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Abstract

Federated learning is vulnerable to backdoor at-
tacks due to its distributed nature and the in-
ability to access local datasets. Meanwhile, the
heterogeneity of distributed data further compli-
cates the detection of such attacks. However, ex-
isting defense strategies often overlook the pres-
ence of non-stationary objectives and noisy gra-
dients across multiple clients, making it chal-
lenging to accurately and efficiently identify ma-
licious participants. To address these chal-
lenges, we propose a backdoor defense method
for Federated Learning with Adam optimizer and
multi-granularity Clustering (FLAC), incorporat-
ing both coarse-grained and fine-grained clustering
mechanisms to neutralize backdoor attacks. First,
the Adam optimizer accelerates the learning pro-
cess by mitigating the impact of noisy gradients
and addressing the non-stationary objectives posed
by different clients under attack. Second, a multi-
granularity clustering process is considered to dif-
ferentiate between benign clients and potential at-
tackers. This is followed by an adaptive clipping
strategy to further alleviate the influence of mali-
cious attackers. Our theoretical analysis demon-
strates the consistent convergence of Adam in a
federated backdoor defense environment. Exten-
sive experimental results validate the effectiveness
of our defense approach.

1 Introduction

Federated learning (FL) [McMahan et al., 2017] is a dis-
tributed, privacy-preserving model that involves a trusted
server and multiple participating clients, enabling collabo-
rative training of a public model without compromising the
clients’ private data. Its compelling advantages have led to the
adoption of FL in various privacy-sensitive domains, includ-
ing image recognition [Chen ef al., 2023], intelligent health-
care [Nguyen et al., 2022], and smart finance [Li ez al., 2022].

However, in FL systems, the diversity and complexity of
participants do not guarantee that every participant is honest
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Figure 1: Illustration of the challenges associated with Non-IID data
distribution among clients in FL. Heatmaps depict the distribution
of 10 classes across 10 clients in the MelbournePedestrian dataset
(left) and show the loss distribution over 100 training rounds for the
FL process using the given Non-IID data partitioning with the SGD

optimizer (mid) and the Adam optimizer (right), respectively.

and reliable. The decentralized nature of FL makes it par-
ticularly vulnerable to attacks, especially federated backdoor
attacks (FBAs) [Gu et al., 2024], in which adversaries exploit
the heterogeneity of training data to insert triggers into the
raw data of malicious clients. These backdoors can be easily
embedded into the shared public model, creating an urgent
need for robust defense algorithms to enhance system relia-
bility [Wang et al., 2020al.

Most research on backdoor defenses in FL has been pri-
marily focused on server-side strategies [Rodriguez-Barroso
et al., 2023]. In these approaches, the server evaluates
each client model, excluding any anomalies or selecting only
trusted clients to participate in the aggregation process [Sat-
tler et al., 2020]. Many defense methods operate under the
assumption of independent and identically distributed (IID)
client data, relying on mean or median operations to construct
global models [Yin er al., 2018]. However, these methods
lose their effectiveness when faced with Non-IID data, as il-
lustrated in Figure 1 (lef?).

Although recent clustering methods [Wang et al., 2023] en-
hance the efficacy of defenses, they struggle to address the
non-stationary characteristics of client models. As demon-
strated in Figure 1 (mid), in the FL attack environment, the
objectives of each client are non-stationary, and their gra-
dients exhibit noise across different FL iteration rounds. If
the optimization method used, such as the commonly used
stochastic gradient descent (SGD) [Wang et al., 2023], cannot
effectively tackle these challenges, the robustness and effi-
ciency of backdoor defense will be significantly undermined.

To effectively identify and eliminate suspected attacking
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clients in the FL process, we propose a backdoor defense
method, FLAC, which core idea is to combine coarse-grained
and fine-grained clustering methods to identify and remove
malicious models in a Non-IID setting. For the coarse-
grained approach, we employ a minimum spanning tree
(MST) to differentiate between benign clients and potential
attackers. For fine-grained clustering, we use a density-based
strategy that computes distances using weighted local model
parameters and the direction of their updates. To address the
effects of nonstationary objectives and noisy gradients from
clients, we leverage the Adam optimizer [Kingma, 2014] for
federated model optimization, providing proof of its consis-
tent convergence under FL conditions. As indicated in Figure
1 (right), the loss distributions between different clients us-
ing Adam optimizer are more stable compared to those using
SGD. The lighter blue colours in the subfigure also suggest
that Adam converges more quickly than SGD. The main con-
tributions of this paper can be summarized as follows:

* To the best of our knowledge, we are the first to present
the theoretical convergence of the Adam optimizer in the
context of attack and defense within FL.

* We propose a multi-granularity clustering that effec-
tively isolates attackers, ensuring robust performance in
FL with malicious participants and Non-IID data.

e We evaluate the performance of FLAC on both time
series and image datasets, demonstrating that FLAC is
highly effective in mitigating backdoor attacks.

2 Related Work

2.1 Backdoor Attack

FL attacks can be categorized into data poisoning and model
poisoning based on the attacker’s targets [Gu and Bai, 2023].
Data Poisoning. Biggio et al. [Biggio et al., 2012] was the
first to introduce data poisoning attacks in traditional machine
learning. Sun et al. [Sun ef al., 2019] examined the im-
pact of backdoor attacks on federated systems’ performance,
employing simple label flipping to create adversarial data
[Tolpegin et al., 2020; Wang et al., 2020al. Zhang et al.
[Zhang et al., 2019; Zhang et al., 2020] utilized adversarial
networks to facilitate data poisoning attacks. While the afore-
mentioned data poisoning models primarily focus on images,
Jiang et al. [Jiang er al., 2023] proposed a generative ap-
proach for time series backdoor attacks. Chen et al. [Chen
et al., 2024] combined time series shapelets with differential
evolution to introduce local perturbations in time series data.
Additionally, Kasyap and Tripathy [Kasyap and Tripathy,
2024] generate poisoned samples using hyper-dimensional
computing to induce misclassification.

Model Poisoning. In the domain of model poisoning, Bag-
dasaryan et al. [Bagdasaryan er al., 2020] introduced a
method that undermines the performance of the global model
by submitting malicious updates to the server. Building on
this foundation, Bhagoji et al. [Bhagoji et al., 2019] devel-
oped a strategy that enhances the attack’s efficacy through
alternating optimization of stealth and antitargeting. Con-
versely, Wang et al. [Wang et al., 2020a] executed a success-
ful black-box attack on federated image classification, assum-

ing the attacker has access to both the model’s parameters
and its structure. To improve attack effectiveness, Li et al.
[Li er al., 2023a] proposed an adaptive, scalable, multi-layer
FL attack model capable of launching covert model poison-
ing attacks under black-box conditions. Additionally, some
strategies enhance backdoor attacks by distributing the back-
door triggers. This involves dividing the original backdoor
triggers into smaller segments and assigning these new trig-
gers to different attackers, allowing each attacker to utilize
a distinct small trigger for the backdoor attack [Lyu et al.,
2023]. Moreover, implementations of backdoor attacks have
been explored using reinforcement learning and adversarial
training techniques [Li ef al., 2023b].

2.2 Defense Method

Federated defense methods can be categorized into three ma-
jor types: server-side, client-side, and communication chan-
nel defenses [Rodriguez-Barroso et al., 2023].

In server-side defenses, a common approach is to eliminate
anomalous client-side updates by employing anomaly detec-
tion techniques to identify and exclude suspicious model dis-
tributions from aggregation. For instance, Sattler et al. [Sat-
tler et al., 2020] utilize cosine distance to detect potential at-
tack models, while Azulay et al. [Azulay et al., 2020] em-
ploy leave-out methods for the same purpose. Additionally,
robust aggregation methods have been developed to statisti-
cally select estimates that are more stable than anomalies or
extreme values, thereby enhancing the reliability of global
models [Blanchard et al., 2017]. Recent research [Wang et
al., 2023][Nguyen et al., 2021][Chen et al., 2023] has also in-
troduced clustering-based frameworks and dynamic clipping
strategies to further improve defense effectiveness.

Client-side defenses configure algorithms locally, mak-
ing them robust as they ensure clients are benign and pro-
vide individual protection for each participant [Portnoy et
al., 2022][Cao et al., 2021]. In contrast to these strategies,
communication channel-based defenses focus on safeguard-
ing user privacy. These approaches enable multiple partici-
pants to collaboratively train a global model while protecting
the exchange of model parameters and gradient updates from
unauthorized access and eavesdropping [Gu er al., 2024].

Despite their advantages, existing approaches fail to ac-
count for the non-stationary objectives of client models in the
FBA setting. To address this issue, we introduce the Adam
stochastic optimization method and demonstrate its theoreti-
cal convergence properties within the FL framework.

3 Preliminaries

The goal of FL is to minimize the average loss function £(w)
of each participant’s local model, defined as

N N |Di |
. 1 1 1 P
min £ (w) = - > L (w):N > D > UXT ylsw),
=1 i=1 1
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where N denotes the number of participants, w represents the
global model parameters, and D; indicates the private data of
the i-th participant, such that D = D; U ... U Dy. The pair
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(X7, y7) represents the j-th instance of the i-th client with

label yf ,and £;(w) is the loss function of the i-th participant.
In the ¢-th training round of FL, each participant receives
a model wz from the server, trains a local model using their

data, and returns the updated model w!™! to the server for

aggregation into a new global model wé“. This updated
model is then redistributed to participants for the next train-
ing round, continuing until convergence is achieved. Various
aggregation strategies have been proposed for FL [Wang et
al., 2020b]. We employ FedAvg [McMahan et al., 2017] to
compute the average update value of the participating client
set P for simplicity and efficiency.

D
P
icP Zj:l |Dj|

Federated Backdoor Attack. FBA aims to poison the lo-
cal data distribution X or manipulate model parameters in
a way that adversely affects both benign models and the
global model. To maintain stealthiness and robustness, FBA
must balance the trade-off between the accuracy of each local
model and the attack’s success rate, formulated as

witt = w; +

g (witt —w?). 2)

? g9

o~ Dl
wj, = argmin Z ————Li (wy)
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Here, C}, denotes the set of benign clients, and C), the mali-

cious clients. The target 7 corresponds to the desired outcome

of the poisoned or original data during training, and P(-) is

the inference function used to evaluate the global model.

4 Method

As shown in Figure 2, FLAC’s architecture consists of three
primary parts: similarity calculation, multi-granularity clus-
tering, and adaptive clipping. Additionally, the framework’s
convergence properties and computational overhead (time
and memory consumption) are also analyzed.

4.1 Similarity Calculation

In FL, especially in Non-IID settings, client gradient updates
often exhibit significant variations in magnitude. Relying
solely on traditional distance metrics, such as Mahalanobis
or Euclidean distance, may fail to capture the crucial infor-
mation about the alignment of gradient directions. To address
this, we propose the use of the cosine distance, which simul-
taneously considers both the magnitude and direction of up-
dates. By comparing the parameter updates w and their cor-
responding direction vectors v, this dual approach enables a
more comprehensive assessment of horizontal parameter dif-
ferences and vertical gradient directions.

In the model parameter weighing strategy, the parameters
of the initial layers in the local model substantially influence
feature extraction, whereas the output layer plays a pivotal
role in determining classification performance. Given that at-
tackers aim to manipulate classification outcomes, when con-
catenating model parameters w; into a vector w}, the output

layer’s weights should be assigned a higher value compared
to other parameters (e.g., 1.5 times).

Attackers share backdoor objectives leading to similar gra-
dients, while honest clients optimize for local performance,
creating directional differences. We track model update di-
rections by measuring parameter changes across consecutive
rounds to identify malicious behavior.

The sum of the similarity between the weighted model pa-
rameters and the update directions is used to compute the dis-
tance matrix between client models. This is given by

H; j = a(l = cos(wj, w))) + (1 = a)(1 = cos(vi,v5)), (4)

where w) represents the weighted vector of local model pa-
rameters for the ¢-th client, and v; = wf — wﬁ_?’ denotes
the update direction for the ¢-th client. The coefficient « lies
within the interval (0, 1). This computation ensures that the
elements of the matrix H € RP*P lie between 0 and 2, with
smaller cosine distances indicating higher similarity.

4.2 Multi-Granularity Clustering

To effectively identify and eliminate suspected malicious
clients in Non-IID scenarios, we employ both coarse-grained
and fine-grained clustering methods to detect and remove
compromised models. Traditional density-based clustering
algorithms tend to fail when the proportion of attackers is
high; thus, we introduce the MST method as a coarse-grained
approach. This method identifies the edge with the highest
anomalous similarity value, thereby locating regions with po-
tentially compromised models. For the fine-grained cluster-
ing, DBSCAN [Schubert er al., 2017] is employed, since the
similarity distribution among clients is uneven and it can ef-
fectively identify boundaries in irregular cluster formations.

During the coarse-grained clustering process, Kruskal’s al-
gorithm [Kruskal, 1956] is employed to compute the MST,
from which the largest edge is identified to partition the tree
into two subtrees, resulting in two clusters, ¢; and co. Ac-
cording to the assumption in previous work [Wang er al.,
2023], the similarity among benign clients is lower than that
among attackers. This occurs because attackers typically
share a common objective, resulting in a higher degree of
similarity between their models, which places them closer in
terms of distance. Consequently, we derive the relationship
Hbenign, poison > Hbenign 1, benign 2 > Hpoisonl,poison 2- In con-
trast, the intra-cluster distance variation is significant, and the
cluster with tighter intra-cluster distances is flagged as poten-
tially containing attackers. For instance, if j1., < fic,, then
clients in cluster c; are likely to be identified as attackers.

For fine-grained clustering, the DBSCAN algorithm is em-
ployed, allowing nodes to self-organize into clusters while
accommodating outliers. The clustering threshold is set at
the 60th percentile of the similarity matrix H, and the result-
ing clusters are analyzed further. To handle cases where no
attackers are present, the algorithm checks whether all partic-
ipants cluster into a single group; if they do, it is inferred that
no attackers are present. Otherwise, the participant with the
highest variance within the cluster (e.g., c3) is identified as an
attacker. Importantly, if the identified attackers exceed 50%
of the total clients, the clustering process is bypassed, as such
scenarios are unrealistic.
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Figure 2: Overview of the FLAC algorithm.

Given that FBA does not manifest obvious anomalies in
normal input data, it is both covert and poses a significant
threat. Therefore, the combination of coarse- and fine-grained
methods (i.e., Cp, = c1 U c3, Cy, = [P] - C}) is essential for
ensuring robust detection and removal of malicious clients.

4.3 Adaptive Clipping

Some attackers may evade detection after the clustering step
designed to eliminate suspicious clients. We employ adap-
tive clipping to mitigate the influence of remaining attackers
on the global model. Previous works [Nguyen et al., 2021;
Wang et al., 2023] have introduced clipping strategies, but
these approaches often rely on fixed or heuristically deter-
mined thresholds. Selecting an appropriate clipping threshold
remains a significant challenge.

During model training, the magnitude of updates from be-
nign clients tends to decrease over time, due to constraints
imposed by the optimization function [Nguyen et al., 2021].
Unlike prior approaches, our method eliminates the major-
ity of suspicious clients during the clustering stage, leaving
only a small number of malicious clients to be handled by
the clipping process. Building on these insights, we propose
a parameter statistics-based adaptive clipping strategy within
our FLAC method. The mean (w, = % P, w;) and vari-

ance (W, = 11) P, (w; —wy,)?) of model parameters from

clients in the benign cluster are first calculated. Then the
sum of w,, and 3,/w, forms the potential intermediate model
Wmid = Wy + 3\/11)70

Finally, the Lo-norm of wy;q is used as the clipping thresh-
old. During aggregation, the clipping strategy from Eq. 5 is
applied to mitigate outlier impacts:

z+1 |C 5 Zw -min( H tH) 5)

Here, p; = ||wk 4]l is the clipping threshold for the ¢-th round.

4.4 Time and Memory Consumption Analysis

The time complexity of the training of each client is O(|D| -
Rirain - Nparam), Where Npgram represents the number of pa-
rameters in the model, Ry, the training rounds. For our

server-side defense FLAC, its time complexity is O(N?
Nparam). Since |D| - Rirgin > N 2 in our setting, the com-
putational time of FLAC is negligible. A detailed analysis of
the time complexities can be found in Appendix C.

Regarding memory consumption, while Adam theoreti-
cally requires tripled memory compared to SGD due to stor-
ing two additional values per parameter [Shazeer and Stern,
2018], our empirical measurements show that the actual over-
head ranges from 1.01x to 1.68x depending on model archi-
tecture, as shown in Appendix A2, which becomes negligible
as communication bandwidth and computational costs domi-
nate resource considerations by orders of magnitude.

4.5 Convergence Analysis

In our defense, each selected client employs the Adam opti-
mizer for model updates, as described in Eq. 6:

t
t my t—i t
Wy —N—,mt = (1 — kK k1 VLi(wg),
e = (=) SR VA )
t .
i = (1 — Kka)diag( K;_ZV,CZ'(U)Z)2),

=1

t+1
witt =

(0)
where 7 is the learning rate, m; represents the biased first
moment estimate, and ¢, is the biased second raw moment
estimate. The parameters «; and ko are the coefficients used
for updating these moment estimates. Compared to the con-
vergence analysis of SGD in FL, and following the conclu-
sions of [Reddi er al., 2019], the key challenge for Adam lies
in its denominator, which represents the biased second raw
moment estimate. Establishing a lower bound for this term
is critical. To address this, we adopt the proof concepts from
[Chen et al., 2023], making several necessary assumptions.
Theorem 1 outlines the resulting convergence analysis.

Assumption 1: For the expected loss function £(w) and
any possible model parameter w, w, L(w) is said to be -
smooth if it satisfies

IVL(w) = VL)|| < Bl|w — ], ()

where || - || denotes the Ly-norm.
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Assumption 2: For all w, let zf be sampled uniformly at
random from the local data D; of the i-th client, assuming that
the variance of the stochastic gradient V£, (w; z]) in each
client has an upper bound B2, i.e., it satisfies

; 2
E||VLi(w;2]) — VL;(w)||” < B2 ®)

Assumption 3: In FL, both malicious and benign clients
optimize their respective objectives independently. There-
fore, the expectation-squared paradigm of the stochastic gra-

dient is uniformly bounded. For all w, there exists an upper
bound G on the gradient V.L;(w).

E||VL;(w)|]* < G2 ©)

Assumption 4: For all w, it is assumed that the diagonal
elements of the squared stochastic gradient V.£;(w) in each
client have a uniform lower bound, i.e., they satisfy the fol-
lowing Eq.10 .

diag(VL;(w)?) > I'?. (10)

Lemma 1: For Vi, t, p! = min{1, IIAth} where ¢ € [py]
denotes the participant indexes in the aggregation rounds,
and ¢ € [T] denotes the rounds. After clustering and re-
moving suspicious models such that p; > p/2, and as-
suming the clipping threshold p; is greater than the small-
est local model paradigm, i.e., pr > min{||Aw!|||} and
1 — ¢/pr < Pricpp,(||Awl|| < p;) < 1. Then we have
1 — ¢¢/pe < Eicpp, i < 1, where ¢, represents the number
of attackers that evade the defense method at round ¢.

Theorem 1: According to the above Assumptions 1-4. af-
ter training 7" rounds, FLAC can converge to the global opti-
mum w. Therefore, the convergence described by Eq.11 can

be obtaiqned.

ZEHVL
8°B*M? 44+ 16n° M2 —16nM  32Mn°B3d
L8 ’ n + 169 - M ;73

where ) = 23:1 pi, M = (1—kY)/y/1— KLl and ® =
Z;T:l ¢+. The proof procedure of Lemma 1 and Theorem 1
are in Appendix A.
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5 Experiments

In this section, we begin by detailing the experimental setup
and demonstrate the effectiveness of our proposed FLAC
method! by comparing it with classical defense approaches
under various scenarios. Additionally, we assess the contri-
bution of each individual module within our framework and
provide an in-depth analysis of the method’s performance
through case studies.

!The source code for FLAC is available at https:/github.com/
catb62/FLAC

5.1 Experimental Setup

We conduct our experiments on both time series and image
datasets within a simulated FL environment, implemented in
PyTorch, with computations performed using CUDA 11.2.

We set 300 aggregation rounds as the convergence bench-

mark. As shown in Fig. 3, under non-attacking scenarios,
all defense algorithms reach convergence by this point, en-
suring a fair and consistent evaluation of their performance.
Defense mechanisms are applied at each round to simulate re-
alistic federated learning scenarios. Furthermore, to simulate
Non-IID data distributions, the training data for each client
was partitioned using a Dirichlet distribution, which allows
for varying levels of data heterogeneity across clients.
Datasets. For the time series datasets, we adopt the settings
from FLATS [Chen et al., 2024]. For image datasets, we
evaluate our method on three common benchmark datasets:
CIFAR-10 [Krizhevsky et al., 2009], MNIST [LeCun et al.,
1998], and FMNIST [Xiao et al., 2017]. Additionally, we em-
ploy FCN [Yang et al., 2022] as the training model for time
series datasets, while LeNet [LeCun ef al., 1998] is utilized
for image datasets. More dataset information can be found in
Appendix D.
Baselines. We evaluate the effectiveness of our defense
method by comparing it against five state-of-the-art defense
methods: NDC [Sun et al., 20191, DP [Geyer et al., 20171,
Krum [Blanchard et al., 2017], FoolsGold [Fung et al., 2018],
and RFA [Pillutla et al., 2022].

For the FBA methods, we utilize FLATS [Chen et al.,
2024] and its variants for time series datasets. For image
datasets, we assess the performance of various defense meth-
ods under attacks from LF [Jebreel et al., 2023], MP [Bag-
dasaryan et al., 20201, and 3DFed [Li et al., 2023al.
Evaluation Metric. To assess the performance of our method
and the baseline defenses, we measure the classification ac-
curacy (ACC) of the aggregated model on the test dataset.
Compared to the original method without defense (or under
attack), the smaller the ACC drop, the more effective the de-
fense method.

ACC(Dsest, ) =

1
|Dtcst | Z

X;E€Dtest

5.2 [Experimental Results

In this section, we provide detailed experimental evidence to
support the effectiveness of our defense method, FLAC.

No Attacker Case. Robust federated algorithms must main-
tain effectiveness without attackers. Figure 3 compares the
performance of 6 defense algorithms on the MelbournePedes-
trian and ElectricDevices datasets. Both FLAC and RFA
achieve ACC values comparable to FedAvg, with FLAC
showing a more stable performance curve. In contrast, DP,
NDC, and FoolsGold yield slightly lower ACC, while Krum’s
performance is significantly reduced due to its exclusion of
many clients to mitigate attacker influence. These results in-
dicate that FLAC maintains global model convergence, align-
ing with the convergence analysis.

Time Series Attack Table 1 presents a comparison of
FLAC’s performance against other defense baselines when
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Figure 3: Performance of defense algorithms without attackers on
MelbournePedestrian dataset (left) and ElectricDevices (right)

the federated system is under attack by FLATS. The symbol
“l” denotes a drop in ACC after applying defense mecha-
nisms. As shown in bold in Table 1, FLAC achieves the best
defense performance across 7 out of § datasets. Notably, on
the TwoPatterns dataset, the ACC increased from 83.19% w/o
Attack to 84.33% after implementing FLAC, further demon-
strating its superior ability to mitigate the attacker’s influ-
ence compared to other methods. The presence of “]” for
both NDC and DP defense algorithms suggests that these ap-
proaches may hinder the contributions of benign clients to the
global model. FLAC reached only 87.99% accuracy on the
ECG5000 dataset, while NDC and RFA outperformed in this
instance without an attack, likely because FLAC’s clipping
mechanism removed contributions from normal clients.

Dataset FLAC NDC DP  Krum FoolsGold RFA w/o Def | w/o Attack
ECG5000 87.99 92.01 5992 8996 9043 9141 60.49 91.07
ElectricDevices 62.78 6233 61.88 62.13 6207 59.77 5232 63.25
FaceAll 56.73 50.89 38.18 | 53.64 3974 5536 47.23 89.40
MelbournePed 7411 63.08 58.17 63.08 59.83 5844 4798 81.22
ShapesAll 1213 667 1.84] 7.03 8.11 10.78  6.14 16.04
SwedishLeaf 61.82 6044 56.65 61.32 5929 56.76 34.38 87.78
TwoPatterns 84.33 6242 6731 7444 7238 79.79 63.53 83.19
UWaveGestureLX 65.28 5245 4675 4824 50.29 56.67 4524 72.01

Table 1: Comparison of FLAC with other baselines (%)

Figure 4 (left) illustrates the performance comparison of
6 defense algorithms on the FaceAll dataset. FLAC demon-
strates greater stability with less fluctuation in ACC (red line),
achieving an average value of 56.73%. In contrast, both the
DP and FoolsGold algorithms exhibit limited performance
during the first 200 iterations in the absence of attackers.
Moreover, the NDC algorithm shows a continuous decline in
ACC during the last 100 iterations when under attack, and
the RFA algorithm results in significant fluctuations in ACC,
indicating a lack of stability.

60

—— FLATS
FoolsGold 20 FedAvg
RFA —— FLAC —— FLAC

) 100 200 300 0 100 200 300
Rounds Rounds

Figure 4: Comparison of 6 defense methods on FaceAll dataset (/eft)
and the attacks and defenses on TwoPatterns dataset (right).

Additionally, we conducted defense experiments against

various attack methods for the time series classification task
in a FL scenario. The results, as presented in Table 2, demon-
strate that FLAC effectively defends against all 4 different
attacks. Notably, the 1" symbol indicates an upward trend
in ACC after applying the defense (w/ Def). The model’s
performance, particularly on the ElectricDevices and TwoPat-
terns datasets, shows minimal deviation compared to the w/o
Attack scenarios, further underscoring the robustness and ef-
fectiveness of FLAC in mitigating the impact of these attacks.

Dataset FLATS _ AltackRandShaRe AttackRandAll AttacanePoint

w/o Def w/Def w/o Def w/Def w/oDef w/Def w/oDef w/Def
ECG5000 60.49 87.991 8896 90.561 86.82 92291 84.86 923171
ElectricDevices 5332 62781 61.67 62681 6138 61.707T 6225 63.19 1
FaceAll 4723 56731 6741 80.601 7597 81501 71.61 83.141

MelbournePedestrian 4798 74.11 17 5281 76.641T 49.04 77.521 5897 77301
ShapesAll 6.14 12131 811 11.8071 644 7.881 1237 16.831
SwedishLeaf 31.19 61.821 3540 60951 38.79 59911 3227 61.79 1
TwoPatterns 63.53 84331 5522 83791 5551 83801 67.63 83.78 1
UWaveGestureLibraryX 4524 65281 49.70 71.331 5899 69.741 68.51 69.29 1

Table 2: FLAC performance under 4 time series attack methods (%)

Figure 4 (right) illustrates the ACC curves for three scenar-
ios on the TwoPatterns dataset: without attack (FedAvg), with
attack (FLATS), and with both attack and defense (FLAC).
The purple line indicates a sharp decline in ACC due to the
FLATS attack, while the red line demonstrates that FLAC sig-
nificantly restores ACC to levels comparable to the attack-
free scenario, highlighting its effectiveness in enhancing sys-
tem reliability under attack. Furthermore, in the 0—200 round
range, where no attack occurs, FLAC maintains convergence
and performance akin to the no-attack scenario, suggesting
that its defense mechanism minimally impacts benign clients
and preserves robust performance in the absence of attacks.
Attack on Images To further validate the effectiveness of the
proposed FLAC, we conduct experiments on 3 image datasets
using 3 FBA algorithms and 6 defense methods. As shown in
Table 3, FLAC achieves the best results in 8 out of 9 tests. Un-
der various FBA scenarios (i.e., LF, MP, and 3DFed), FLAC
attains an accuracy closer to the w/o Attack setting and shows
a larger improvement compared to the w/o Def situation.

Method Dataset FLAC NDC DP Krum FoolsGold RFA  w/o Def | w/o Attack
CIFAR-10 88.43 84.84 7329 75.34 84.65 85.10  44.19 89.20
LF MNIST 98.24 95.56 84.47 89.21 96.17 96.83  69.17 99.16
FMNIST 81.94 77.53 77.69 68.44 79.08  56.53 | 6539 87.79
CIFAR-10 85.42 81.08 79.63 81.37 84.76 8498 4495 89.20
MP MNIST 95.97 93.66 78.32 88.20 96.81 9475  64.18 99.16
FMNIST 86.58 68.18 85.77 79.99 86.45 85.30  68.17 87.79
CIFAR-10 87.62 84.10 77.97 81.45 86.76 86.35 4354 89.20
3DFed MNIST 98.92 97.45 8832 81.03 98.17 98.11  68.13 99.16
FMNIST  78.00 74.65 76.09 65.64) 77.60 43.40] 68.29 87.79

Table 3: FLAC performance on image datasets (%)

5.3 Ablation Experiment

This subsection presents ablation studies to verify the neces-
sity of each component in the FLAC method. First, we assess
the importance of parameter weighting and model update di-
rection, denoted as FLAC-NW and FLAC-NYV, respectively.
Next, we evaluate FLAC-NT, which omits the MST algo-
rithm, and FLAC-ND, which excludes the DBSCAN method.
Additionally, we investigate the impact of clipping by intro-
ducing FLAC-NC, which removes the clipping component.



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Lastly, to validate the effectiveness of the Adam optimizer,
we replace it with SGD, referring to FLAC-NA.

Dataset FLAC FLAC-NC FLAC-ND FLAC-NT FLAC-NV FLAC-NW FLAC-NA

ECG5000 87.99  92.38 77.04 78.33 87.79 87.01 60.76
ElectricDevices ~ 62.78  55.43 45.77 43.90 59.65 57.23 47.30
FaceAll 56.73  55.15 44.66 16.54 54.25 53.42 27.87
MelbournePed 74.11 72.12 65.17 28.62 64.25 66.64 61.17
ShapesAll 12.13 10.78 10.99 8.70 9.53 10.64 9.50
SwedishLeaf 61.82  61.82 55.81 45.59 60.45 59.11 50.56
TwoPatterns 84.33  81.49 41.28 4522 69.02 66.38 74.67
UWaveGestureLX 65.28  62.91 61.73 55.89 63.02 62.22 41.76
Average 63.15  61.51 5031 40.35 58.50 57.83 46.70
Difference / 1.64 12.84 22.80 4.65 5.32 16.45

Table 4: FLAC ablation study under 8 dataset (%)

cD
7 6 5 4 3 2 1
\
FLAC-NT J L FLAC
FLACNA — L FLACNC
FLAC-ND L FLACNV
FLAC-NW

Figure 5: CD plot for the FLAC and its variants.

Table 4 shows FLAC outperforms the second-best FLAC-
NC by 1.64. Removing parameter weighting or update direc-
tion (FLAC-NW, FLAC-NV) results in worse defense, high-
lighting the importance of similarity calculation. Omit clus-
tering (FLAC-NT, FLAC-ND) or replace Adam with SGD
(FLAC-NA) leads to the poorest defense, stressing the role of
clustering and Adam in identifying attackers.

Figure 5 presents the critical difference (CD) plot for
the 7 evaluated strategies. FLAC ranks highest, followed
closely by FLAC-NC, indicating effective identification and
removal of most attackers during the multi-granularity clus-
tering phase. The CD plot further reveals that FLAC signifi-
cantly outperforms FLAC-NT, FLAC-NA, and FLAC-ND.

Figure 6 compares the performance of the Adam and SGD
optimizers on the FaceAll dataset. In terms of ACC, the
Adam optimizer (blue line) reaches higher levels in fewer
rounds compared to the SGD (red line). Similarly, for loss,
the Adam optimizer achieves lower values more quickly than
SGD. These results demonstrate that the FLAC is more effi-
cient and stable with the Adam optimizer in FL scenarios.

0.0030
80

0.0025
_0.0020
2 So001s
0.0010
0.0005

FLAC_Adam FLAC_SGD

5 160 200 300 000007 160 200 300

Rounds Rounds

FLAC_Adam FLAC_SGD

Figure 6: Illustration of the comparison of Adam and SGD regarding
ACC (left) and Loss (right) on the Face All dataset. The red-shaded
area indicates the attack-defense interval.

5.4 Case Study

To emphasize the role of clustering in the defense process,
Figure 7 illustrates the cumulative number of attacker ap-

pearances (Attacker Number), the cumulative count of suc-
cessfully identified attackers through our multi-granularity
clustering (Identified Attackers), and the cumulative total of
rejected clients (Rejected) over 300 communication rounds.
The results of eight time series datasets demonstrate that the
FLAC algorithm effectively rejects more than 90% of attack-
ers while maintaining strong overall performance. This high-
lights the critical role of coarse and fine-grained clustering in
identifying malicious participants, with few evading attackers
emphasizing the necessity of clipping operations.

500

EE  Attacker Number B ]dentified Attackers Rejected Clients

400 381 369
338 360 342
= 300 293 294
3
£ 220, 199 2094
<2000 184, 192 = 17160180
137 140

EC ED FA MP SA SL TP Uuw
Dataset

Figure 7: Cumulative number of attackers identified by FLAC across
all training rounds. Dataset abbreviations: EC (ECG5000), ED
(ElectricDevices), FA (FaceAll), MP (MelbournePedestrian), SA
(ShapesAll), SL (SwedishLeaf), TP (TwoPatterns), UW (UWaveG-
estureLibraryX).

Furthermore, Figure 8 illustrates the complementary roles
of MST and DBSCAN on the ElectricDevices dataset. The
highlighted sections show the distinct contributions of each
method, where MST identifies 170 attackers and DBSCAN
identifies 165 ones. The overlapping areas represent the
122 attackers detected by both methods. This combination
provides a robust and comprehensive elimination of suspi-
cious clients, underscoring the importance of integrating both
methods within the FLAC. As a further step, additional exper-
iments can be found in Appendix E, which assess the impact
of parameter selection and evaluate the robustness of FLAC
against varying attacker proportions.

| FLAC (213) |
R

KKK
DBSCAN (165)

9
$.9.9.9.9.9.9.9.9.0.9.0.9.

MST (170)

Figure 8: The complementary roles of MST and DBSCAN.

6 Conclusion

This paper proposes a robust federated backdoor defense
algorithm leveraging Adam optimizer and multi-granularity
clustering to accelerate learning and attacker detection. The
approach integrates model parameter update magnitudes and
gradient update directions for dual-level clustering analysis,
enhanced by statistical pruning mechanisms to mitigate un-
detected adversarial influence. Theoretical analysis confirms
convergence, while extensive experiments on time series and
image datasets demonstrate stable defense performance. The
future would combine server-side and client-side mechanisms
for a more comprehensive defense system.
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