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Abstract
Existing research in Stock Trend Prediction (STP)
focuses on temporal features extracted from a tem-
poral sequence of stock data with a look-back win-
dow, which frequently leads to the omission of
important periodic patterns, such as weekly and
monthly variations in stock prices. Furthermore,
these methods examine stocks individually, ignoring
the temporal variation patterns among stocks that
share higher-order relationships, like those within
the same industry. These relationships typically
provide contextual insights into market investments
influencing stock price fluctuations. To tackle these
issues, we propose a Multi-Scale Temporal Neu-
ral Network (MSTNN) framework tailored for STP.
This architecture explores the periodic fluctuation
behaviors of individual stocks through an innovative
3D convolutional neural network, alongside exam-
ining temporal variation patterns of stocks linked
to specific industries via a temporal hypergraph at-
tention mechanism. Empirical results from two
real-world benchmark datasets show that MSTNN
significantly outperforms prior state-of-the-art STP
methods. The code of our MSTNN is available at
https://github.com/sunlitsong/MSTNN.

1 Introduction
Stock Trend Prediction (STP) is important for helping in-
vestors make profitable decisions. There has been a significant
increase in attention towards STP, which aims to forecast up-
coming trends in stock prices to boost trading gains. Recently,
numerous Time-Series Data Modeling (TSDM) techniques
have emerged for STP, modeling stock data as time series.
These include methods such as autoregressive integrated mov-
ing average (ARIMA) [Ariyo et al., 2014], recurrent neural
networks (RNNs) [Lu and Lu, 2021], and transformers [Zhang
et al., 2022a], all of which have shown promising results.

∗Corresponding author

Figure 1: Dynamics of computer manufacturing industry from Jan-
uary 2014 to January 2015.

Nevertheless, current TSDM techniques often employ a
look-back window to collect sequence data, depicting the
time-series data as a linear temporal sequence with a restricted
receptive field. This limitation hinders their ability to effec-
tively discern periodic fluctuation patterns. For instance, when
the look-back window size is set to k, the TSDM method
solely focuses on the sequence data from the previous k days,
thereby disregarding the inherent weekly, monthly, or annual
patterns within the stock time-series data. (Limitation 1).

Alternative approaches to STP focus on the analysis of
the correlation data of stocks, a factor often neglected by
conventional TSDM methods. Consequently, a range of STP
techniques that employ graph neural networks have been devel-
oped, such as HIST [Xu et al., 2021] and temporal graph con-
volution (TGC) [Feng et al., 2019b], both of which incorporate
pairwise correlation modeling into STP. To enhance the mod-
eling of correlation data among stocks, hypergraph neural net-
work (HGNN) based methods, including the spatio-temporal
hypergraph convolutional network (STHGCN) [Sawhney et
al., 2020], hypergraph tri-attention network (HGTAN) [Cui et
al., 2023], and the spatial-temporal hypergraph attention net-
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Figure 2: Overview of our MSTNN architecture.

work [Sawhney et al., 2021], are employed. These approaches
leverage the inherent high-order correlations present in stocks.

While these HGNN-based techniques do generate and ag-
gregate hyperedge features, they overlook the dynamic charac-
teristics of these features, which are crucial for effective stock
market investments (Limitation 2). As an illustration, the dy-
namics of the entire Computer Manufacturing (CM) industry
are displayed within the stock market’s industry sector. This
data is crucial for investors to examine as it summarizes the
general trends of all stocks in the industry, providing insights
necessary for making profitable investment decisions, as illus-
trated in Fig. 1. Considering the CM industry’s representation
as a hyperedge within the stock market’s industry sector hy-
pergraph, with the associated stocks (companies) functioning
as nodes on this hyperedge, it is both logical and essential to
model the dynamics of the hyperedge features.

To address these challenges, we introduce an STP
framework founded on HGNN, titled Multi-Scale Convolu-
tional Neural Network with Temporal Hypergraph Attention
(MSTNN). The MSTNN model identifies repeating temporal
patterns in individual stocks, and then applies a hypergraph
learning method to merge these patterns to discern fluctua-
tions of by exploiting high-order correlations among stocks.
In addition, it expresses hyperedge features as time-varying se-
quences within the hypergraph learning model to improve STP
performance. In summary, we highlight the core contributions
of our study as follows.

• We present an innovative Multi-scale Convolutional Neu-
ral Network integrated with a Temporal Hypergraph At-
tention framework. This approach discerns each stock’s
unique internal dynamics and can identify movement
trends in industry sectors by utilizing high-order correla-
tions among stocks.

• We employ a Multi-scale 3D convolutional neural
network strategy for dynamically modeling individ-
ual stocks, by reorganizing the time-series data into
years,months, and days. In contrast to conventional
TSDM methods that focus on stock price fluctuations
within a fixed historical window, our method employs 3D
filters of differing scales to examine the weekly, monthly,
and yearly trends inherent in stock time series, thus un-
covering the fundamental patterns of these sequences
using receptive fields with varying scales.

• We introduce a Temporal Hypergraph Attention Network
(THAN), where the features of each hyperedge, accumu-
lated over multiple time steps, are considered as a form
of time-series data for subsequent analysis of their dy-
namics. The THAN allows MSTNN to integrate sector
insights from the stock market into predictions of stock
movement trends, thereby enhancing the effectiveness of
STP.

2 Preliminaries
2.1 Hypergraph
The hypergraph used in this paper indicates the high-order
relationships among multiple stocks. Specifically, the hyper-
graph can be denoted as G = (V,E,W ), where V is the set
of vertices, E is the set of hyperedges, and W ∈ R|E|×|E|

is a diagonal matrix indicating the weights assigned to each
hyperedge. We set W = I , which means that each hypergraph
is assigned with the same weight.

2.2 Task Formulation
Stock moving trend. For a specific stock s, the return ratio
at time step t is determined by rts = (cts − ct−1

s )/ct−1
s , where
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Figure 3: Illustration of Multi-scale 3D CNN module.

cs denotes the closing price of the stock s. Based on rts, the
moving trend of stock s at time step t is determined as follows:

yts =

{
1 , rts ≥ 0,

0 , rts < 0,
(1)

where 0 stands for downward moving trend and 1 stands for
non-downward moving trend.
Stock trend prediction. We follow the work [Hu et al.,
2018] to define STP as a classification problem. Generally,
the goal of STP is to map the input stock sequence data x ∈
RN×T×d into the category of the stock moving trend y, where
N is the number of stocks, T is the duration of trading days
and d is the dimension of the stock features. In our work, given
the high-order relationships (hypergraph G) and the input
stock sequence data x, the learning of y can be formulated
by ŷ = f(x;G; θ), where ŷ ∈ RN×T×1 is the predictive
category, θ are the parameters and f(·) denotes the nonlinear
mapping function.

3 Methodology
As illustrated in Fig. 2, our MSTNN is primarily composed of
two key components: the 3D multiscale convolutional neural
network (3D-MCNN) and the Temporal Hypergraph Attention
Network (THAN).

MSTNN initially applies 3D-MCNN to identify periodic
temporal trends. This method allows for the detection of
inherent weekly, monthly, and annual patterns within stock
time series data. By utilizing filters of varying dimensions,
it aids in recognizing temporal patterns across multiple time
scales. MSTNN next consolidates each stock’s periodic tem-
poral trends through THAN, which integrates hyperedge fea-
ture modeling as time sequence data into HGNN. Ultimately,
MSTNN merges the outputs of 3D-MCNN and THAN, apply-
ing a LayerNorm to harness the strengths of both components.

3.1 3D Multi-scale Convolutional Neural Network
As demonstrated in Fig. 3, this part is dedicated to recognizing
the periodic temporal patterns in stock features, including the
intrinsic weekly, monthly, and annual patterns of stock closing
prices. With the close price of stock si as a case study, our
3D-MCNN method aims to identify temporal trends via an

innovative 3D tensor Xi ∈ RY×M×D, which incorporates the
close price information over a period of T = Y × M × D
days. In particular, Y = 3 denotes the span of years, M = 12
signifies the count of months, and D = 30 indicates the days
considered per month. The closing price feature of the stock
si can be learned through

fp
i = [Conv3D(W1, Xi)||Conv3D(W2, Xi)] , (2)

where fp
i ∈ RT×2 is the learned closing price feature, || is

the vector concatenation operation, Conv3D denotes the 3D
convolution operations which produces d-dimensional vectors,
W1 and W2 denote convolutional kernels of different sizes.
Ultimately, by applying 3D-MCNN on each initial input fea-
ture, we derive the feature for all N stocks, represented as
Fp ∈ RN×T×2d, where 2d signifies the feature dimension.

3.2 Temporal Hyeprgraph Attention Network
(THAN)

In this section, we enhance HyperGAT [Bai et al., 2021] by
introducing a technique for aggregating temporal hyperedge
features. This method takes into account the temporal fluc-
tuation patterns exhibited by stocks within high-order rela-
tionships. For example, the periodic variation tendencies of
stocks belonging to the same sector. This module is composed
of three main parts: Node Aggregation, Temporal Hyperedge
Feature Learning, and Node Representation Learning through
Hyperedge Aggregation.
Node Aggergation. This section focuses on learning the
hyperedge feature using the stock features provided by 3D-
MCNN. Specifically, under each time step, at the l-th layer, we
denote the feature representations for hyperedge ej ∈ E by
elj , which can be learned by

el
j = σ

 ∑
vk∈ej

αv
jkh

l−1
k Wn

 . (3)

The hl−1
k ∈ R1×d(l−1) denotes the embedding for node vk

in hyperedge ej , h0
k denotes the stock feature produced by

3D-MCNN and σ is a nonlinearity activation function such
as LeakyReLU . We also adopt a multi-head mechanism
for THAN module (we omit this in Fig 2 for ease of under-
standing), Wn ∈ Rd(l−1)×h×dl is a learnable weight matrix
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Figure 4: The architecture of temporal hyperedge feature learning.

mapping the input node embedding into the feature spaces of
different heads, where h denotes the head number, d(l−1) and
dl are the output size of the (l − 1)-th layer, the l-th layer,
respectively. αv

jk is the attention coefficient matrix which
quantifies the importance of node vk on the hyperedge ej .
Specifically, αv

jk can be learned by:

αv
jk =

exp
(
σ([hl−1

k Wn ∥ el−1
j Wn]wv)

)∑
vt∈ej

exp
(
σ([hl−1

t Wn ∥ el−1
j Wn]wv)

) , (4)

where wv ∈ R2dl×1 denotes a learnable parameter vector,
∥ denotes the concatenation operation and σ denotes a non-
linearity function such as LeakyReLU . Finally, we obtain the
features of all m hyperedges, denoted by{e} ∈ Rm×h×T×dl ,
where T is the number of trading days.
Temporal Hyperedge Feature Learning. In this section,
we incorporate the temporal feature of hyperedges into hyper-
graph learning to capture the time-varying pattern of stocks
with the same high-order relationship with a hyperedge atten-
tion mechanism which is inspired by Transformer [Vaswani et
al., 2017]. As shown in Fig. 4, the temporal features of each
hyperedge across T days are considered as a time series, form-
ing the feature tensor e ∈ Rm×h×T×dl , which represents m
sequences of temporal hyperedges. Specifically, the temporal
hyperedge feature for hyperedge ej is obtained by

f t
j = softmax(

Q̃K̃T

√
Dn

)Ṽ , (5)

where Q̃ = Ẽt
jWQ, K̃ = Ẽt

jWK , and Ṽ = Ẽt
j .

The f t
j denotes the learned hyperedge feature of hyper-

edge j at time step t and Ẽt
j = Et

j + PE . The Et
j =

{et−W+1
j , et−W+2

j , · · · , etj} ∈ RW×h×dl denotes a newly
formed sequence of hyperedge features with a length of W .
This sequence is derived from the input sequence of temporal
hyperedge features using a look-back window of length W .
The PE ∈ RW×h×dl denotes the matrix of Periodic Position
Encoding (PPE) [Vaswani et al., 2017] for the corresponding
W hyperedge features and is set to the same under different
head feature spaces. To accommodate the periodic fluctuation
pattern of stock prices, PPE is designed to vary periodically
at intervals of W steps throughout the temporal hyperedge se-
quence. Specifically, the value at the t-th row and i-th column
of PE can be obtained with:

PE(t, i) =

{
sin(ωkt), if i = 2k,

cos(ωkt), if i = 2k + 1 ,
(6)

where ωk = 1
100002k/Dn

is the frequency of trigonometric
functions, i = 0, 1, 2, . . . , Dn

2 − 1 specifies the dimension
within a position encoding and t = 0, 1, . . . ,W − 1 refers to
the position. The range of position in position is set between
0 and W − 1, since we use periodic position encoding with
a look back window size of W . WQ ∈ RDn×Dn and WK ∈
RDn×Dn are learnable weight matrices. Finally, we obtain
the feature representations for all m hyperedges, denoted by
Fh ∈ Rm×h×T×dl .
Node Representation Learning via Hyperedge Aggregation
(HA). Under each time step, at the l-th layer, by the above
temporal hyperedge feature learning module, we can obtain
representations {f l

j |∀ej ∈ εi} for the hyperedges connecting
node vi denoted as εi = {e1, · · · , es}. At one certain time
step, NHA module aims to learn the representation of each
node (stock) vi (i.e., hi) by Eq. (7), which aggregates all the
information of hyperedges connected to vi.

hl
i = σ(

∑
ej∈εi

αe
ijf

l
j), (7)

where αe
ij represents the attention coefficient of hyperedge ej

on vertex vi. The αe
ij can be obtained by

αe
ij =

exp
(
σ([f l

j ∥ hl−1
i Wn]We)

)∑
ek∈εi

exp
(
σ([f l

k ∥ hl−1
i Wn]We)

) , (8)

in which σ is the nonlinear function such as LeakyReLU ,
and We ∈ R2Dl×1 is a weight matrix. Through the action
of HA module on f for each time step, the node (stock) rep-
resentation under different head feature space, denoted as
h ∈ RN×h×T×Dh is obtained. The final node (stock) rep-
resentation Fo ∈ RN×T×Dh is obtained by calculating the
mean of node (stock) representation across each head’s feature
space, i.e., by averaging the second dimension of h.
Finally, we compute the final stock representation r ∈
RN×T×(Dn+Dh) by:

r = σ(LayerNorm(Fp ∥ Fo)), (9)

where σ represents activation function such as LeakyReLU ,
Fp is the output of 3D-MCNN module, Fo is the result of
THAN module and ∥ represents the concatenation operation.

3.3 Stock Trend Prediction
In this section, we transform the ultimate representation of
each stock i at each time step t, represented as rti , into a
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NASDAQ NYSE

Method Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

TSDL

LSTM [Hochreiter and Schmidhuber, 1997] 0.3722 0.3464 0.3656 0.3552 0.4573 0.3622 0.3804 0.3708
SFM [Zhang et al., 2017] 0.3341 0.1113 0.3333 0.1668 0.4573 0.1524 0.3448 0.2113
DARNN [Qin et al., 2017] 0.4046 0.3705 0.3776 0.3740 0.4798 0.4141 0.3953 0.4040
Adv-LSTM [Feng et al., 2019a] 0.4219 0.4079 0.4299 0.4186 0.4735 0.4022 0.4268 0.4141
Transformer[Vaswani et al., 2017] 0.4165 0.3931 0.4003 0.3967 0.4688 0.4224 0.4157 0.4190

GNN

GCN [Chen et al., 2018] 0.3975 0.4082 0.3878 0.3976 0.4599 0.3589 0.3878 0.3976
TGC [Feng et al., 2019b] 0.3998 0.3824 0.3808 0.3816 0.4795 0.4194 0.3808 0.3816
HIST [Xu et al., 2021] 0.4203 0.3922 0.3989 0.3955 0.4924 0.4273 0.4482 0.4375
LSR-IGRU[Zhu et al., 2024] 0.4664 0.4632 0.4974 0.4797 0.5007 0.4831 0.5032 0.4929

HGNN

STHGCN [Sawhney et al., 2020] 0.4011 0.3984 0.3909 0.3946 0.4708 0.3948 0.3757 0.3847
HGTAN [Cui et al., 2023] 0.4067 0.3811 0.3886 0.3848 0.4825 0.4102 0.3984 0.4042
Sthan-sr [Sawhney et al., 2021] 0.5187 0.5202 0.5102 0.5152 0.5104 0.5084 0.5136 0.5109
ESTIMATE [Huynh et al., 2023] 0.5102 0.5162 0.5812 0.5462 0.5058 0.5111 0.6303 0.5641
MSTNN(ours) 0.5235 0.5211 0.7430 0.6126 0.5197 0.5172 0.7945 0.6265

Table 1: The predictive performance of all competing methods on NASDAQ and NYSE datasets.

continuous value ranging from 0 to 1 by:

ŷti = sigmoid(rtiw + b) (10)

where ŷti is the predicted up moving trend probability of the
i-th stock at time step t, w ∈ R(Dl+Dh)×1 is the learnable
weight vector and b is the bias. The parameters of our MSTNN
are optimized by the following binary cross-entropy loss:

L = − 1

N

1

T

N∑
i=1

T∑
t=1

yti ·log(ŷti)+(1−yti) ·log(1− ŷti), (11)

where yti is the groundtruth for the moving trend of stock i at
time step t, N is the number of stocks and T is the number of
trading days.

4 Experiments
4.1 Datasets
To evaluate the performance of MSTNN, we conduct experi-
ments using two real-world datasets from the American stock
markets, NASDAQ [Feng et al., 2019c] and NYSE [Feng et al.,
2019c]. Both datasets include stock sequence data over 1245
trading days, spanning from 01/02/2013 to 12/08/2017, i.e.,
the total length of the stock sequence data is 1245. The ini-
tial basic stock feature on each trading day is composed of
normalized closing price, 5, 10, 20 and 30 day moving aver-
ages of closing price. We use 747 days (from 01/02/2013 to
12/17/2015) of the stock sequence data for training, 249 days
((from 12/18/2015 to 12/12/2016)) for validation and 249 days
((from 12/13/2016 to 12/08/2017)) for evaluation. In addition,
we follow [Sawhney et al., 2021] to obtain the hypergraph data.
Considering the importance of industry sector information in
the real market, we collect the hyperedges in the hypergraphs
based on industry information, where only a group of stocks
belonging to the same industry contributes a hyperedge to the
hypergraph. For NASDAQ, the hypergraph comprises 1026
stock nodes and 113 hyperedges, while for NYSE, it includes
1737 stock nodes and 130 hyperedges.

4.2 Experimental Setup
Training setups. MSTNN is implemented using pytorch and
optimized by the Adam optimizer with an optimized learning
rate of 5e−3. Additionally, L2 regularization is employed
with a lambda value of 1e−2 and a dropout rate of 0.2, training
MSTNN for up to 100 epochs. Xavier is applied to initialize
all the learnable weights. In the THAN module, we set the
number of attention heads to 8 and the size of look back
window to 20. In this research, all experiments are conducted
using a NVIDIA A40 GPU.

Baselines and Metrics. Our proposed method is evaluated
against a range of stock trend prediction techniques, catego-
rized into three primary groups: i) Methods based on Time
Series Deep Learning (TSDL), such as LSTM [Hochreiter and
Schmidhuber, 1997], SFM [Zhang et al., 2017], DARNN
[Qin et al., 2017], Adv-LSTM [Feng et al., 2019a] and
Transformer[Vaswani et al., 2017], which focus solely on
deriving stock representations from sequential stock data. ii)
Methods based on Graph Neural Network (GNN), such as
GCN [Chen et al., 2018], TGC [Feng et al., 2019b], HIST
[Xu et al., 2021]and LSR-IGRU[Zhu et al., 2024], which in-
tegrate temporal features of individual stocks based on their
pairwise relationships. iii) Methods based on HyperGraph
Neural Networks (HGNN), specifically STHGCN [Sawhney
et al., 2020], HGTAN [Cui et al., 2023], Sthan-sr [Sawhney
et al., 2021], and ESTIMATE [Huynh et al., 2023], which
incorporate high-order correlation information into the aggre-
gation of temporal features for stocks. The effectiveness of
STP methods is assessed using standard metrics including
Accuracy, Recall, Precision and F1-score.

4.3 Predictive Performance
As indicated in Table1, MSTNN performs the best in all
metrics evaluated on the NASDAQ and NYSE datasets. In
particular, MSTNN outperforms previous top-performing ap-
proaches, such as the HGNN-based method (ESTIMATE) and
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NASDAQ NYSE

Model Component Ablation Component Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

MSTNN(full model) - 0.5235 0.5211 0.7430 0.6126 0.5197 0.5172 0.7945 0.6265

3D-CNN
MSTNN w/o 3D-CNN 0.4917 0.4976 0.2649 0.3458 0.4897 0.4959 0.1974 0.2824
MSTNN w/o Filter A 0.5227 0.5216 0.7060 0.6000 0.5139 0.5145 0.7845 0.6214
MSTNN w/o Filter B 0.5167 0.5173 0.7001 0.5949 0.5185 0.5177 0.7798 0.6223

THAN

MSTNN w/o THAN 0.5016 0.5078 0.5488 0.5275 0.5006 0.5083 0.5554 0.5308
MSTNN w/o THFL 0.5050 0.5094 0.6436 0.5687 0.5085 0.5145 0.5969 0.5527
MSTNN w/o PPE 0.5199 0.5208 0.6624 0.5831 0.5136 0.5163 0.6437 0.5730
MSTNN with APE 0.5200 0.5197 0.6998 0.5965 0.5145 0.5139 0.7863 0.6216

Table 2: The comparison results of ablation study on NASDAQ dataset and NYSE dataset.

the TSDL-based method (Adv-LSTM), achieving significant
enhancements in the F1-scores of 6.64% and 19.4% on the
NASDAQ dataset, respectively. The exceptional effective-
ness of our MSTNN primarily stems from two key factors:
1) MSTNN takes into account the highe-order relationships
between stocks, rather than just the price sequence relation-
ships of individual stocks at different time steps as the TSDL
methods do. This enables MSTNN to incorporate industry
information into its stock trend predictions, a crucial aspect in
making investment decisions. 2) MSTNN enhances the STP
results by leveraging the temporal patterns of stock hyperedges
that previous GNN or HGNN based methods have neglected,
thus aiding in the learning of periodic price movement trends.

4.4 Comparative Analysis of Profitability Against
Baseline Models

To further evaluate the effectiveness of our MSTNN, we con-
duct a simulation of investments using the NASDAQ dataset’s
test set (from 12/13/2016 to 12/08/2017). In line with [Feng et
al., 2019c], we apply a daily buy-hold-sell approach in which
the investor buys the top-k stocks by evaluating their predicted
return ratios using STP methods on trading day t, and then
sells these stocks on the next trading day t+ 1.

To measure the profitability of each STP method, on each
trading day t, we calculate the Cumulative Investment Re-
turn Ratio (CIRR) by CIRRt =

∑
i∈St−1(cti − ct−1

i )/ct−1
i +

CIRRt−1, where St−1 denotes the top-k stocks selected by
the STP methods, ct−1

i and cti denote the closing price on trad-
ing day t− 1 and trading day t, respectively. CIRRt−1 is the
cumulative return ratio on trading day t− 1. Fig.5a shows the
variation in cumulative return ratios for various STP methods,
starting with an initial CIRR of 0 and selecting the top-10
stocks. As shown in Fig.5a, subsequent to March 2017, our
MSTNN approach consistently stands out as a leading con-
tender in cumulative return ratios throughout the investment
simulation. As illustrated in Fig. 5b, at the last trading date,
MSTNN secures the highest cumulative investment return at
37.12%, outperforming the runner-up, Sthan-sr, by 7.77%.
This highlights MSTNN’s strong profitability over the long
term.

4.5 Ablation Study
In this section, we evaluate how various MSTNN variants
perform on the NASDAQ and NYSE datasets to assess the
effectiveness of different components. Specifically, 1) MSTNN
w/o 3D-CNN: It is obtained by leaving out the 3D-MCNN
module. 2) MSTNN w/o Filter A: It is created by excluding
the convolutional filter 3× 3× 3 from the 3D-MCNN mod-
ule. 3) MSTNN w/o Filter B: it is obtained by removing the
convolutional filter 5× 5× 3 from the 3D-MCNN module. 4)
MSTNN w/o THAN : It is obtained by removing the tempo-
ral hypergraph learning module, namely THAN module. 5)
MSTNN w/o THFL: it is achieved by eliminating Temporal Hy-
peredge Feature Learning (THFL) from the THAN module. 6)
MSTNN w/o PPE: it is achieved by removing the Periodic Po-
sition Encoding (PPE) from the THFL mechanism. 7) MSTNN
with APE: it is achieved by substituting the PPE in the HTFA
mechanism with Absolute Position Encoding (APE). That is,
a unique positional encoding is used for the features of each
hyperedge at each time step.

The experimental results of different variants of MSTNN
on both datasets are presented in Table 2. Compared to the full
model, the MSTNN w/o THAN variant shows a notable decline
of 8.51% and 9.57% in F1-score on both datasets, respectively.
This highlights the importance of exploring the trends of peri-
odic variation of the stock price within an industry through the
THAN module. The variants MSTNN w/o Filter A and MSTNN
w/o Filter B show decreased performance at varying levels
compared to the complete model, highlighting the significance
of employing diverse filter sizes in the MSCNN module.

The performance of MSTNN w/o 3D-CNN shows a marked
decline in the F1 score, dropping by 26.68% on the NASDAQ
dataset and 34.41% on the NYSE dataset, highlighting the es-
sential importance of the 3D-MCNN module in enhancing the
STP results. The MSTNN w/o THFL variant, which omits the
representation of hyperedge features as temporal sequences,
shows a notable reduction in both recall and F1 scores across
the data sets. This illustrates the efficacy of the proposed
THFL, which captures the temporal variation patterns among
stocks through high-order relationships, including industry-
specific stock price trends.

Examining the experimental results of the variations
MSTNN w/o PPE and MSTNN with APE reveals the essential
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(a) The curves of cumulative return ratio over time. (b) Cumulative return ratio on the last trading date

Figure 5: Cumulative return ratio of competing methods.

function of periodic position encoding in the THFL module,
as evidenced by the significant drops in performance. While
the MSTNN with APE variant markedly outperforms MSTNN
w/o PPE in terms of F1-score, it nonetheless exhibits lower
performance than our full model. This is because MSTNN with
APE uses conventional position encoding, which focuses only
on the overall order of the input temporal sequence and fails
to accurately capture the changes within periodic intervals.

5 Related Work
Time-Series Data Modeling (TSDM) Methods. In recent
years, many powerful TSDM STP methods, for instance,
LSTM [Hochreiter and Schmidhuber, 1997] based methods
such as SFM [Zhang et al., 2017], DARNN [Qin et al., 2017]
and Adv-LSTM [Feng et al., 2019a] as well as Transformer
[Vaswani et al., 2017] based methods, including HMG-TF
[Ding et al., 2021] and TEANet [Zhang et al., 2022b], were
proposed and could provide encouraging results. However,
these methods make predictions based solely on a linear tem-
poral sequence with a constrained receptive field, which over-
looks the rich periodic patterns in the time series data of the
stock. Furthermore, these techniques consider each stock in
isolation and ignore the intricate interconnections between
them, which hampers the achievement of superior STP results.
In contrast, our model MSTNN is capable of effectively cap-
turing the periodic patterns in the time series data of stocks
using 3D convolution and takes into account the inter-stock
correlation information through hypergraph learning.

Graph Learning (GL) Based Methods. Generally, this
group of methods incorporate TSDM methods with graph
learning methods, which considers the correlation informa-
tion among stocks to improve STP performance. GL based
methods utilizing graph neural networks, such as TGC [Feng
et al., 2019b], Hats [Kim et al., 2019] and HIST [Xu et al.,
2021], improve STP results by the pairwise correlations be-
tween stocks. However, the relations between stocks are much
more intricate than mere pairwise relations in practical sce-
narios and simplify such complex correlation information into
pairwise formats could result in the loss of significant in-
formation, thus diminishing effectiveness [Cui et al., 2023;

Song et al., 2024]. In order to model the intricate correlation
information among stocks, GL based methods using hyper-
graph neural networks, such as STHGCN [Sawhney et al.,
2020], Sthan-sr [Sawhney et al., 2021], ESTIMATE [Huynh
et al., 2023] and HGTAN [Cui et al., 2023], which utilize the
high-order correlation information among stocks, have been
proposed. However, these methods discussed above ignore
temporal information embedded in the hyperedge features,
while our approach takes into account the sequences of hy-
peredge features under various time steps as time series data,
effectively utilizing the temporal patterns of hyperedges to
improve hypergraph learning on spatio-temporal datasets.

6 Conclusions and Discussions
In this work, we present a novel STP framework, namely
MSTNN, which takes into account both the periodic variation
patterns of each stock and the fluctuation trend of the corre-
sponding industry. Specifically, given the stock sequence data,
MSTNN first employs a new 3D Multi-scale Convolutional
Neural Network (3D-MCNN) to learn periodic fluctuation pat-
terns of individual stocks on different temporal scales. Then,
MSTNN learns the time-varying trend of stock prices of one
industry by a temporal hypergraph attention network, where
each industry is represented by a hyperedge and the time se-
ries data of each industry is segmented into multiple temporal
hyperedge sequence over periodic interval for capturing the
industry trend. Our proposed method achieves the best STP
results on all experimental datasets, and extensive ablation
studies demonstrate the effectiveness of each component in
our MSTNN.

Limitations. The proposed 3D-MCNN module is used to
identify the periodic fluctuation pattern of each stock. How-
ever, this module requires gathering extensive stock price data
over prolonged periods, resulting in a three-dimensional tensor
structured by years,months, and days. Thus, 3D-MCNN
may not be effective in dealing with brief spans of stock price
data, thus restricting its practical use. In future work, we
would like to address the above issue by exploring more adapt-
able techniques for detecting periodic fluctuation patterns that
do not necessitate extensive data collection.
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