v)L(v, θ) to achieve gradient scaling. We next provide a
theoretical analysis of how gradient scaling retains the train-
ing objective on pruned short-interval samples while main-
taining the enhanced training objective on increased long-
interval samples.

Theoretical Analysis
Following InfoBatch [Qin et al., 2023], we interpret the train-
ing objective as minimizing empirical risk L. We assume the
discrete sample distribution for DR as ρR(v). Then the dis-
crete sample distribution for DI

t can be derived as:

ρIt (v) =
(1− St(v))ρ

R(v)∑
v∈DR(1− St(v))ρR(v)

. (2)

At each epoch t, DR can be divided into two disjoint
subset: DRp

t = {v|St(v) ≥ 0} for pruned samples and
DRe

t = {v|St(v) < 0} for enhanced samples.
The training objective on DR is:

argmin
θ∈Θ

E
v∈DR

[L(v, θ)] =
∑

v∈DR

L(v, θ)ρR(v). (3)

The training objective with gradient scaling on DI
t is:

argmin
θ∈Θ

E
v∈DI

t

[Γt(v)L(v, θ)] =
∑
v∈DI

t

Γt(v)L(v, θ)ρIt (v).

(4)
By substituting Eq. 2 into Eq. 4, we have

argmin
θ∈Θ

E
v∈DI

t

[Γt(v)L(v, θ)]

=
1

ct

∑
v∈DRp

t

L(v, θ)ρR(v)

︸ ︷︷ ︸
Original Objective

+
1

ct
(
∑

v∈DRe
t

L(v, θ)ρR(v)

︸ ︷︷ ︸
Original Objective

+
∑

v∈DRe
t

L(v, θ)ρE(v)

︸ ︷︷ ︸
Enhancement Objective

),

(5)

where ct =
∑

v(1 − St(v))ρ
R(v) is a constant at epoch t,

ρE(v) = −Et(v)ρR(v) is the data distribution for enhanced
long-interval samples.

As shown in Eq. 5, for the short-interval samples pruned
in epoch t, after applying the gradient scaling, the objective
becomes a constant-resealed version of the original objective
in Eq. 3. For the long-interval samples, the new objective is
composed of the original objective and an enhancement ob-
jective brought by the extra long-interval samples. So the
tracker still benefits from the increased harder samples.

4 Experiments
4.1 Implementation Details
We select OSTrack [Ye et al., 2022] as the baseline model
considering its simplicity and publicly available training and
inference code. To make it lightweight, we replace the ViT-
Base backbone with ViT-Tiny [Dosovitskiy et al., 2020] and
adopt the D-MAE pre-train weight from [Wang et al., 2023;
Gao et al., 2025]. All the training and testing settings, except
for the training data sampler, are kept the same as OSTrack-
256. For the interval-based sampler, we set the maximum
sample interval M = 200 following OSTrack. We part M
into 7 bins with equal spacing 30, which is the frame rate
for the training video datasets. An additional bin [0, 1) is
added to hold samples from the image dataset COCO [Lin
et al., 2014]. The success-aware scheduler uses the average
iou from the latest epoch as the success threshold and uses
the schedule function with order 2. The model is trained on 4
NVIDIA V100 GPU and the inference speed is measured on
Intel Xeon Gold 6146 CPU.

4.2 State-of-the-Art Comparison
Comparison on General Tracking Benchmarks
We first compared our method with 6 State-of-the-Art
(SOTA) CPU-real-time object trackers on 5 general ob-
ject tracking datasets, namely LaSOT [Fan et al., 2019],
LaSOText [Fan et al., 2021], GOT-10k [Huang et al., 2019],
TrackingNet [Muller et al., 2018], NFS [Kiani Galoogahi et
al., 2017]. We only include CPU real-time object trackers
with reported CPU speed over 30 FPS for a fair compar-
ison. The results are shown in Tab. 1. Our method out-
performs all the previous real-time SOTA methods on all
5 datasets, demonstrating the powerful performance of our
method. textbf LaSOT is a diverse tracking dataset with
over 280 long-term video sequences. As shown in Tab. 1,
our method outperforms previous SOTA HiT-B [Kang et al.,
2023] by 2.3% Success and 3.7% Precision. LaSOText is the
extension of LaSOT with an additional 150 videos contain-
ing 15 novel classes. In Tab. 1, our method achieves 2.2%
gain in Success over the previous SOTA HiT-B [Kang et al.,
2023]. GOT-10k requires trackers to be trained solely on the
training split to verify generalization ability. We follow this
protocol and the result is reported in Tab. 1. According to the
results in Tab. 1, our method improves the SOTA performance
by 4.5%, 2.6% and 5.1%in AO, SR0.5, SR0.75 respectively.
TrackingNet is a large-scale short-term tracking dataset with
511 testing videos. As displayed in Tab. 1, our method lifts
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Tracker Source LaSOT LaSOText GOT-10k TrackingNet NFS #Param FLOPs Speed
SUC PRE SUC PRE AO SR0.5 SR0.75 SUC PRE SUC PRE

R
ea

l-
tim

e

SSTrack ours 66.9 71.8 46.3 51.8 69.0 79.1 63.2 81.6 79.5 65.7 78.9 8.0M 1.9G 47
HiT-B ICCV23 64.6 68.1 44.1 - 64.0 72.1 58.1 80.0 77.3 63.6 - 42.1M 4.3G 33
SMAT WACV24 61.7 64.6 43.6 - 64.5 74.7 57.8 78.6 75.6 62.0 74.6 - - 37

MixFormerV2-S NIPS23 60.6 60.4 43.6 46.2 - - - 75.8 70.4 - - 16.2M 4.4G 30
FEAR-L ECCV22 57.9 60.9 - - 64.5 - - - - 61.8 75.3 33.7M - 38

HCAT ECCV22 59.3 61.0 65.1 76.5 56.7 76.6 72.9 63.5 - 6.8M 1.3G 45
E.T.Track WACV22 59.1 - - - - - - 75.0 70.6 59.0 - 7.0M 1.7G 47

LightTrack-LB CVPR21 55.5 56.1 - - 62.3 72.6 - 72.5 69.5 55.3 - 3.1M 0.8G -

N
on

-R
ea

l-
tim

e

EVPTrack224 AAAI24 70.4 77.2 - - 73.3 83.6 70.7 83.5 - - - 73.7M 21.8G 9
ZoomTrack NIPS23 70.2 76.2 50.5 57.4 73.5 83.6 70.0 83.2 82.2 - - 92.1M 21.5G 11
ARTrack256 CVPR23 70.4 76.6 46.4 52.3 73.5 82.2 70.9 84.2 83.5 64.3 - 173.1M 40.3G 3

SwinTrack224 NIPS22 67.2 70.8 47.6 53.9 71.3 81.9 64.5 81.1 78.4 - - 23.0M 6.4G 16
MixFormer-22k CVPR22 69.2 74.7 - - 72.6 82.2 68.8 83.1 81.6 - - 35.6M 23.0G 5

STARK-ST50 ICCV21 66.6 - - - 68.0 77.7 62.3 81.3 - - - 28.2M 12.8G 11
TransT CVPR21 64.9 69.0 - - 67.1 76.8 60.9 81.4 80.3 65.7 - 23.0M - 5

Table 1: Comparison with CPU real-time tracking algorithms on general visual tracking datasets, including LaSOT [Fan et al., 2019],
LaSOText [Fan et al., 2021], GOT-10k [Huang et al., 2019], TrackingNet [Muller et al., 2018], and NFS [Kiani Galoogahi et al., 2017]. The
speed is measured by fps on CPU. The best CPU-real-time performance is highlighted in Bold.

Tracker Source DTB70 UAVDT UAV123 UAV123@10fps UAVTrack112L #Param FLOPs Speed
SUC PRE SUC PRE SUC PRE SUC PRE SUC PRE

SSTrack ours 66.4 85.5 61.0 82.8 67.6 87.6 66.4 85.4 65.8 83.0 8.0M 1.9G 47
AVTrack ICML24 65.0 84.3 58.7 82.1 66.8 84.8 65.8 83.2 - - 6.2M 1.8G 55
TATrack TGRS24 66.1 85.5 59.6 82.4 67.1 85.0 66.1 83.4 - - 8.3M 2.4G 49

Aba-ViTrack ICCV23 66.4 85.9 59.9 83.4 66.4 86.4 65.5 85.0 64.2 81.1 - - 50
P-SiamFC++ ICME23 60.4 80.3 55.6 80.7 48.9 74.5 54.9 73.1 53.1 70.4 10.4M 2.2G 51

TCTrack CVPR22 62.2 81.2 53.0 72.5 60.5 80.0 59.9 78.0 58.3 78.6 9.8M 8.8G -
HiFT ICCV21 59.4 80.2 47.5 65.2 59.0 78.7 57.0 74.9 55.1 73.4 10.4M 7.3G -

SiamAPN++ IROS21 59.4 78.9 55.6 76.9 58.2 76.8 58.1 76.4 - - 14.7M 8.2G -

Table 2: Comparison with UAV-tracking algorithms on UAV-tracking datasets, including DTB70 [Li and Yeung, 2017], UAVDT [Du et al.,
2018], UAV123&UAV123@10fps [Mueller et al., 2016] and UAVTrack112L [Fu et al., 2021a]. The speed is measured by fps on CPU. The
best performance is highlighted in Bold.

the SOTA performance by 1.6% in Success and 2.2% in Preci-
sion. NFS is a high frame-rate dataset containing challenging
fast-moving objects with 100 video sequences. As reported in
Tab. 1, our method achieves 65.7% Success, improving pre-
vious SOTA by 2.1%.

We further list 7 non-real-time SOTA trackers in Tab. 1 for
a more comprehensive comparison. It is worth noting that
our method outperforms STARK [Yan et al., 2021a] using
only 28% parameters and 14% computation.

Comparison on UAV-tracking Benchmarks
We next compare our method with 7 State-of-the-Art(SOTA)
UAV trackers on 5 UAV-tracking benchmarks, namely
DTB70 [Li and Yeung, 2017], UAVDT [Du et al., 2018],
UAV123 and UAV123@10fps [Mueller et al., 2016],
UAVTrack112L [Fu et al., 2021a]. The results are shown
in Tab. 2. Our method outperforms or on par with previous
SOTA trackers on these 5 UAV-tracking datasets with similar
overhead and speed, showing a strong generalization ability

to real-world scenarios. textbf DTB70 is a UAV tracking
dataset with 70 videos which primarily addresses the chal-
lenge of severe UAV motion. As shown in Tab. 2, our method
achieves 66.4% SUC and 85.5% PRE. UAVDT is a chal-
lenging dataset mainly focus on vehicle tracking with various
weather conditions, flying altitudes and camera views. As
reported in Tab. 2, our method outperforms previous SOTA
Aba-ViTrack [Li et al., 2023] in SUC by 1.1%. UAV123
is a UAV-tracking dataset containing 123 videos captured by
low-altitude UAVs. From the results in Tab. 2, it can be seen
that our method improves the previous SOTA by 0.5% SUC
and 1.2% precision. UAV123@10fps is constructed from
UAV123 by resampling from 30 FPS to 10FPS causing more
abrupt motion and scale variation. In Tab. 2, our method
boosts the SOTA performance by 0.3% SUC and 0.4% preci-
sion. UAV112L is the current largest long-term UAV-tracking
dataset containing 45 videos. As displayed in Tab. 2, our
method advances the SOTA performance by 1.6% in SUC
and 1.9% in Precision, showing that our method is capable of
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# SS GS Epoch LaSOT UAVTrack112L
SUC PRE SUC PRE

① 300 65.7 69.7 64.6 80.5
② ✔ 300 66.3 70.7 65.3 81.9
③ ✔ ✔ 300 66.9 71.8 65.8 83.0

Table 3: Ablation study of different components of the proposed
method on LaSOT and UAVTrack112L dataset. SS: Success-aware
Sample Scheduler, GS: Gradient Scaling.

# p τ
Update

Every Epoch
LaSOT UAVTrack112L

SUC PRE SUC PRE
① 1 Mean

IoU

✔ 66.2 70.4 64.0 80.2
② 2 ✔ 66.9 71.8 65.8 83.0
③ 3 ✔ 65.9 70.4 63.7 80.1
④ 2 0.5 ✔ 65.7 69.8 64.0 80.0
⑤ 0.75 ✔ 65.9 69.9 64.4 80.3
⑥ 2 Mean IoU ✗ 65.3 69.1 62.8 79.3

Table 4: Ablation study of different choices of the sample scheduler
on LaSOT and UAVTrack112L dataset
long-term tracking.

Efficiency Analysis
We comprehensively evaluate the efficiency of our method
via the number of parameters, the computational overhead
and the inference speed. The results are reported in both
Tab. 1 and Tab. 2. Compared with CPU real-time trackers, as
displayed in Tab. 1, our method achieves 47FPS on CPU and
only uses 1.9G Multiply–Accumulate Operations (MACs)
which is comparable to previous CPU real-time trackers.
As for parameters, our method only uses 8.0M parameters,
which is significantly less than previous SOTA CPU real-time
trackers, making it ideal for deploying on edge devices. Com-
pared with UAV trackers, as presented in Tab. 2, our method
has similar efficiency with these trackers customized for de-
ployment on UAVs, while having on-par or better accuracy.

4.3 Ablation Study
We conduct the ablation experiments on two challenging
long-term tracking datasets, namely LaSOT [Fan et al., 2019]
and UAVTrack112L [Fu et al., 2021a], to demonstrate the ef-
fectiveness of our method.

Component-wise Analysis
To evaluate the effect of different components of our method,
we conduct a component-wise analysis, starting from the
baseline (①). The results are reported in Tab. 3. Directly em-
ploying the success-aware sample scheduler on the baseline
can improve the Precision by 1.0% on LaSOT and 1.4% on
UAVTrack112L (①v.s.②), demonstrating the effectiveness of
the proposed easier-to-harder sample schedule. Next, we add
the gradient scaling strategy, the Precision is further boosted
by 1.1% on both datasets (②v.s.③), proving the effectiveness
of the gradient scaling strategy.

Different Sample Scheduler Setting
As shown in Tab. 4, we ablate different settings of the
success-aware sample scheduler. In the first set of experi-

Tracker Backbone
(Pretrain)Ours LaSOT UAVTrack112L

SUC PRE SUC PRE

OSTrack ViT-T
(D-MAE)

65.7 69.7 64.6 80.5
✔ 66.9↑1.2 71.8↑2.1 65.8↑1.2 83.0↑2.5

AVTrack ViT-T
(D-MAE)

63.8 67.2 61.8 78.1
✔ 64.9↑1.1 68.2↑1.0 64.3↑2.5 80.9↑2.8

HiT LeViT-B
(DeiT)

63.5 65.4 62.1 78.5
✔ 64.7↑1.2 67.5↑2.1 63.3↑1.2 80.3↑1.8

Table 5: Ablation study of applying the proposed method to different
trackers on LaSOT and UAVTrack112L dataset1.

ments (①, ② and ③), we fix the success threshold τ as the
mean IoU of the latest epoch and change the speed of intro-
ducing more harder samples via changing the order of sched-
ule function p. In Tab. 4, selecting p = 2 achieves the best
accuracy, demonstrating the importance of gradually intro-
ducing more long-interval samples. In the second set of ex-
periments (②, ④ and ⑤), we set the order of the schedule
function fixed to p = 2, and explore the necessity of using
dynamic success threshold τ . As displayed in Tab. 4, using
fixed success threshold (④ and ⑤) performs worse than using
mean IoU as dynamic success threshold (②), proving the sig-
nificance of considering the model’s learning progress when
designing sample scheduler. In the last experiment (⑥), we
only update the difficulty at 33% and 50% of the total epoch
following [Cao et al., 2023]. Compared with ②, the success
score and precision drop significantly on both datasets, show-
ing the importance of our update-every-epoch design.

Generalization Ability
To demonstrate the generalization ability of our approach, we
incorporate our method to other SOTA lightweight trackers:
AVTrack [Li et al., 2024] and HiT [Kang et al., 2023]. As
displayed in Tab. 5, our method achieves consistent gains on
multiple lightweight trackers with different backbones and
pretrain methods, showing a strong generalization ability.
Note that all the hyperparameters in our method remain con-
sistent across all datasets and trackers, while other hyperpa-
rameters shared with the baselines are kept unchanged.

5 Conclusion
In this work, we present SSTrack, a novel training schedule
designed to enhance the performance of lightweight object
trackers. Aiming to compensate for the weaker representation
ability of lightweight backbones, we developed a success-
aware sample scheduler that progressively increases difficult
long-interval samples and reduces easy short-interval samples
to keep the training cost unchanged. Furthermore, we incor-
porated a gradient scaling strategy to maintain the positive
influences of easier samples, even as their quantity decreases.
This combined approach has enabled us to achieve state-of-
the-art accuracy on 5 UAV-tracking benchmarks and 5 general
object tracking benchmarks.

1Baseline results are obtained by training with the official code
from their GitHub repository to ensure a fair comparison.
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