
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Volumetric Axial Disentanglement Enabling Advancing in Medical Image
Segmentation

Xingru Huang1 , Jian Huang1 , Yihao Guo1 , Tianyun Zhang1 , Zhao Huang2 ,
Yaqi Wang3 , Ruipu Tang4 , Guangliang Cheng5 , Shaowei Jiang1∗ , Zhiwen Zheng1∗ ,

Jin Liu1∗ , Renjie Ruan6∗ , Xiaoshuai Zhang7∗

1Hangzhou Dianzi University, Hangzhou, China
2Northumbria University, Newcastle, UK

3Communication University of Zhejiang, Hangzhou, China
4Beijing University of Posts and Telecommunications, Beijing, China

5University of Liverpool, Liverpool, UK
6The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China

7Ocean University of China, Qingdao, China
{xingru.huang, j.huang, yihao.guo, tianyun.zhang, jiangsw, zhiwen.zheng, jinliu}@hdu.edu.cn,

zhao.huang@northumbria.ac.uk, wangyaqi@cuz.edu.cn, tangruipu0817@bupt.edu.cn,
guangliang.cheng@liverpool.ac.uk, ruanrenjie@wmu.edu.cn, x.zhang@ouc.edu.cn

Abstract

Information retrieved from three dimensions is
treated uniformly in CNN-based volumetric seg-
mentation methods. However, such neglect of ax-
ial disparities fails to capture true spatio-temporal
variations. This paper introduces the volumet-
ric axial disentanglement to address the dispar-
ities in spatial information along different axial
dimensions. Building on this concept, we pro-
pose the Post-Axial Refiner (PaR) module to refine
segmentation masks by implementing axial disen-
tanglement on the specific axis of the volumetric
medical sequences. As a plug-and-play enhance-
ment to existing volumetric segmentation architec-
ture, PaR further utilizes specialized attention ap-
proaches to learn disentangled post-decoding fea-
tures, enhancing spatial representation and struc-
tural detail. Validation on various datasets demon-
strates PaR’s consistent elevation of segmentation
precision and boundary clarity across 11 baselines
and different imaging modalities, achieving state-
of-the-art performance on multiple datasets. Ex-
perimental tests demonstrate the ability of volumet-
ric axial disentanglement to refine the segmentation
of volumetric medical images. Code is released at
https://github.com/IMOP-lab/PaR-Pytorch.

1 Introduction
The precise delineation of clinical diagnoses critically hinges
on the analysis of volumetric medical imaging data, such as
MRI and CT scans. These volumetric data encapsulate the

∗Corresponding authors.

exact spatial configurations of tissues and organs within pa-
tients’ bodies and may capture dynamic changes over time,
including blood flow or organ movement. The inherent vol-
umetric nature of these data enables an in-depth analysis
of pathological states and physiological processes. There-
fore, accurate segmentation of complex tissue structures is
paramount for extracting precise biomorphic information, ef-
fectively marking disease, and facilitating subsequent analy-
ses and diagnoses. However, 2D segmentation methods fail
to address the hierarchical relationships inherent in these data
since they lack the capacity to adequately represent the spa-
tial continuity of volumetric data to incur segmentations with
poor 3D cohesion and precision.

The symmetrical design of 3D conv extends the convolu-
tion kernel across all axes to extract features from the entire
volumetric space by treating the time axis (z-axis) informa-
tion the same as cross-section (xy-plane) information, and
hence to optimize the use of continuous volume information.
This approach overlooks the distinct physical and scanning
characteristics of different axes, especially for the differences
between the z-axis and the xy-plane in terms of physical prop-
erties and information density. As illustrated in Fig. 1, the
visualization of volumetric data highlights the differing infor-
mation densities across axes, the xy-plane accurately reflects
tissue density distribution and shows precise locations of var-
ious tissue types, and the z-axis represents the morphological
changes of the scanned sequence over time. When z-axis in-
formation is rich, the model should focus more on its detailed
z-axis features; whilst z-axis information is sparse, the model
should prioritize the detailed features of the xy-plane. How-
ever, the current 3D conv approaches fail to consider these
differences, often leading to inadequate differentiation and
ineffective use of the unique characteristics of each axis.

Due to the differences in resolution and information den-
sity between the z-axis and xy-plane in volumetric data, the
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Figure 1: Visualization of different volumetric data. Abdomen CT volumes (a-c) and retinal OCT volumes (d-f) show significant variations
in different axial lengths relative to actual pixel dimensions, highlighting the differences in information density across axes.

usage of 3D conv may introduce spatial biases and tempo-
ral errors by uniformly extracting features across all dimen-
sions. This can lead to the misapplication of xy-plane features
to the temporal z-axis, thereby limiting segmentation accu-
racy. To address this issue, we propose the volumetric axial
disentanglement and further design the Post-Axial Refiner
(PaR) module, which disentangles specific axial features and
applies specialized attention approaches to post-decoding 3D
feature maps (coarse masks). PaR module refines temporal
and spatial features for accurate mapping of temporal varia-
tions and structural differences to enhance segmentation ac-
curacy. This plug-and-play module can be seamlessly in-
tegrated into any 3D segmentation network architecture.

The proposed method is validated using publicly available
volumetric segmentation datasets (FLARE2021, OIMHS,
and SegTHOR) and compared with 11 previous state-of-the-
art models to verify its effectiveness. The results demonstrate
effective improvements in segmentation performance across
all models with the integration of PaR, including enhanced
overall accuracy and boundary delineation. The results under-
score the enhancement of volumetric axial disentanglement
for precise medical volumetric segmentation.

Our contributions are summarized as follows:
1. Substantiating the operation of volumetric axial dis-

entanglement as a means to tackle the challenges arising
from variations in physical properties and information den-
sity across distinct axial directions in 3D medical imaging.

2. Introducing a simple, plug-and-play PaR module that
performs volumetric axial disentanglement and attention-
based axial feature extraction to enhance specific axial feature
representation in 3D medical imaging.

3. By validating on multiple publicly available datasets
FLARE2021, OIMHS, and SegTHOR with 11 of the main-
stream volumetric segmentation models, the proposed PaR
module consistently improves segmentation performance.

2 Related Work
2.1 Volumetric Segmentation
Volumetric segmentation methods have significantly ad-
vanced due to developments in deep learning and compu-
tational resources. The rise and continuous iterations of

Convolutional Neural Networks (CNN) and Vision Trans-
formers (ViT) [Dosovitskiy et al., 2020] have propelled
these advancements [Liao et al., 2020; Huang et al., 2023;
Huang et al., 2024; Huang et al., ]. The 3D U-Net [Çiçek
et al., 2016], a seminal model in this field, employs 3D conv
to capture spatial relationships within volumetric data. En-
hancements to the 3D U-Net include attention mechanisms
that prioritize relevant regions of the input data [Jiang et
al., 2022] to enhance feature extraction capabilities and re-
duce noise interference. Transformer [Vaswani et al., 2017]
models adapted for volumetric segmentation leverage self-
attention for long-range dependencies, as seen in the UN-
ETR architecture [Hatamizadeh et al., 2021a; Shaker et al.,
2024]. Hybrid models that integrate CNNs and transformers
balance spatial feature extraction with global context capture,
resulting in further performance gains [Chen et al., 2021;
Wang et al., 2021; Xie et al., 2021; Hatamizadeh et al.,
2021b]. Notably, the nnU-Net [Isensee et al., 2021], a self-
adapting framework, has demonstrated superior performance
in a wide range of medical imaging tasks.

Beyond network architecture, numerous other research
efforts have emerged for volumetric segmentation. Post-
processing approaches, including morphological operations
and conditional random fields (CRFs), are employed to refine
segmentation outcomes [Chen et al., 2022]. Semi-supervised
and unsupervised segmentation methods enhance robustness
by leveraging large volumes of unlabeled data [Bortsova et
al., 2019; Huang et al., 2022]. Additionally, Generative Ad-
versarial Networks (GANs) improve the realism and accuracy
of segmentation outputs [Kwon et al., 2019; Goodfellow et
al., 2020]. Federated learning enables model training across
institutions while preserving privacy [Kaissis et al., 2021;
Miao et al., 2023]. Overall, continuous innovations in neural
network architectures and learning paradigms promise more
accurate and reliable medical image analysis.

2.2 Segmentation Mask Refinemement
Segmentation mask refinement methods aim to improve the
accuracy of masks generated by pre-existing segmentation
models. While numerous refinement methods exist for 2D
image segmentation, few of them address the refinement of
volumetric medical image segmentation masks.
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Figure 2: Overview of the proposed PaR module (best viewed in color). The PaR module consists of two main pipelines: PDI and SAI. The
PDI pipeline applies multi-head self-attention to capture and learn specific axial feature information from various feature map perspectives,
while the SAI pipeline focuses on extracting and enhancing specific axial spatio-temporal representation through grouped disentanglement,
two attention groups, and spatial redistribution, thereby achieving refinement of the coarse mask.

In 2D segmentation mask refinement, PointRend [Kirillov
et al., 2020] employs an MLP to correct low-confidence pixel
labels within Mask R-CNN [He et al., 2017]. SegFix [Yuan et
al., 2020] improves edge predictions by learning a mapping
function between edge and inner pixels to replace inaccurate
edge predictions with corresponding inner pixel predictions.
RefineMask [Zhang et al., 2021] enhances Mask R-CNN by
incorporating a semantic head for additional guidance. Mask-
Transfiner [Ke et al., 2022] uses an FCN to detect incoherent
regions and refine their labels with a Transformer.

As for the refinement of the volumetric image segmen-
tation mask, [Duan et al., 2019] designs a refinement step
that imposes shape prior knowledge to augment segmenta-
tion quality and mitigate image artifacts. [Xue et al., 2023]
introduces an approach employing a graph convolutional net-
work (GCN) to refine inaccurate segmentation masks. [Shu et
al., 2024] proposes a method utilizing a self-refine module to
improve the labels produced by an auxiliary network through
progressively accurate predictions from the primary network.

3 Methodology
Firstly, we provide a concise overview of the Post-Axial Re-
finer (PaR) module, which consists of two main pipelines:
Permutative Dimensional Intensification (PDI) and Se-
quential Axial Intensification (SAI). We then explore the
structure and functionality of the PDI pipeline and analyze
its role in capturing and learning information of specific axial
features. Finally, we present the SAI pipeline, which is dedi-
cated to axial disentanglement on a specific axis for extracting

and enhancing distinctive spatio-temporal characteristics.

3.1 Overview of the Post-Axial Refiner
The detailed structure of PaR is illustrated in Fig. 2. The
baseline network takes the original volume image as input,
and the 3D feature map generated by its decoder is defined
as the coarse mask yo ∈ RC×W×H×D, where C represents
the number of segmentation categories, and W , H , and D
denote the width, height, and depth of the volumetric medi-
cal images, respectively. Given the inherently richer spatio-
temporal information and texture details of volumetric medi-
cal images as opposed to 2D plane images, PaR utilizes volu-
metric axial disentanglement to extract the key features across
the transverse, sagittal, and coronal planes of volumetric data
to enhance the model’s feature representation capability. To
effectively capture the distinct feature variations in each axial
plane and extract important feature information, PaR employs
two pipelines: PDI and SAI.

The PDI pipeline is designed to capture and learn crit-
ical feature information within the coarse masks by apply-
ing a dimensional permutation operation and multi-head self-
attention [Vaswani et al., 2017] along the specific axis. Ini-
tially, various spatial distribution tensors are generated from
the coarse masks yo by a permutation operation to enrich the
semantic content. Subsequently, multi-head self-attention is
employed to learn a unified feature structure across these spa-
tial distributions to ultimately capture the most salient specific
axial feature information, represented as yrP ∈ RC×W×H×D.

For the enhancement of specific axial feature representa-
tion in volumetric data through volumetric axial disentan-
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glement, we introduce the SAI pipeline. It initiates with
3D Conv, Group Normalization (GN), ReLU, and residual
connection, preliminarily extracting features from the coarse
masks. These features are then grouped along the specific
axis and analyzed both channel-wise and spatial-wise to learn
the key characteristic of specific axial features, resulting in
yrS ∈ RC×W×H×D.

The outputs of both PDI yrP and SAI yrS are combined
through addition, subsequently constrained within the (0,1)
range via a sigmoid function, and then element-wise multi-
plied by the original coarse mask yo. This product is further
enhanced through residual connections with the mathematical
formulation of this progress as follows:

yr =
yo

1 + e−(yr
P+yr

S)
+ yo,

where yr ∈ RC×W×H×D is the refined segmentation mask.

3.2 Permutative Dimensional Intensification
Permutative Dimensional Intensification (PDI) improves vol-
umetric image segmentation accuracy and robustness by cap-
turing and learning specific axial feature information across
different spatial distributions within the coarse masks. Here,
we set the W-axis as the specific disentanglement axis.

For the coarse mask yo, the PDI pipeline generates spatial
distributions through a dimensional permutation operation.
This operation rearranges the dimensions of yo to produce
multiple feature maps {yi}NS

i=1 under different spatial config-
urations, such as y1 ∈ RH×D×C×W , y2 ∈ RC×D×H×W ,
and y3 ∈ RC×H×D×W . The W-axis is permuted to the last
dimension to enhance the focus on W-axial information in
subsequent attention. These permuted feature maps are then
merged into 3D tensors {yαi }

NS
i=1 to make them suitable as the

input for the multi-head self-attention, which is applied to the
extraction of time-axial and spatial features. The formula for
multi-head self-attention can be expressed as:

{yγi = SelfAttention(yαi )}
NS
i=1,

where {yγi }
NS
i=1 are the attention outputs.

Subsequently, attention outputs {yγi }
NS
i=1 are reshaped back

into 5D formats {yδi }
NS
i=1 through the reshape operation to be

aligned with the dimensions of the coarse masks yo by per-
mutation, denoted as enhanced segmentation maps {yri }

NS
i=1.

The final step in PDI involves a summative integration of
these enhanced segmentation maps to produce the W-axial
refined segmentation mask yrP , thereby strengthening the
coarse mask feature representation through capturing and
learning specific spatio-temporal information.

3.3 Sequential Axial Intensification
The inherent brevity of sequence lengths in volumetric medi-
cal images presents a fundamental drawback that is often mit-
igated through interpolation in the data preprocessing stage,
leading to variations in time-axial information. Given that
most segmentation networks typically identify segmentation
targets based on the slice plane, they struggle to understand
the rich spatio-temporal information across the sequence. To

address this issue, we introduce the Sequential Axial Inten-
sification (SAI) pipeline, which applies axial disentangle-
ment and two attention groups along the specific axis (W-axis
here). This pipeline enhances W-axial spatio-temporal rep-
resentation and learns unified features across different axial
planes of the coarse masks to refine the coarse masks.

For the coarse mask yo, the SAI pipeline begins with
an initial feature extraction layer comprising 3D Conv, GN,
ReLU, and residual connection. This layer performs the
preliminary feature extraction to produce the feature map
yθ ∈ RC×W×H×D. To capture the unique patterns and char-
acteristics of the W-axial feature by subsequent attention in
yθ, the feature map is divided along the W-axis into sub-
sets {yλi ∈ RC×W

G ×H×D}Gi=1. These subsets are further
divided into two groups: {yλ,ci ∈ RC× W

2G×H×D}Gi=1 and
{yλ,si ∈ RC× W

2G×H×D}Gi=1.

The channel-wise groups. {yλ,ci }Gi=1 is processed through
the adaptive max pooling fω and the adaptive mean pool-
ing fη to extract W-axial channel information, which is
then combined via addition and passed through an adaptive
weighting function Fc(x) = Wcx + bc to generate {yfci ∈
RC×1×1×1}Gi=1:

yfci = Fc(fω(y
λ,c
i ) + fη(y

λ,c
i ))

= Wc(fω(y
λ,c
i ) + fη(y

λ,c
i )) + bc, ∀i ∈ {1, . . . , G},

where Wc ∈ R1×1×1×1 and bc ∈ RC×1×1×1 are trainable
parameters. Note that the initial weight of Wc is set to 1, and
the initial weight of bc is set to 0.

Then {yfci }Gi=1 are constrained between (0,1) using a
sigmoid function and combined with {yλ,ci }Gi=1 through
element-wise multiplication to extract the key channel fea-
tures within {yλ,ci }Gi=1.

The spatial-wise groups. {yλ,si }Gi=1 undergo a 3D Conv
layer to capture spatial features within the local neighbor-
hood of the feature map. This operation can reflect the sig-
nificance of spatial positions across {yλ,si }Gi=1. The captured
features are then processed by an adaptive weighting function
Fs(x) = Wsx+ bs to generate {yfsi ∈ R1× W

2G×H×D}Gi=1:

{yfsi = Fs(Conv3D(yλ,si )) = Ws(Conv3D(yλ,si ))+bs}Gi=1,

where Ws ∈ R1×1×1×1 and bs ∈ R1× W
2G×H×D are trainable

parameters, set to 1 and 0, respectively.
Similarly, {yfsi }Gi=1 is processed by sigmoid activation to

ensure values between (0,1) and then are combined with
{yλ,si }Gi=1 by element-wise multiplication to extract the key
spatial features within {yλ,si }Gi=1.

Finally, the outputs of channel-wise groups and spatial-
wise groups are concatenated and reshaped back to the
dimensions of the coarse mask yo, culminate in yµS ∈
RC×W×H×D, which is redistributed spatially to further en-
hance specific axial spatio-temporal feature representation.
Spatial redistribution. To further extract and enhance spa-
tial feature representation from the disentangled segmenta-
tion map of the W-axis, we employ a spatial redistribution ap-
proach to capture common features in different spatial states.
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Methods Params FLOPs FLARE2021 OIMHS SegTHOR
mIoU Dice HD95 mIoU Dice HD95 mIoU Dice HD95

3D U-Net (2016) 5.75 135.88 87.92 93.08 16.31 86.60 92.49 3.40 78.69 87.59 4.32
+PaR 5.86 141.85 89.20 +1.28 93.89 +0.81 2.49 -13.82 87.55 +0.95 93.08 +0.59 2.89 -0.51 82.08 +3.39 89.82 +2.23 2.98 -1.34

V-Net (2016) 45.61 333.10 84.13 89.89 12.93 81.00 88.53 18.13 75.17 85.12 16.10
+PaR 45.72 337.26 85.99 +1.86 91.49 +1.60 5.98 -6.95 83.21 +2.21 90.26 +1.73 13.52 -4.61 76.23 +1.06 85.81 +0.69 11.49 -4.61

RAUNet (2019) 70.69 366.89 87.93 93.08 27.37 84.52 91.14 13.61 79.34 88.13 14.58
+PaR 70.80 373.06 88.32 +0.39 93.28 +0.20 26.71 -0.66 86.20 +1.68 92.25 +1.11 5.37 -8.24 81.04 +1.70 89.08 +0.95 2.99 -11.59

ResUNet (2019) 27.22 902.04 87.38 92.56 30.15 84.06 90.84 3.92 79.61 88.26 3.22
+PaR 27.33 908.01 87.83 +0.45 92.94 +0.38 11.80 -18.35 87.07 +3.01 92.79 +1.95 3.33 -0.59 80.23 +0.62 88.71 +0.45 3.14 -0.08

SegResNet (2019) 4.70 61.32 86.24 91.81 3.22 83.59 90.52 12.05 77.78 86.99 3.38
+PaR 4.81 67.29 88.02 +1.78 93.13 +1.32 2.78 -0.44 84.82 +1.23 91.35 +0.83 5.07 -6.98 81.77 +3.99 89.60 +2.61 2.87 -0.51

MultiResUNet (2020) 18.65 324.14 85.92 91.35 9.04 86.53 92.44 3.23 79.87 88.53 26.75
+PaR 18.76 330.11 86.76 +0.84 91.85 +0.50 3.68 -5.36 88.22 +1.69 93.49 +1.05 2.85 -0.38 80.81 +0.94 89.10 +0.57 11.06 -15.69

UNETR (2021) 92.62 82.58 84.74 90.70 4.63 81.52 89.05 29.15 73.76 84.03 4.71
+PaR 92.73 88.55 85.87 +1.13 91.48 +0.78 3.64 -0.99 83.73 +2.21 90.55 +1.50 7.24 -21.91 74.13 +0.37 84.18 +0.15 4.65 -0.06

Swin UNETR (2021) 61.99 329.46 88.28 93.23 3.25 87.11 92.82 5.21 78.19 87.26 3.87
+PaR 62.10 335.63 89.47 +1.19 94.04 +0.81 2.61 -0.64 87.92 +0.81 93.27 +0.45 2.92 -2.29 78.51 +0.32 87.42 +0.16 3.62 -0.25

TransBTS (2021) 30.62 110.12 87.63 92.84 3.54 79.40 87.39 33.52 77.70 86.88 3.84
+PaR 30.74 116.29 88.36 +0.73 93.27 +0.43 2.90 -0.64 83.68 +4.28 90.55 +3.16 21.00 -12.52 81.02 +3.32 89.13 +2.25 3.75 -0.09

nnFormer (2023) 149.1 224.36 85.50 91.43 5.41 80.54 88.29 25.32 77.27 86.65 5.11
+PaR 149.21 230.53 88.83 +3.33 93.69 +2.26 2.35 -3.06 85.50 +4.96 91.80 +3.51 7.36 -17.96 79.00 +1.73 87.69 +1.04 3.51 -1.60

3D UX-NET (2023) 53.00 627.90 88.40 93.31 8.85 87.45 93.01 4.61 78.30 87.34 4.69
+PaR 53.11 637.93 89.24 +0.84 93.84 +0.53 2.43 -6.42 88.51 +1.06 93.66 +0.65 2.65 -1.96 79.01 +0.71 87.77 +0.43 3.61 -1.08

Table 1. The benchmarking results on the FLARE2021, OIMHS, and SegTHOR datasets validate the performance transformation of 11
previous volumetric segmentation methods integrating PaR post-decoder. The metrics for all models with integrated PaR are highlighted, and
the performance differences between models with and without PaR integration are highlighted in bold.

The map yµS is firstly reshaped into yµ1

S ∈ RC×G×W
G ×H×D,

followed by a dimensional exchange between G and W
G di-

mensions to generate yµ2

S ∈ RC×W
G ×G×H×D. This trans-

formed tensor is then reshaped back to yµ3

S ∈ RC×W×H×D

and added to yµS to generate yrS ∈ RC×W×H×D. Through the
supplement of spatial information and learning unified fea-
tures across different axes, spatial redistribution augments the
model’s capacity to comprehend axial spatial dynamics, aid-
ing in the capture of complex spatio-temporal relationships.

4 Experiments
4.1 Datasets and Implementation Details
The proposed PaR module is jointly trained end-to-end with
the baseline model, using the 3D feature maps output by the
baseline decoder as input to the module. To substantiate the
efficacy of our method, we conducted experiments across
three publicly available datasets: FLARE2021 [Ma et al.,
2022], OIMHS [Ye et al., 2023], and SegTHOR [Lambert et
al., 2020]. For all datasets, we employ an 8:1:1 random split
for the training, validation, and testing sets. To ensure fair-
ness, we employ identical data preprocessing protocols and
hyperparameter configurations. Across all training sessions,
we utilize LDiceCE as the loss function and the AdamW op-
timizer with a learning rate of 0.0001, over 80,000 iterations,
and a batch size of 2. Validation employs a sliding window
approach with a 0.5 overlap. Further details on the datasets
and experimental setups are provided in the Appendix.

4.2 Benchmarking Results
We evaluate the computational cost and performance implica-
tions of integrating the PaR into 11 baselines on FLARE2021,
OIMHS, and SegTHOR datasets, as demonstrated in quanti-
tative results Table 1 and qualitative results Fig. 3.

FLARE2021. In our evaluation of the FLARE2021 dataset,
all models exhibit performance improvements across all met-
rics, including mIoU, Dice, and HD95. The enhancements
in mIoU and Dice range from 0.39% to 3.33% and 0.2%
to 2.26%, respectively, underscoring PaR’s efficacy in refin-
ing global segmentation accuracy through multi-head atten-
tion on different spatial configurations along the specific axis.
Furthermore, the HD95 metric, which evaluates boundary
segmentation accuracy, indicated notable improvements, ex-
emplified by the reduction in HD95 for the 3D U-Net model
from 16.31 to 2.49. This demonstrates PaR’s ability to correct
significant segmentation errors by learning spatial dependen-
cies along the axial dimension.

OIMHS. The benchmark results on the OIMHS dataset fur-
ther demonstrate robust performance enhancements across
all baseline models when integrated with PaR. The mIoU
and Dice improve range from 0.81% to 4.96% and 0.45% to
3.51%, respectively. Notably, the UNETR model shows a re-
duction in HD95 from 29.15 to 7.24, illustrating PaR’s effec-
tiveness in correcting boundary delineations through central-
ized axial disentanglement of volumetric information. Even
state-of-the-art models like 3D UX-NET experienced im-
provements, with mIoU and Dice increasing by 1.06% and
0.65%, respectively. By disentangling the specific axis, PaR
can extract and enhance spatio-temporal feature representa-
tion to surpass the limitations of the isotropic nature of 3D
conv and improve performance.

SegTHOR. The effectiveness of PaR in disentangling time-
axial features and enhancing spatio-temporal representation
is similarly demonstrated in the SegTHOR dataset, with a sta-
ble increase in mIoU and Dice scores by 0.32% to 3.99% and
0.15% to 2.61% across all benchmark models. The boundary
correction effects of PaR are also apparent, with reductions
in HD95 of the RAUNet model from 14.58 to 2.99. These
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Figure 3: Qualitative validation results of performance transformations using PaR are compared across three public datasets: FLARE2021,
OIMHS, and SegTHOR, involving 3D U-Net, 3D U-Net+PaR, nnFormer, and nnFormer+PaR. Segmentation results are shown in different
colors for each category. For enhanced visual clarity, the displayed images have been cropped. Please kindly zoom in for a better view.

Method mIoU Dice HD95
3D U-Net 87.92 93.08 16.31
+PDI 88.92 93.73 10.72
+SAI 88.45 93.49 20.33
+PaR-cat 88.67 93.56 8.24
+PaR-mult 88.58 93.48 13.37
+PaR-add 89.20 93.89 2.49

Table 2. Ablation study of key components and fusion strategies
within the PaR module on the FLARE2021 dataset.

results consistently demonstrate PaR’s ability to improve seg-
mentation performance by volumetric axial disentanglement
and focused attention along the specific axis.

Experimental results across three datasets confirm that the
integration of PaR can consistently enhance performance
across CNN-based segmentation models while introducing
only a marginal computational cost. This improvement tran-
scends model architectures and dataset characteristics, indi-
cating that volumetric axial disentanglement along a specific
axis could effectively boost overall segmentation accuracy
and boundary precision. Even in state-of-the-art models, PaR
provides measurable gains, validating the robustness and ap-
plicability in various 3D medical imaging contexts.

4.3 Ablation Studies
Key components and fusion strategy. To validate the
efficacy of our proposed method across CNN-based and
Transformer-based architectures, we conducted ablation ex-
periments using 3D U-Net and UNETR as baselines on the
FLARE2021 and OIMHS datasets, as shown in Tables 2 and

Method mIoU Dice HD95
UNETR 81.52 89.05 29.15
+PDI 82.88 89.98 22.59
+SAI 81.88 89.21 13.35
+PaR-cat 82.61 89.77 16.87
+PaR-mult 82.07 89.42 27.31
+PaR-add 83.73 90.55 7.24

Table 3. Ablation study of key components and fusion strategies
within the PaR module on the OIMHS dataset.

3. The integration of either the PDI or SAI pipeline individ-
ually improved segmentation performance, with PDI captur-
ing and learning specific axial critical spatio-temporal infor-
mation and SAI applying specific axial feature disentangle-
ment to enhance feature representation. Fusion strategies of
PDI and SAI pipelines are also evaluated, including addition,
element-wise multiplication, and cat. The addition strategy
demonstrates the most obvious improvements across all met-
rics, underscoring the complementary nature of the PDI and
SAI pipelines. Overall, the integrated PaR module consis-
tently outperformed baseline models in segmentation accu-
racy and boundary precision, validating the effectiveness of
specific axial feature disentanglement.

Axial information density reduction. To better under-
stand and validate the efficacy of PaR in W-axial feature
disentanglement, we conducted ablation experiments on the
FLARE2021 dataset under different frame sampling scenar-
ios, simulating various physical spatial distances in 3D med-
ical imaging, with results shown in Table 4. The experiment
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Method mIoU Dice HD95
3D U-Net 87.92 93.08 16.31

+PaR 89.20 +1.28 93.89 +0.81 2.49 -13.82

3D U-Net(1/3) 86.27 91.76 14.52
+PaR 87.55 +1.28 92.64 +0.88 8.55 -5.97

3D U-Net(1/2) 83.25 89.30 16.28
+PaR 85.29 +2.04 90.80 +1.50 7.10 -9.18

Table 4. Ablation study of different frame sampling scenarios.

Method mIoU Dice HD95
3D U-Net 87.92 93.08 16.31

+PaR (W) 89.20 +1.28 93.89 +0.81 2.49 -13.82
+PaR (H) 88.50 +0.58 93.47 +0.39 8.16 -8.15
+PaR (D) 89.10 +1.18 93.78 +0.70 2.49 -13.82

Table 5. Ablation study on disentanglement along different axes on
the FLARE2021 dataset.

Method mIoU Dice HD95
3D U-Net 86.60 92.49 3.401

+PaR (W) 87.55 +0.95 93.08 +0.59 2.89 -0.51
+PaR (H) 86.96 +0.36 92.72 +0.23 5.12 +1.72
+PaR (D) 87.44 +0.84 93.01 +0.52 2.92 -0.48

Table 6. Ablation study on disentanglement along different axes on
the OIMHS dataset.

evaluates the model’s performance improvements with PaR
integration by deleting every second and third frame to assess
the impact of varying time-axial information density. The
findings indicate that as time-axial information is reduced, the
segmentation performance gains from PaR become more pro-
nounced. This demonstrates that baseline models tend to allo-
cate equal attention to all axes, whereas PaR effectively disen-
tangles information along the W-axis, enhancing the baseline
model’s ability to extract meaningful spatio-temporal features
in scenarios with limited axial data. These results underscore
the importance of axial disentanglement in volumetric data
when time-axial information density is insufficient.

Disentanglement along different axes. We conduct an ab-
lation study to assess the impact of integrating the PaR
module for disentangling along different axes on segmenta-
tion performance, validated on the FLARE2021 and OIMHS
datasets, with results presented in Table 5 and Table 6. The re-
sults demonstrate that disentangling along the W, H, or D axes
consistently improves the baseline model’s segmentation per-
formance, supporting the hypothesis that specific axial disen-
tanglement mitigates the inherent anisotropic limitations of
3D convs in volumetric data.

Heads impact on axial expression. We conducted ablation
experiments on the FLARE2021 dataset to evaluate the im-
pact of varying the number of multi-head self-attention heads
in the PDI pipeline, as shown in Table 7, to confirm opti-
mal hyperparameter selection. The results suggest that ap-
propriate heads should be selected based on axial information
density, aiming to optimize feature mapping across multiple
subspaces, thereby reducing computational overhead and en-
hancing feature expressiveness. Experiments with 4, 8, 16,
and 24 heads reveal that 8 heads provide the best performance

Heads mIoU Dice HD95
4 88.62 93.44 4.19
8 89.20 93.89 2.49
16 88.56 93.42 2.63
24 88.34 93.34 4.75

Table 7. Ablation study of self-attention heads in PDI.

Ks mIoU Dice HD95
3 89.20 93.89 5.06
5 88.98 93.73 10.47
7 89.20 93.89 2.49
9 89.05 93.78 5.35

13 89.06 93.77 5.28

Table 8. Ablation study on kernel sizes of SAI’s preliminary feature
extraction layer.

among all configurations.

Kernel size effects on feature extraction. An ablation
study was conducted on the kernel sizes of SAI’s preliminary
feature extraction layer on FLARE2021 to determine the op-
timal hyperparameter settings, with results presented in Ta-
ble 8. Larger kernel sizes cover a broader local area, cap-
turing more contextual information for edge region recogni-
tion. However, excessively large kernels might lead to over-
smoothing, losing essential details and texture information.
Experiments with kernel sizes of 3 and 7 show close Dice
scores, yet the HD95 metric of kernel size 3 is better than that
of kernel size 7, indicating superior boundary optimization.

5 Conclusion and Future Work
In this paper, we propose a volumetric axial disentanglement
approach to address the pronounced disparities in spatial in-
formation across different axial dimensions inherent in volu-
metric medical imaging. By designing the Post-Axial Refiner
(PaR) module, we have enabled a disentangled representation
of spatial states and time-axial features, which effectively en-
hances both the global segmentation performance and the pre-
cision of boundaries across several public datasets, including
FLARE2021, OIMHS, and SegTHOR. The experimental re-
sults underscore the critical importance of axial feature disen-
tanglement in the enhancement of volumetric medical image
segmentation, and it only introduces marginal computational
overhead. Moreover, the modular design permits adaptation
to other volumetric data via axis selection.

The significance of this work lies in the proposal of a con-
cise yet effective construct to address the unique challenge of
axial information variability in volumetric medical imaging–
a challenge that CNN-based models fail to address with their
uniform treatment of all dimensions. Looking ahead, our re-
search will focus on refining the proposed PaR module to en-
hance its efficiency and lightweight design. This continued
research is expected to lead to further enhancements in the ac-
curacy of volumetric segmentation, pushing the performance
frontier of 3D conv from a fundamental perspective, and con-
tributing to more precise diagnostic capabilities and treatment
planning.
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