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Abstract
In reinforcement learning (RL) based robot skill
acquisition, a high-fidelity simulator is usually in-
dispensable but unattainable since the real environ-
ment dynamics are difficult to model, which leads
to severe sim-to-real gaps. Existing methods solve
this problem by combining offline and online RL to
jointly learn transferable policies from limited of-
fline data and imperfect simulators. However, due
to the unrestricted exploration in the imperfect sim-
ulator, the hybrid offline-and-online RL methods
inevitably suffer from low sample efficiency and in-
sufficient state-action space coverage during train-
ing. To solve this problem, we propose a State Re-
visit and Re-exploration (SR2) hybrid offline-and-
online RL framework. In particular, the proposed
algorithm employs a meta-policy and a sub-policy,
where the meta-policy aims to find high-quality
states in the offline trajectories for online explo-
ration, and the sub-policy learns the robot skill us-
ing mixed offline and online data. By introducing
the state revisit and explore mechanism, our ap-
proach efficiently improves performance on a set of
sim-to-real robotic tasks. Through extensive simu-
lation and real-world tasks, we demonstrate the su-
perior performance of our approach against other
state-of-the-art methods.

1 Introduction
Robot skill learning based on Reinforcement Learning (RL)
[Mnih, 2013; Ibarz et al., 2021; Johannink et al., 2019;
Kober et al., 2013] has shown promising prospects to solve
complex tasks in real-world scenarios such as dexterous ma-
nipulation, locomotion, and drone flight control [Celemin et
al., 2019; Xiang and Su, 2019; Andrychowicz et al., 2020;
Rudin et al., 2022; Song et al., 2023; Lee et al., 2020b]. As
directly training RL policy on real robots is extremely expen-
sive and time-consuming, a simulator is usually indispensable
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Figure 1: By introducing the state revisit and re-explore mechanism,
a potentially valuable state s∗h could be found to initialize the im-
perfect simulator for further exploration, which provides a higher
probability to access s∗H .

for learning robot skills. In most cases, a high-fidelity simu-
lator is unattainable since the real environment dynamics are
too complex or even unobservable to model. An alternative
way is to simplify the environment dynamics and build a less
accurate simulator to train the RL policies. However, directly
deploying policies trained in the simulator to the real world
is usually unfeasible because of the inconsistent environment
dynamics, known as the sim-to-real gap problem.

The most straightforward approach is to train RL policy
in a simulator and then fine-tune it with real data [Peng
et al., 2020; Kalashnikov et al., 2018; Lee et al., 2020a;
James et al., 2019], which heavily rely on the quality of
the simulator and also need high-cost real robot training.
To make the simulation dynamics closer to the real-world
dynamics, domain randomization approaches optimize rel-
evant parameters for several randomized simulated dynam-
ics while training RL policies, which could achieve more
adaptable policies in the real world [Chebotar et al., 2019;
Muratore et al., 2019]. However, these methods usually need
manually specified randomized parameters and nuanced ran-
domization distributions, leading to unstable training or con-
servative policies.

Despite different methods, the cost will increase quickly
when an approach involves online RL training on real robots.
Therefore, offline RL approaches that train policies exclu-
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sively with pre-collected datasets seem to be more afford-
able. As the performance of offline RL policies strongly de-
pends on the size and state-action space coverage of the of-
fline dataset, it is natural to combine offline RL on the real-
world dataset with online RL in simulators, that is, offline-
and-online RL methods. Previous methods such as [Niu et
al., 2022; Niu et al., 2023; Xue et al., 2024] borrow ideas
from Conservative Q-Learning (CQL) [Kumar et al., 2020],
which designs a dynamics-aware policy evaluation scheme
to penalize the Q-function learning on simulated state-action
pairs with large dynamic gaps, which adaptively adjust the
weights of the simulation policy and the real policy. However,
due to the unrestricted exploration in the imperfect simulator,
these methods inevitably suffer from low sample efficiency
and insufficient state-action space coverage during training.

To solve this problem, we propose a State Revisit and Re-
explore (SR2) hybrid offline-and-online RL framework. The
basis of our approach is to assume both real and simulation
environments share the same state space, and there is only a
difference between the transitional dynamics. It is natural that
the accumulated errors grow with the exploration horizon in-
creases. As shown in Figure 1, the key idea of our approach is
to introduce a mechanism that ensures access to better quality
and diversity of state-action data, which effectively improves
the data coverage and sample efficiency as well as alleviates
the sim-to-real gaps problem. Specifically, we design a hier-
archical RL framework that consists of a meta-policy and a
sub-policy. The meta-policy guides to trace back to the ex-
plored high-value state-action samples and generates more
high-quality samples in the imperfect simulator. The sub-
policy simultaneously learns the robot skills with offline real-
world datasets and simulation rollouts. For the meta-policy,
the sub-policy training procedure could be viewed as an in-
teractive environment that provides feedback.

Through extensive simulation and real-world experiments,
we demonstrate the superior performance of our approach
against other state-of-the-art methods. In addition, we prove
that the proposed algorithm guarantees a suboptimality with
the polynomial sample complexity in the sim-to-real robot
skill learning task.

2 Related Work
2.1 Sim-to-Real Policy Learning
The dynamic gaps between simulators and real environments,
known as the sim-to-real gaps problem, have long been rec-
ognized as a main challenge in RL-based robot skill learning
[Peng et al., 2018; Zhao et al., 2020]. To solve this prob-
lem, existing methods could be grouped into three lines. The
methods such as [Peng et al., 2020; Kalashnikov et al., 2018;
Lee et al., 2020b; James et al., 2019; Kaufmann et al.,
2023] adopt the most straightforward solution, which trains
the policy in a simulator and then fine-tunes it in real en-
vironments. In these methods, a high-fidelity simulator is
usually indispensable to guarantee a reliable policy trans-
fer. Another line of works, such as [Chebotar et al., 2019;
Muratore et al., 2019; Tobin et al., 2017], are domain ran-
domization methods, which train a policy variety of simulated
environments with randomized properties. They close the

sim-to-real gap by optimizing the simulation’s dynamic pa-
rameters. There is also a line of works such as [Eysenbach et
al., 2020; Lyu et al., 2024; Liu et al., 2022; Liu et al., 2024a;
Niu et al., 2022; Xu et al., 2023; Xue et al., 2024] which
design a dynamics adaption mechanism to penalize the high
dynamics-gap samples in the online exploration.

2.2 Hybrid Sim-to-Real Learning
Considering that directly learning transferable policy in sim-
ulators is extremely difficult, and directly training policies
on real robots is unaffordable. The recent hybrid offline
and online RL methods [Niu et al., 2022; Niu et al., 2023;
Song et al., 2022; Hou et al., 2024; Song et al., 2023]
combine the advantages of offline RL [Kumar et al., 2020;
Agarwal et al., 2020] and online RL, which provide a
prospecting solution to learning policies from offline real-
world data and an imperfect simulator. The key to these meth-
ods is to design a dynamics-aware policy evaluation scheme
to penalize the Q-function learning on simulated state-action
pairs with large dynamics gaps, which adaptively adjust the
weights of the simulation policy and the real policy. How-
ever, due to the unrestricted exploration in the imperfect sim-
ulator, these methods inevitably suffer from low sample ef-
ficiency and insufficient state-action space coverage during
training. Inspired by the efficient exploration methods such as
[Uchendu et al., 2023; Ecoffet et al., 2021; Feng et al., 2020;
Liu et al., 2024b], there are also a number of works [Wa-
genmaker et al., 2024; Qu et al., 2024] that aim to improve
the state-action space coverage and the sample efficiency in
the sim-to-real RL. Different from previous methods, our ap-
proach aims to enlarge the state-action space coverage in a
meta-learning manner, while we also give an insight to ana-
lyze our approach in a theoretical way.

3 Background
3.1 Hybrid offline-and-online RL
Hybrid offline-and-online (H2O) RL consists of two MDPs
{Ms,M̃s} := (S,A, r, {PMs

, PM̃s
}, ρ, γ), where S is the

state space, A is the action space, r is the reward function,
PMs

, PM̃s
are the transitional dynamics corresponding to the

real and the simulated environments, ρ represent the initial
state distribution, and γ ∈ [0, 1) is the discount factor. Given
the offline dataset D, which is generated by a behavior pol-
icy πb in the real environment, the goal of H2O is to learn a
transferable policy πs using RL that maximizes the expected
discounted rewards.

The basic idea is built upon the Conservative Q-Learning
(CQL). It pushes down the dynamics-gap weighted Q-values
and pulls up Q-values on trustworthy real offline data. The
learning objective is designed as:

min
Q

max
dϕ

β[Es,a∼dϕ(s,a)[Q(s, a)]−

Es,a∼D[Q(s, a)] +R(dϕ)] + Ẽ(Q, B̂πQ̂),
(1)

where dϕ(s, a) is a particular state-action sampling distri-
bution that is associated with high dynamics-gap samples,
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R(dϕ) is a regularization term for dϕ to control the behav-
ior of dϕ(s, a). Ẽ(Q, B̂πQ̂) represents the modified Bellman
error of the mixed data from datasetD and the simulation roll-
out samples in online replay buffer B, which are generated by
the real MDPM and the simulated MDP M̃.

4 Limitation of H2O
In this section, we theoretically analyze the bottlenecks af-
fecting the sample efficiency of previous H2O RL methods.

Definition 1 (Dynamics Residual). Let Ms and M̃s repre-
sent the real and simulated MDPs. There is only a difference
between the transitional dynamics PMs

and PM̃s
. The dy-

namics residual is defined as:
△(st, at, st+1) = PMs

(st+1|st, at)− PM̃s
(st+1|st, at).

(2)
As H2O involves the offline and online MDPs, its occu-

pancy distribution could be defined as:

dh(s, a) =
1

2

[
dMs

πb,h
(s, a) + dM̃s

πs,h
(s, a)

]
, (3)

where the dMs

πb,h
(s, a), dM̃s

πs,h
(s, a) are the occupancy distribu-

tions correspond to the real offline data and simulated data.
Denote the occupancy distribution of the optimal policy π∗

by dMs

π∗,h(s, a; ρ). Considering that in the real environment,
there is an optimal trajectory {s0, s1, ..., sh} that π∗ can visit,
the probability of visiting sh in M̃ could be defined as:

dM̃πs,h(s, a) = P(sh = s, ah = a; s0 ∼ ρ)

=
∑
s0

ρ(s0)
h−1∏
t=0

PM̃s
(st+1|st, at)πs(at|st)

=
∑
s0

ρ(s0)

h−1∏
t=0

(PMs(st+1|st, at)−

△ (st, at, st+1))πs(at|st).

(4)

Theorem 1. Within the inaccurate transitional dynamics,
there exists an MDP instance such that one has to suffer from
an exponential sample complexity in total horizon H in order
to explore a state that guarantees the policy to be suboptimal.

5 Method
Aiming to solve the low sample efficiency and insuffi-
cient state-action space exploration problems in the hy-
brid offline-and-online MDPs, we propose a state revisit
and re-explore RL algorithm. Specifically, we introduce a
meta MDP into the H2O framework, denoted as Mm :=
(Sm,Am, rm, PMm

, ρm, γm), where Sm is the state space,
Am is the action space, rm is the reward function, PMm

is the
transitional dynamics, ρm is the initial state distribution, and
γm ∈ [0, 1) is the discount factors. Therefore, the proposed
framework consists of a meta-policy πm and a sub-policy πs,
where the πm guides the generalization of high-quality sam-
ples in the imperfect simulator to boost the training of πs,
and πs adaptively learns the robot skill using mixed offline
and online generated data.

5.1 State Revisit and Re-explore
State revisit by meta-policy. Regarding the training proce-
dure πs as an interactive environment, πm is expected to find
some valuable state-action samples in D and then re-explore
them in the imperfect simulator. Considering that directly
finding the valuable states according to the training proce-
dure of πs is intractable, we simply decompose this process
into two steps. First, we sort the state-action samples in D
according to their rewards. Then we randomly choose some
samples according to their position in the sorted dataset. We
construct the state s

(i)
m,t = (η(i), z

(i)
t , z

(i)
t−1, a

(i)
m,t−1), where

η =
Qs,t−Qs,t−1

Qs,t−1
is the change in Q-value of the sub-policy πs

at iteration t which makes the meta-policy promotes the learn-
ing of sub-policy. zt and zt−1 are sampled from a uniform
distribution over (0, 1) which represent the normalized posi-
tion index at current and previous iterations. am,t−1 ∈ {0, 1}
is the action of previous iteration. As all state-action sam-
ples are sorted, the position implicitly encodes the reward in-
formation. Taking a sm,t as input, πm decides whether to
conduct the exploration. Therefore, the learning objective of
meta-policy is defined as:

Q̂m ← argmin
Qm

Esm,t,am,t,sm,t+1∼Bm
[(Qm(sm,t, am,t)

− B̂πmQ̂m(sm,t, am,t))
2],

(5)

π̂m ← argmax
πm

Esm,t∼Bm,am,t∼πm

[
Q̂m(sm,t, am,t)

]
, (6)

where B̂πm is the Bellman operator and Bm is the replay
buffer.

State re-explore by Sub-policy. As πm determines to re-
explore a pre-visited state or explore from an initial state in
the imperfect simulator, the replay buffer Bs,πm

used for sub-
policy learning contains two kinds of samples, including the
samples in dataset D, and the samples generated in the sim-
ulated environments under the control of πm. Therefore, we
adopt the objective in Eq.(1) to learn πs where the only dif-
ference is the modified Bellman error, defined as:

Ẽ
(
Q, B̂πsQ̂

)
=

1

2
Est,at,st+1∼D

[(
Q− B̂πsQ̂

)
(st, at)

]2
+

1

2
Est,at,st+1∼Bs,πm

[
PM

PM̃

(
Q− B̂πsQ̂

)
(st, at)

]2
,

(7)

where PM
PM̃

= PM(st+1|st,at)
PM̃(st+1|st,at)

, PM(st+1|st, at) and
PM̃(st+1|st, at) are the transitional dynamics of the real and
simulation environments.

5.2 Algorithm
We summarize the training procedure of SR2 in Algorithm
1. To start, we sort the state-action samples according to the
rewards and get a sorted dataset Dsort. To train the meta pol-
icy, we first sample N trajectories. For each of them, based
on a random scalar z(i)t which represents the normalized po-
sition in Dsort, we adopt a positional function that selects an
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Algorithm 1: State Revisit and Re-explore(SR2)
1 Data: an offline dataset D from real environment, an

imperfect simulator with biased dynamicsMs

2 Initialize: Q function Qm,Qs, actor network πm,πs,
sub-policy mixed replay buffer Bs = ∅, meta-policy
replay buffer Bm = ∅, A reward-based reordered
dataset Dsort = Sort(D, r)

3 for step t = 1, · · · , T do
4 for rollout trajectories i = 1, · · · , N do
5 z

(i)
t ∼ Uniform(0, 1);

6 (s
(i)
D,t, a

(i)
D,t)=POS(Dsort, z

(i)
t );

7 s
(i)
m,t = (η(i), z

(i)
t , z

(i)
t−1, a

(i)
m,t−1);

8 a
(i)
m,t = πm(a

(i)
m,t|s

(i)
m,t);

9 Bs ← Bs ∪ ROLLOUT(πs,M̃s, a
(i)
m,t, s

(i)
D,t);

10 end
11 πs, Qs,t+1 ← TRAINPOLICY(πs, Qs,t, Bs,D);
12 for rollout trajectories i = 1, · · · , N do
13 r

(i)
m,t = ∆Qs,t(s

(i)
D,t, a

(i)
D,t);

14 Bm ← Bm ∪ (s
(i)
m,t, a

(i)
m,t, r

(i)
m,t, s

′(i)
m,t);

15 if t % meta policy update period = 0 then
16 πm, Qm ←

TRAINPOLICY(πm, Qm, Bm);
17 end
18 end
19 end

initial state-action pair. By constructing the state sm,t, the
meta-policy πm takes it as input and decides whether to con-
duct the re-exploration in the imperfect simulator. Guided
by the meta-policy, the sub-policy collects state-action sam-
ples in a replay buffer and mixes the samples with offline real
data. Then the sub-policy could be optimized in the hybrid
offline-and-online learning. According to the feedback of the
sub-policy training procedure, the meta-policy could be opti-
mized by Eq.(5) and Eq.(6).

Specifically, in this work, the sub-policy is implemented
using H2O, chosen for its advantageous scalability. It is vi-
tal to note that employing other algorithms as sub-policy is
also feasible due to the portability of SR2. The meta-policy
consists of a random policy and the Deep Q-Network (DQN)
algorithm. The random policy function is employed to select
state-action pairs from the real environment dataset, whereas
the DQN algorithm, given the current sub-policy’s training
information and the corresponding state-action pair informa-
tion, decides whether to reset the simulator from the selected
state to roll out a new trajectory.

5.3 Theoretical Comparison
In this section, we provide the theoretical analysis, showing
that our approach could effectively enlarge the state-action
space coverage while yielding a polynomial sample complex-
ity. We focus on comparing SR2 with finite-horizon pes-
simistic offline MDPs e.g. CQL, and the hybrid method H2O.

As our approach also involves offline and online MDPs,

the occupancy distribution also consists of two parts, like
Eq.(3). In our approach, we design a state revisit and re-
explore mechanism that automatically finds potential high-
value states in the offline dataset by the meta policy πm and
uses them to re-initialize the imperfect simulator and start
from them for further exploration. Different from H2O, the
probability of visiting sh in M̃ could be defined as:

dM̃πs,h(s, a) = P(sh = s, ah = a;πm, ρ,D)

=
1

2

∑
sk

1

|D|
πm(am,k|sm,k)

h−1∏
t=k

PM̃s
(st+1|st, at)πs(at|st)

+
1

2

∑
s0

ρ(s0)
h−1∏
t=0

(PM̃s
(st+1|st, at)πs(at|st).

(8)

Definition 2 (Policy concentrability of finite-horizon MDPs).
The policy concerntrability coefficient of π is defined as:

C∗ := max
(s,a,h)∈S×A×[H]

d∗h(s, a)

dπh(s, a)
, (9)

where d∗h(s, a) and dπh(s, a) are the state visitation distribu-
tions of optimal policy π∗ and the learned policy π at time
step h, respectively.

According to Theorem 1, for any states sh that π∗ could
visit, the unrestricted exploration in the imperfect simulator
suffers from an exponential sample complexity. However, in
Eq.(8), guided by the meta policy πm, there is a probability
that πs finds an explored state sk and further re-explore it in
the imperfect simulator for h− k steps. According to Defini-
tion 2, it is easy to conclude that C∗

CQL > C∗
H2O > C∗

SR2 .
Then we can get Theorem 2.
Theorem 2. With an appropriate choice of sample strategy
and the meta-policy, Algorithm 1 guarantees a suboptimality
bound up to a polynomial sample complexity that is lower
than CQL and H2O.

6 Experiments
In this section, we conduct experiments to validate the effec-
tiveness of the proposed algorithm (SR2) and compare it with
other state-of-the-art methods in the field of cross-domain
online and offline RL. We begin with a detailed description
of the experimental setups, including the environment set-
ting and the implementation of SR2 and baselines, followed
by presenting the results of the benchmark experiments per-
formed within the MuJoCo simulation environment and real
robot experiments.

6.1 Experimental Setups
Simulation-based Experiments
To empirically validate the capacity of policy adaptation, we
create two types of sim-to-real gaps. In this experiment, the
real environment is configured as the standard OpenAI Gym
MuJoCo. We select the standard HalfCheetah and Walker2d.
Due to the non-interactive properties of the real environment,
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HalfCheetah-v2 Gravity

× 2𝒈

(a) HalfCheetah Gravity

Thigh Size × 2.0

HalfCheetah-v2 Big Thigh

(b) HalfCheetah Big Thigh

Torso Length × 4

HalfCheetah-v2 Long Torso

(c) HalfCheetah Long Torso

Thigh Size × 2.0

Walker2d-v2 Big Thigh

(d) Walker2d Big Thigh

Figure 2: Illustrations of modified dynamics in MuJoCo environments

we choose the widely used offline RL benchmark D4RL [Fu
et al., 2020]. For the simulated environment, as shown in
Figure 2, the dynamics gaps are introduced by modifying the
corresponding parameters in the configuration file or adding
noise in robot actions. Following [Niu et al., 2023], we
modify the gravity coefficient (×2, Gravity), friction coeffi-
cient (×0.3, Friction), adding Gaussian noise to joint actua-
tors (N(0, action range), Joint Noise), increasing thigh size
(×2, Big Thigh), increasing thigh joint motion range(×2,
Flexible Thigh), stretching torso length (×4, Long Torso).

Real-world Experiments
We utilize an 8kg wheel-legged robot in Figure 3 as the plat-
form for our real-world experiments. The robot employs a
VMC controller[Pratt et al., 2001] to fix the relative position
between the waist joint and the wheeled feet, allowing the
RL model to control only the hub motors of a pair of wheels.
To facilitate the experiment, we manually collect a dataset of
1M steps from the real world. Subsequently, we deploy H2O,
PAR and SR2 in Isaac Sim for training.

We define the task as standing still, where the real wheel-
legged robot maintains balance in place by relying on two
wheels under RL control. The state space is defined as
(θ, θ̇, ϕ, ϕ̇, x, ẋ), where θ is the pitch angle, θ̇ is the pitch an-
gular velocity, ϕ is the yaw angle, ϕ̇ is the yaw angular veloc-
ity, x is the linear displacement, and ẋ is the linear velocity.
In Isaac Sim, we can directly read the aforementioned states,
while in the real world, we deploy a Visual-Inertial Odometry
based on the onboard stereo camera and IMU data to obtain
these states. The actions are defined as the torques τl and τr
of the two wheels. We also define a set of hyperparameters
(c1, . . . , c8) to adjust the weights of the penalties for each off-
set during the trajectory collection procedure. Accordingly,
the reward is calculated as:

r = 40−c1θ2−c2θ̇2−c3ϕ2−c4ϕ̇2−c5x2−c6ẋ2−c7τ2l −c8τ2r .

We aim to maximize the reward when the robot is stationary.
To achieve this, we impose penalties on pitch angle offset
and displacement offset, assigning relatively higher penalty
weights to θ and x. Additionally, to ensure that the output
torques do not become excessively large, we also increase the
penalty weights on τl and τr.

Baselines
Our baselines include the following algorithms: the cross-
domain online RL algorithm DARC [Eysenbach et al., 2020],
the dynamics-aware hybrid offline-and-online RL algorithm
H2O [Niu et al., 2022], its improved version H2O+ [Niu et

Figure 3: Wheel-legged robot in the sim/real environments.

al., 2023], and the recently proposed Policy Adaptation by
Representation mismatch algorithm PAR [Lyu et al., 2024].
In our experiments, we use the same set of five seeds. All
experiments involve a simulated environment that allows on-
line interaction but has differences in dynamics or morphol-
ogy, while the real environment is non-interactive but comes
with pre-collected datasets, such as HalfCheetah-medium
replay, HalfCheetah-medium, HalfCheetah-medium expert,
and Walker2d-medium replay. During the execution of the al-
gorithms, evaluations are conducted in a fully interactive real
environment. We adopt the experimental setups of H2O and
H2O+, involving 1M interactions with the simulator and 1M
training steps, which aligns better with sim-to-real research
logic, rather than the offline design in PAR[Lyu et al., 2024],
where the source domain is non-interactive and the target do-
main is interactive. Given that the advantages of the meta-
policy may not be fully manifested under fewer iterations and
training steps, we also conduct a set of SR2 experiments with
3M training interactions.

6.2 Comparative Experiment
Mujoco Benchmark Experiments
Our comparative results shown in Table 1 demonstrate that
SR2 achieves superior or highly competitive performance on
20 out of 23 tasks. Notably, the results of DARC and H2O+
are absent in the HalfCheetah Medium Expert experiment, as
we were unable to find a Pytorch implementation of DARC,
and H2O+ has not been open-sourced yet. The corresponding
data in table 1 are sourced from H2O [Niu et al., 2022] and
H2O+ [Niu et al., 2023]. The results of PAR are obtained
using its open-source code with only the source and target
domain adjusted to align with the experimental settings, but
its performance was slightly below expectations, potentially
due to default parameter settings. While SR2 can integrate
PAR as a sub-policy, further development will proceed after
confirming the suitability of PAR’s parameter configurations.

It is important to note that the -m and -mr datasets are con-
sidered to have higher data diversity, covering a large num-
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Data Dynamics Gap DARC H2O H2O+ PAR SR2(1M) SR2(3M)

H
al

fC
he

et
ah

-m
r Gravity 5105±460 6813±289 6861±268 5891±71 7016±173 7241±152

Friction 5503±263 5928±896 6278±1336 6151±197 7315±685 7608±239
Joint Noise 5137±225 6747±427 6985±328 5557±104 7358±158 7567±75
Big Thigh 5336±389 6278±305 6675±231 5525±117 6588±142 6659±188
Flexible Thigh 5554±88 6976±234 7497±196 6683±75 7449±180 7702±112
Long Torso 45±322 6225±100 6718±245 5968±54 6568±187 6569±157

Mean Return 5863 6573 6947 5978 7014 7236

H
al

fC
he

et
ah

-m

Gravity 5011±456 7085±416 6965±659 5565±497 7330±188 7655±214
Friction 6113±104 6848±445 7186±859 6888±207 7453±306 7579±206
Joint Noise 5484±171 7212±236 7503±237 478±266 7614±133 8018±106
Big Thigh 6302±1832 6625±579 7094±371 5850±200 7021±87 7411±162
Flexible Thigh 7266±1771 7005±757 7805±139 7114±245 7659±216 8217±251
Long Torso 724±921 6327±602 5484±1382 2299±1311 6806±309 6958±165

Mean Return 6054 6896 7187 2367 7296 7688

H
al

fC
he

et
ah

-m
e Gravity 4759±353 4707±779 / 1802±1207 5537±222 6734±432

Friction 9038±1480 6745±562 / 4868±756 4833±340 8766±450
Joint Noise 5288±104 5280±1329 / 565±473 5599±872 7426±515
Big Thigh / 5062±288 / 4514±942 5243±166 7323±203
Flexible Thigh / 7466±422 / 6626±717 7427±676 10430±347
Long Torso / 3307±892 / 2591±328 3894±642 6250±652

Mean Return / 5579 / 4250 5677 8410

W
al

ke
r2

d-
m

r Gravity 2969±1043 3366±740 3518±605 3673±109 4078±66 4180±55
Friction 3644±213 3916±549 3866±840 4033±51 4319±46 4451±70
Joint Noise -3±0 3045±911 3446±862 3938±105 4410±38 4543±138
Big Thigh 57±126 1789±1781 2977±771 3623±128 4180±146 4189±162
Flexible Thigh 2511±1048 1891±1001 3535±493 3961±146 4335±89 4476±63

Mean Return 1624 2738 3596 3738 4306 4432

Table 1: Average returns for MuJoCo HalfCheetah and Walker2d tasks.

ber of samples. Consequently, learning from these datasets
presents a lower difficulty. However, SR2 outperforms other
algorithms on these simple tasks, primarily due to the role
of the meta-policy in reducing sample complexity and im-
proving data utilization efficiency. In the HalfCheetah-me
tasks, most baselines fail to perform well, while SR2 main-
tains strong competitiveness in this scenario. Moreover, when
interactions and training steps are increased to 3M, SR2’s per-
formance shows a significant improvement. This could be at-
tributed to the characteristics of the HalfCheetah-me dataset,
which is considered intermediate or expert-level with lower
data diversity, limited sample coverage, and higher sample
complexity. Baseline models struggle to learn sufficient pat-
terns or features from this data, leading to poor performance.
In contrast, SR2 effectively reduces sample complexity, al-
lowing it to gain a substantial advantage in the more complex
HalfCheetah-me tasks.

Real Robot Transfer Experiments
The experimental results on the real robot are shown in Fig-
ure 4, where SR2 demonstrates significantly better control
performance compared to H2O and PAR. From the pitch an-
gle information in Figure 4(a), it can be observed that PAR
loses balance and falls after approximately 5 seconds, while
H2O maintains balance for about 15 seconds but gradually
becomes unstable and ultimately fails to remain balanced. In

contrast, SR2 exhibits excellent balance throughout the en-
tire experiment. Figure 4(b) further reveals that PAR initially
moves backward and subsequently attempts to move forward
again, but eventually loses stability. H2O, on the other hand,
gradually deviates from the starting point and fails to force
the robot to the starting point and stabilize it despite briefly
maintaining balance. SR2 successfully maintains high stabil-
ity by making fine adjustments near the starting point. Figure
4(c) illustrates the changes in pitch angular velocity, showing
that SR2 achieves more stable performance, while H2O and
PAR exhibit significant fluctuations and instability. Consider-
ing that the sim-to-real task is more challenging than Mujoco
benchmark experiments due to the difficulty in quantifying
dynamic gaps and morphological gaps, the overall task com-
plexity is significantly higher. In such a complex task, SR2

outperforms other baselines primarily due to the role of its
meta-policy in improving sample efficiency.

6.3 Analytical Experiments
Ablation Study
In the ablation study, we aim to evaluate the specific contribu-
tions of each component in the SR2 algorithm. The primary
components of SR2 include the meta-policy and sub-policy,
with the sub-policy being selected as the H2O algorithm in
this study. In the comparison experiments, the meta-policy is
composed of a random policy and a DQN policy. The ran-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

(a) Pitch Angle (b) Displacement (c) Pitch Angular Velocity
𝑡𝑖𝑚𝑒/𝑠 𝑡𝑖𝑚𝑒/𝑠 𝑡𝑖𝑚𝑒/𝑠

SR²(Ours) H2O PAR

Figure 4: The real robot experiments results of standing still.

Task H2O SR2-random SR2-random dqn

mr-Friction 5928±896 7098±216 7315±685
m-Joint Noise 7212±236 7495±261 7614±133

Table 2: Ablation study for meta-policy

dom policy is employed to select state-action pairs from the
real dataset, while the DQN policy, based on the informa-
tion from the sub-policy’s training and the state-action pairs
selected by the random policy, decides whether to reset the
simulator from the chosen state to roll out a new trajectory.
Through this experiment, we seek to investigate the roles and
effects of the random policy and DQN policy within SR2.

The experiments are divided into three groups for eval-
uation: the H2O group, the H2O with random policy
group(SR2-random), and the H2O with random policy and
DQN policy group (SR2-random dqn). The H2O group uti-
lizes the open-source original version of the H2O algorithm.
In the H2O with random policy group (SR2-random), the sub-
policy uses H2O, and the meta-policy consists of a random
policy, which selects any state-action pair and resets the sim-
ulator from the selected state to roll out a new trajectory. In
the H2O with random policy and DQN policy group(SR2-
random dqn), the sub-policy still uses H2O, while the meta-
policy is composed of both the random policy and the DQN
policy, aligning with the SR2 in the comparison experiment.

The ablation study results are shown in Table 2. We ob-
serve that using only a random policy as the meta-policy
(SR2-random) leads to a significant improvement in model
performance. Furthermore, when combining a random pol-
icy with a DQN policy as the meta-policy(SR2-random dqn),
the performance of the model improves even further. This
demonstrates that our meta-policy approach effectively en-
hances model performance by reducing sample complexity
and improving data utilization.

Research on Data Validity
Based on our theoretical analysis, when the optimal strat-
egy in the real world accesses the real data state-action pair
(s, a), the probability of SR2 accessing this state-action pair
is higher than that of H2O. In other words, SR2 accesses more
valid data compared to H2O. From a broader perspective, we
can use H2O’s discriminator to validate the authenticity of
the data. Therefore, we conduct an experiment. For the data
sampled during training, we record the number of data triplets

0 600K 1.2M 1.8M 2.4M 3M
Step

0

2.5%

5%

7.5%

10% SR²(Ours)
H2O

Figure 5: The Proportion of valid (s, a, s′)

(s, a, s′) in every training step that the H2O’s discriminator
classified as having a higher real probability than sim prob-
ability, and we calculate the proportion of these data triplets
(s, a, s′) among all the sampled triplets during the training
process. If the real probability is judged to be higher than the
sim probability, the data will be referred to as valid data.

As shown in Figure 5, in the HalfCheetah-me Long Torso
task, the valid data of SR2, including data triplets (s, a, s′), is
generally more abundant than that of H2O. This indicates that
from the perspective of the discriminator the data explored by
SR2 are closer to the real distribution.

7 Conclusion
In Reinforcement learning (RL) based robot skill acquisi-
tion, a high-fidelity simulator is usually indispensable but
unattainable since the real environment dynamics are diffi-
cult to model, which leads to severe sim-to-real gaps. To deal
with this problem, we propose a State Revisit and Re-explore
(SR2) hybrid offline-and-online RL algorithm in this paper.
The proposed algorithm employs a meta-policy and a sub-
policy, where the meta-policy aims to find high-quality states
in the offline trajectories for online exploration, and the sub-
policy learns the robot skill using mixed offline and online
data. Through extensive simulation and real-world experi-
ments, we demonstrate the superior performance of our ap-
proach against other state-of-the-art methods. In addition, we
prove that the proposed algorithm guarantees a suboptimal-
ity with the polynomial sample complexity in the sim-to-real
robot skill learning task.
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