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Abstract

Generative models, particularly diffusion model,
have emerged as powerful tools for sequential rec-
ommendation. However, accurately modeling user
preferences remains challenging due to the noise
perturbations inherent in the forward and reverse
processes of diffusion-based methods. Towards this
end, this study introduces FMREC, a Flow match-
ing based model that employs a straight flow tra-
jectory and a modified loss tailored for the recom-
mendation task. Additionally, from the diffusion-
model perspective, we integrate a reconstruction
loss to improve robustness against noise perturba-
tions, thereby retaining user preferences during the
forward process. In the reverse process, we em-
ploy a deterministic reverse sampler, specifically
an ODE-based updating function, to eliminate un-
necessary randomness, thereby ensuring that the
generated recommendations closely align with user
needs. Extensive evaluations on four benchmark
datasets reveal that FMREC achieves an average
improvement of 6.53% over state-of-the-art meth-
ods. The replication code is available at https:
//github.com/FengLiu-1/FMRec.

1 Introduction

Diffusion model (DM), owned to their great ability to gen-
erate high-quality image [Nichol and Dhariwal, 2021; Song
et al., 2020], video [Ho et al., 2022; Harvey et al., 2022;
Yu er al., 2024] and text [Gong er al, 2022; Wu et al.,
2023], has inspired the development of innovative adaptations
in sequential recommendation systems (e.g., DiffuRec [Li et
al., 2023] and DiffRec [Wang et al., 2023]). Usually, the
diffusion-based model consists of two main phases: the for-
ward procedure and the reverse procedure. During the for-
ward procedure of diffusion model, i.e., the training pro-
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Figure 1: An illustration that highlights the differences between
Diffusion-based (a) and Flow Matching based (b) sequential recom-
mender models in both the forward and reverse processes.

cedure, the model progressively adds noise to the real data
based on a predefined noise schedule, eventually transform-
ing it into random noise resembling that drawn from a normal
distribution. In contrast, the reverse procedure, or the infer-
ence stage, iteratively removes the noise from the sampled
noise using a reverse samplers, i.e., the SDE-based stochastic
reverse sampler [Nakkiran er al., 2024]. This process is typ-
ically conditioned on both the random noise and additional
inputs, allowing for the generation of realistic samples.

Following this paradigm, methods such as DiffuRec [Li et
al., 2023], DreamRec [Yang et al., 2024], and DimeRec [Li et
al., 2024b] have extended the diffusion model to the sequen-
tial recommendation. Specifically, these approaches generate
next-item predictions by leveraging both random noise and
user-item interactions. In the forward procedure, illustrated in
Figure 1(a), these models progressively add noise to the target
recommendation, transforming the actual next item into ran-
dom noise. After integrating the random noise and historical
interactions using a deep learning model, the reverse process
utilizes a stochastic reverse sampler to progressively denoise
the next item from the noise-perturbed user preferences.

Although effective, existing methods exhibit several limi-
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tations: (1) Inaccurate user preference modeling: The in-
tegration of random noise during the forward process, along
with user preferences, can indeed compromise the accuracy
of user preference modeling. Additionally, these methods [Li
etal.,2023; Wang et al., 2023] typically utilize a curved noise
schedule path during the noise addition process, which can
result in error accumulation due to their long-curved trajec-
tory, as illustrated by the curve in Figure 1(a). Consequently,
during the reverse inference process, existing methods need to
fit these curved paths, necessitating a greater number of diffu-
sion steps to counteract the impact of these errors effectively.
While existing methods might be aware of this issue, they
often address it by selecting hyperparameters that introduce
minimal random noise into user preference modeling. How-
ever, this merely treats the symptoms rather than resolving
the underlying problem. (2) Randomness on recommenda-
tion generation: The stochastic reverse sampler used in re-
verse procedures introduces randomness into the recommen-
dation generation process, potentially resulting in irrelevant
suggestions. These stochastic samplers typically introduce
extra noise-perturbations during the sampling phase, yielding
diverse and varied samples that are beneficial in tasks like im-
age generation (e.g., creating different cat breeds such as Rag-
dolls, Persians, and Folded-ear cats). However, in sequential
recommendation systems, the primary goal is to accurately
predict the next likely item while exploring diverse yet rele-
vant topics. Unfortunately, these unintended perturbations of-
ten lead to irrelevant recommendations, which can ultimately
degrade the user experience. In the example shown in Fig-
ure 1(a), such perturbations can shift recommendations from
“watch” to “milk” and negatively impact users’ preferences
on the actual platform.

Towards this end, this work firstly adapts Flow Fatching,
i.e., a simplified diffusion model, for the sequential recom-
mendation and proposes FMREC. Specifically, in the for-
ward process, we utilize a straight flow trajectory and derive a
noise-free equivalent learning target for the sequential recom-
mendation (the theoretical analysis of straight trajectory’s ad-
vantage is provided in Appendix C). Thereby, FMREC min-
imizes error accumulation and achieves more precise recom-
mendations. Additionally, we introduce a decoder architec-
ture to reconstruct users’ historical preferences, along with
a corresponding interaction information reconstruction loss
during the training process to enhance the model’s robust-
ness against noise perturbations. To control randomness in
item generation, we implement a deterministic reverse sam-
pler using an ODE-based deterministic sampling method, ef-
fectively eliminating random perturbations during inference.
Figure 1(b) illustrates our proposed method. Finally, we con-
duct extensive experiments on four benchmark datasets and
compare FMREC with state-of-the-art (SOTA) approaches.
An average improvement of 6.53% over SOTA verifies the
effectiveness of our proposed methods.

2 Related Work

2.1 Sequential Recommendation Systems

The rapid advancement of deep learning has significantly
enhanced sequential recommendation systems [Zou et al.,

2019; Tang et al, 2024] through various architectures.
Early pioneering works employ Recurrent Neural Network
(RNN) [Donkers et al., 20171, such as GRU4Rec [Hidasi et
al., 2015], RRN [Wu et al., 20171, and Convolutional Neural
Networks (CNN) [de Souza Pereira Moreira et al., 2018], in-
cluding RCNN [Xu et al., 2019] and Caser [Tang and Wang,
2018], which effectively capture user preferences and imme-
diate interests. More recent approaches have enhanced se-
quence modeling using self-attention mechanisms [Zou et al.,
2020; Tang er al., 2025; Yu et al., 2025], particularly through
the transformer architecture [Vaswani, 2017]. Models like
SASRec [Kang and McAuley, 2018], BERT4Rec [Sun et al.,
2019], and STOSA [Fan et al., 2022] utilize self-attention to
enhance performance on user interaction data, where SAS-
Rec focuses on sequential user behavior, BERT4Rec em-
ploys bidirectional self-attention with the Cloze objective for
richer feature representation, and STOSA introduces uncer-
tainty in capturing dynamic preferences using Wasserstein
Self-Attention.

These methods discussed above form the backbone of se-
quential recommendation and are orthogonal to our proposed
approach. Our work also uses a transformer-based architec-
ture as foundation. Ideally, our proposed method is designed
to be seamlessly integrated with all of these techniques.

2.2 Generative Recommender Systems

Generative recommender systems have gained significant at-
tention due to their ability to model complex user-item in-
teractions and generate diverse, innovative recommendations.
Early works like AutoRec [Sedhain et al., 2015] apply au-
toencoder to collaborative filtering, while models like Au-
toSeqRec [Liu et al., 2023] and MAERec [Ye et al., 2023]
enhance them with incremental learning and graph represen-
tations, boosting robustness to noisy, sparse data. Variational
Autoencoder (VAE) introduces probabilistic latent space for
modeling sparse user-item interactions, with innovations like
dual disentanglement modules [Guo et al., 2024] and hier-
archical priors [Li er al., 2024a] improving interpretability
and addressing sparsity. Another popular direction is the
use of Generative Adversarial Network (GAN), which en-
hances generative recommendation through adversarial train-
ing between generators and discriminators. Combined with
traditional collaborative filtering [Dervishaj and Cremonesi,
2022], GAN captures complex user preferences and inte-
grates them with techniques like Determinantal Point Pro-
cesses (DPP)[Wu et al., 2019] to improve recommendation
diversity. To address challenges like mode collapse, a newer
GAN model [Jiangzhou et al., 2024] incorporates diffusion
model for stable training and reliable recommendations.

While these methods advance generative recommendation
by a large margin, our research focuses on tailoring more ad-
vanced diffusion model to generate even more diverse and
innovative recommendations.

Diffusion-Based Recommendation The usage of diffusion
model in sequential recommendation is still in its early stages
but rapidly gaining attention due to their success in various
generative tasks [Ho et al., 2022; Gong et al., 2022]. Pioneer-
ing efforts like [Li ef al., 2023; Yang et al., 2024] add noise
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to the target item and leverage user interaction history implic-
itly in the reverse process. Based on this, Huang ef al. [2024]
integrates both historical interactions and target items during
noise addition, using both explicit sequence embeddings and
implicit attention mechanisms to boost preference representa-
tion. Meanwhile, Wang et al. [2024] harnesses a Transformer
as a conditional denoising decoder, embedding historical in-
teractions into the model via cross-attention, thereby effec-
tively guiding the denoising and enabling the model to focus
on pertinent historical interactions.

Although these approaches are effective, they overlook the
biases introduced by noise in diffusion model for recommen-
dation task. In contrast, our model focuses on mitigating the
distortion of user preferences caused by perturbations in both
the forward and reverse diffusion processes.

3 Preliminaries

This section provides a brief overview of the Flow Match-
ing to establish the necessary background. Particularly, Flow
Matching can be considered a simplied diffusion model, de-
signed to construct probabilistic path between two distinct
distributions, thereby enabling the transformation from sim-
ple distribution, e.g., a simple normal distribution p,, =
N(0, 1), to the complex and unknown distribution, denoted
as p. [Esser et al., 2024; Nakkiran et al., 2024]. From the
perspective of diffusion model, Flow Matching can also di-
vide into the forward and reverse procedure.

Forward Procedure In the forward procedure, the model
is required to map a real data point . ~ p. to a noise data
point x,, ~ p,,. It is defined as a time-dependent flow ¢ as

¢t(xc|wn) ) — ;X + btmn (1)

where ¢ is a random variable uniformly sampled from the in-
terval [0, 1]. The time-dependent hyperparameters a; and b;
follow two constraints: if ag = 1, then by = 0, ensuring
do(xc|lxy) = xcatt = 0, and if a; = 0, then by = 1,
ensuring ¢1(x.|x,) = @, att = 1. These ensure a transi-
tion from the target distribution . to the normal distribution
@, over time. ¢.(x.|x,) provides a concise representation
of the Flow Trajectory, illustrating the manner in which states
change during the Flow process. To simplify the notation, we
denote the intermediate variable perturbed by noise as

zZt = QX + by, 2)

To characterize the flow ¢:(-|x,,), a vector field u; is em-
ployed to construct the time-dependent diffeomorphic map ¢
as follows:

w(ze|@n) = B4y (zelTn)| ), 3)

where ¢; ' (z;|x,) represents the inverse function, which
computes . based on the perturbed noise. The notation ¢}
denotes the differential of ¢;.

The objective of the training process is to learn and pre-
dict this vector field with a © parameterized vector field
vo(z,t) as

Ve (2, 1) — ue(ze|@n)l3, (@)

LFM = Et,pt(z\mc),p(mc)

where || - ||3 is the L2-norm.

Reverse Procedure In the reverse process, i.e., the infer-
ence procedure, the model reconstructs . by solving the fol-
lowing ordinary differential equation (ODE):

dzy = —ve(z,t) dt,

where z; is the linear combination of x. and «,. In this
work, we employ a deterministic reverse sampler, i.e., the
Euler method, to solve this ODE.

Remarkably, the diffusion-based recommendation models
[Li ef al., 2023] and [Wang et al., 2023], typically employ an
SDE-based stochastic reverse sampler, which introduces the
stochastic disturbances, i.e., the variance, to the reverse dif-
fusion process. However, this stochasticity deviates from the
objective of sequential recommendation, potentially resulting
in irrelevant predictions when attempting to accurately iden-
tify a user’s next interaction item, which ultimately under-
mines the user experience. Contrarily, the ODE-based de-
terministic reverse sampler does not introduce any random
perturbations during the generation process, ensuring that the
generation results meet the user’s personalized preferences.

4 Methodology

4.1 Problem Statement

For the sequential recommendation task, we define a set
of users U = {ug,uz,...,up} and a set of items 7 =
{i1,42,... 47}, where || and |Z]| represent the total num-
ber of users and items, respectively. Each user u € U has an
interaction history represented as a chronological sequence of
items S = (41,42, . . .,%m), Where i, corresponds to the m-th
item interacted with by the user. Here, m is the length of the
interaction sequence. Formally, we aim at generating the next
recommendation ,, 1, maximizing a specific metric © as
im+1 = arg max O(im41]S). 5)

Tm+1

4.2 Flow Matching based Sequential
Recommender Model

This section offers a detailed explanation of both the forward
and reverse processes in FMREC. In the forward process, our
designs include the development of flow trajectories, modifi-
cation of the learning target, design of the parameterized vec-
tor field, and the corresponding learning loss. In the reverse
process, we discuss the specific selection and implementation
of the reverse sampler.

Forward Process
In the context of sequence recommendation task, we adopt
the target distribution p. in Flow Matching as follows:

p(mc|em+l) = N(wc; em+17 0); (6)

where e, 11 represents the embedding of the target item, gen-
erated using the equation:

€m+1 = Embedding(im41)- @)

Here, Embedding denotes an embedding module that trans-
forms discrete next item ID ¢,, 1 into dense vector represen-
tation. Notably, the parameter e,,; is trainable, which is
different from the traditional Flow Matching settings.
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Figure 2: The framework of the FMREC. In the training process, our design incorporates the development of straight flow trajectories,
modifications to the learning target £/, the design of a decoder-based model, and the implementation of regularized loss functions Lo g
and Lse. In the inference process, we present a deterministic reverse sampler that generates recommendations.

Straight Trajectory Flow and Modified Loss The time-
dependent hyper-parameters a; and b; in the forward pro-
cess define the trajectory of the generated flow, enabling the
flexible selection of flow paths to control the flow process.
The Straight Trajectory, characterized by a; = (1 — ¢) and
by = t, is known for its simplicity and computational effi-
ciency, making it widely employed in various studies [Lip-
man et al., 2022; Liu et al., 2022]. Following this setting, we
define the time-dependent flow of the next item recommen-
dation as follows:

zr = (1 —t)xe + txy,, wherex, ~N(0,1), (8)
where I denotes the identity matrix. Further discussions re-
garding its effectiveness are provided in Section 5.3. The
variable ¢ is sampled using the Mode Sampling with Heavy

Tails [Esser et al., 2024] method as
) 1 b 2 (T _
t=g(k;s)=1—k sx(cos <2k> 1+k), 9)

where the parameter s represents a scaling factor that gov-
erns the density distribution of the time step sampling. k£ €
U(0, 1) is arandom variable. Further discussions on the sam-
pling methods and the impact of the parameter s on model
performance are provided in Appendix B.

To characterize the flow ¢, (:|x,,), a vector field can be de-
fined in the following form:

w(ze|®n) = =6, (ze|Tn) + Tn,s (10)

where ¢; ! (z;|x,,) represents the inverse of the flow function
at time ¢, conditioned on x,,. By substituting into the Flow
Matching loss defined in Equation (4), we can reformulate the

training loss as follows:

Lrm =By p, 21z plwe) V0 (26, 1) — (— 67 ' (2t]@n) + 20)|3

(11)
= Eitp (2lze) p(wo) | (— fo (26, 8) + ®n) — (—Te + 20)|]3

(12)
=Bt (2lze) p(ao) || fo (20, 1) — xc|f3. (13)

The first derivation relies on the fact &,, = ¢; *(2¢|x,,). The
second equation replaces the learning target vg(z¢,t) with
(—fo(zt,t) + xy,), leading to the modified target in Equa-
tion (13). The reason for replacing the learning target is that
predicting the intricate combination of real data and noise can
be difficult and detrimental to recommendation systems, lead-
ing to the recommendation of diverse but irrelevant items.

Parameterized Vector Field To parameterize fo(z:,t) for
predicting real data, we first integrate the historical interac-
tion sequence with the noised data and then model the noised
historical interactions using a robust transformer decoder.
Specifically, we combine the historical interaction sequence
with the noised data as follows [Li et al., 2023]:

El=e;+ N0 (z+t), \~N(,0), (14)

where ©® denotes element-wise multiplication, \; is sampled
from a Gaussian distribution, and ¢ is a hyperparameter rep-
resenting both the mean and variance of the distribution. The
term J)\; is instrumental in balancing the fusion ratio between
the historical interaction sequence and the noised data.
Afterwards, we employ a decoder, denoted as Decodery,
which consists of n; layers of unidirectional self-attention
based transformer, to obtain the hidden states as follows:

[hi,...,hy] =Decoder ([EL, ..., EL]), (15)

where h to h,, are the intermediate outputs that will be uti-
lized for reconstructing the interaction matrix and calculating
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the reconstruction loss. Next, we model fg(z,t) by taking
the LAST token output from an additional ny-layer decoder,
denoted as Decoders, as follows:

fo(zt,t) = LAST(Decoders([hy, ..., hn])). (16)

Regularized Losses The modified Flow Matching loss pre-
sented in Equation (13) is not entirely suitable for recom-
mendation task because the vector x.. is trainable rather than
fixed. This might lead to the problem that different x. con-
verge to a single embedding, which is obviously meaningless.
To mitigate this issue, we introduce a cross-entropy loss Lo g
as a regularizer that differentiates between various item em-
beddings, thereby preventing the aforementioned problem as:

—log §my1 a7

— eXp(f@(Zt, t) ) e77l+1) . (18)

Y icrexp(fo(zi,t) - €;)

where §,,,+1 is the normalized score of recommending %,,, 1.

Furthermore, to mitigate the detrimental effects of noise
perturbation on model performance, we incorporate an ad-
ditional reconstruction loss that interprets the user’s history
from the final token of the hidden representation h,, as fol-
lows:

Lcg =

Qm-i—l

d= Decodery (hn), (19)

where d € R is the predicted user-item interaction in-
formation. w represents the parameters of the MLP-based
Decoder,. We optimize these parameters using a Mean
Squared Error (MSE) loss, enabling the generation of more
accurate and personalized recommendations as follows:

Lyse = ||d— 7|, (20)

where r € RIZ! is a binary vector, with 1 indicating an in-
teraction between the user and the item, and O indicating no
interaction.

Finally, the loss function utilized during training is formu-
lated by integrating three distinct components, represented as
follows:

L=Lpry+alce+ BLusE, 21

where « and [ are hyperparameters that govern their relative
importance. A more detailed training procedure of FMREC
is presented in Appendix A.

Reverse Process

In the reverse process, we employ a deterministic reverse
sampler to model the generative process, thereby mitigat-
ing the errors introduced by the stochastic reverse sampler
in the diffusion-based recommendation system. Specifically,
the deterministic reverse sampler is defined as the updating
function for the following ordinary differential equation:

dzy = —ui(z¢|Tn)dt = (fo(zi,t) — @ )dt. (22)

To solve this equation, we iteratively apply the Euler method
to compute the point transformations guided by the vector
field, as given by

zt+At = Zt + (f@(zt, t) — C]’Jn)At, (23)

Dataset #Users #Items # Actions Sparsity
Beauty 22,361 12,101 198,502  99.93%
Steam 281,428 13,044 3,485,022 99.90%
Movielens-100k 943 1,682 100,000 93.70%
Yelp 28,298 59,951 1,764,589 99.90%

Table 1: The statistics of the datasets.

where At is determined by a custom number of Euler method
steps, denoted as ¢, with At = %. This process is iteratively

calculated from ¢ = 0 to ¢ = 1, resulting in 2; as the fully
denoised generation &., which represents the corresponding
item embedding. The inference procedure of FMREC is pre-
sented in Appendix A.

S5 Experiment

This section presents comprehensive experiments to demon-
strate the effectiveness of FMREC.

5.1 Experimental Settings

Dataset We evaluate FMREC’s effectiveness using four
widely recognized publicly available datasets: (1) Amazon
Beauty [Ni et al., 2019] contains global purchasing interac-
tions and user reviews for beauty products on the Amazon
platform, documenting the purchasing history of 22,361 users
across 12,101 products. (2) Steam is a leading PC game dis-
tribution platform with 3,480,000 interaction records from
280,000 gamers; (3) Movielens-100k [Harper and Konstan,
2015] is a widely used benchmark dataset in sequential rec-
ommendation research, providing ratings from 943 users on
1,682 movies from the Movielens platform; and (4) Yelp is
a popular review site featuring user reviews and 1,764,589
ratings for various businesses, including restaurants, enter-
tainment venues, and hotels. The statistics of the dataset are
provided in Table 1.

Baselines We compare FMREC against both widely
adopted and recently introduced baseline models: (1)
GRU4Rec utilizes GRU to capture in-session behavioral pat-
terns and predict subsequent user item preferences [Hidasi
et al., 2015]; (2) Caser leverages convolutional neural net-
works to map user action sequences into both temporal and
latent spaces [Tang and Wang, 2018]; (3) SASRec introduces
adecoder architecture for sequential recommender model that
effectively captures long-term dependencies in user behav-
ior [Kang and McAuley, 2018]; (4) BERT4Rec employs a
bidirectional Transformer architecture, coupled with a Cloze
task for training, to effectively learn users’ dynamic prefer-
ences [Sun et al., 2019]; (5) STOSA utilizes Wasserstein at-
tention to introduce a degree of uncertainty within its model,
allowing for the accurate representation of evolving user pref-
erences [Fan er al., 2022]; (6) AutoSeqRec leverages a multi-
autoencoder framework to fuse long-term user preferences
and short-term interests for sequential recommendation [Liu
et al., 2023]; (7) DreamRec achieves direct generation of
personalized oracle item embeddings through guided diffu-
sion model [Yang et al., 2024]; (8) DiffuRec models items as
distributions using diffusion model, capturing multi-faceted
content and user preferences [Li ef al., 2023].
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Dataset Metric GRU4Rec Caser SASRec BERT4Rec STOSA AutoSeqRec DreamRec DiffuRec FM4Rec A%
HR@5 1.0112  1.6188 3.2688 2.1326  3.8814 4.9628 4.9833 5.3943 5.8373 821%

. HR@10 1.9370  2.8166 6.2648 37160  6.1262 7.1016 6.9821 7.8374 8.2693 5.51%
= HR@20 3.8531  4.4048 8.9791 57922 9.0954 9.3342 9.4531 10.9358 11.626 6.31%
3 NDCG@5 0.6084  0.9758 2.3989 1.3207  2.4859 3.3186 3.2507 3.9153 41631 6.33%
= NDCG@10 0.9029  1.3602 3.2305 1.8291  3.2053 4.0157 3.9769 4.6971 4.9461 5.30%
NDCG@20 1.3804  1.7595 3.6563 2.3541 3.9491 5.0133 4.9860 5.4784 5.7876 5.64%

HR@5 3.0124  3.6053 4.7428 47391  4.8546 5.0021 5.1267 6.0073 6.5254 8.62%

HR@10 5.4257  6.4940 8.3763 7.9448  8.5870 8.7741 8.9875 9.8437  10.5908 7.59%

§ HR@20 9.2319 10.9633  13.6060 12.7322  14.1107 14.6752 15.0871 15.3817  16.4669 7.06%
% NDCG@5 1.8293  2.1586 2.8842 29708  2.9220 3.0912 3.1507 3.8109 4.1878 9.89%
NDCG@10 2.6033  3.0846 4.0489 4.0002  4.1191 4.4729 4.6416 5.0429 5.4925 891%

NDCG @20 35572 4.2043 5.3630 52027  5.5072 5.9823 5.9701 6.4340 6.9689 8.31%

= HR@5 77412 6.0438 6.5748 5.0901 8.0148 8.7320 7.3692 7.5209 9.3338 6.89%
2. HR@10 12.1951 11.2426  13.5737 9.3319 13.6542 14.6641 12.4377 12.8501  15.4934 5.66%
2 HR@20 21.8451 19.5189  22.6935 16.8611 21.7761 22.8724 20.8357 19.4127 243146 6.31%
= NDCG@5 45982 33721 4.1333 3.0850  4.9721 5.5010 4.2503 4.6969 5.6848 3.34%
E NDCG@10 6.0326  5.0683 6.3427 44568  5.2159 7.3955 5.9837 6.4136 7.6571 3.53%
= NDCG@20 8.4727  7.1439 8.6340 6.3442  8.3302 9.4584 7.8234 8.0459 9.8158 3.78%
HR@5 2.4560  2.0956 2.8389 2.2465  1.9360 OOM 1.7486 3.0390 3.3084 8.86%

HR@10 42335 37140  4.8569 4.0581  3.3858 OOM 1.9362 5.075 5.4421 7.23%

% HR@20 7.4952  6.6189 8.2656 7.0433  5.7285 OOM 3.5873 8.5447 9.0631 6.07%
> NDCG@5 1.5588 1.3108 1.8301 1.4027 1.2100 OOM 1.1740 1.9868 21174 6.57%
NDCG@10 2.1269  1.8311 2.5466 19732 1.6728 OOM 1.5268 2.6352 2.7855 5.71%
NDCG@20 29431  2.5607 3.3144 27233  2.2584 OOM 2.3641 3.4395 3.618 5.19%

Table 2: Overall performance comparison across four benchmark datasets, presented as percentages (%). We highlight the highest-performing
metric values in bold and the second-best values in underlined. The symbol A indicates the relative performance improvement of FMREC
compared to the best baseline model. OOM refers to the out-of-memory problem.

Evaluation Protocol Following the procedures in [Sun ez
al., 2019; Li et al., 2023], we split user interaction sequences
into three parts: the first m — 2 sequences formed the training
set, while 7,,_1 and 7,, served as targets for the validation
and test sets, respectively. We evaluated performance using
the metrics HR@ K (Hit Rate@ K') and NDCG@ K (Normal-
ized Discounted Cumulative Gain@ K'). Each baseline model
generates a ranked list of items predicted for the next interac-
tion based on user history, considering all dataset items as
candidates, with K values set at {5, 10, 20}.

Implementation Details The implementation details are as
follows: both Decoder; and Decoder, consist of 2 lay-
ers, with a hidden dimension of 128 and 4 attention heads.
The item embedding dimension is also set to 128. The
Decoder,, is a three-layer MLP with tanh activations, fea-
turing layer sizes of {128,512,2048,|Z|}, mapping 128-
dimensional decoder outputs to the number of items. Hy-
perparameters include a batch size of 512, a learning rate of
0.001, and a maximum user interaction sequence length of 50.
The loss weighting parameters « and 3 are set to 0.2 and 0.4,
respectively. The scaling parameter s in the timestep sched-
ule is set to 1.0. Besides, we use 30 Euler integration steps for
generation. All experiments are conducted on a server with
two Intel XEON 6271C processors, 256 GB of memory, and
four NVIDIA RTX 3090 Ti GPUs.

5.2 Overall Performance Comparison

The experimental results and performance comparisons with
baseline models are presented in detail in Table 2. From the
table, we have the following observations: (1) The FMREC
model shows a notable advantage over existing SOTA
methods across four benchmark datasets. Significant im-
provements are consistently observed in the Beauty, Yelp,

Movielens-100k, and Steam datasets with HR increasing by
5.5 — 8.9% and NDCG rising by 3.3 — 9.9%; (2) FM-
REC can effectively eliminate the negative influence of
noise perturbations associated with diffusion-based rec-
ommendation methods. Specifically, we observe that FM-
REC outperforms both DreamRec and DiffuRec, achieving
superior results with an average improvement of 12.44% on
HR @5, which confirms that the deterministic reverse sam-
pler and regularized loss are beneficial for generating more
accurate recommendation. (3) Generative models demon-
strate greater effectiveness in capturing user preferences
and providing enhanced recommendations. Particularly,
DreamRec, DiffuRec, and FMREC show marked improve-
ments in performance over SOTA traditional sequential rec-
ommender models by large margins of 13.7%, 27.93%, and
34.98% on HR@5.

5.3 Analytical Experiment

This section evaluates the effectiveness of each design op-
tion in FMREC and analyzes the impact of hyperparameter
configurations on model performance. We present results of
Beauty and Movielens-100k as examples. Additional results
are available in Appendix B.

Influence of Flow Matching Loss In this work, we have
modified the Flow Matching loss from directing predicting
the overall vector field, i.e., Equation (11), to the modified
vector field, i.e., Equation (13). To demonstrate its effective-
ness, Table 3 presents the comparison between the model us-
ing the modified loss and the naive loss (v-prediction in Ta-
ble 3) from the Flow Matching loss. From the table, we ob-
serve a notable performance drop when using the naive Flow
Matching loss. This suggests that directly predicting the
vector field results in inaccurate modeling of user pref-
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Beauty
HR@5 HR@10 HR@20 NDCG@5 NDCG@10 NDCG@20
v-prediction  0.5753 1.1962 2.0276 0.3138 0.5104 0.7948
FMREC 5.8373 8.2693 11.626 4.1631 4.9461 5.7876
Movielens-100k
HR@5 HR@10 HR@20 NDCG@5 NDCG@10 NDCG@20
v-prediction  0.8251 1.5239 2.2085 0.4637 0.7524 0.9896
FMREC 9.3338 15.4934 24.3146 5.6848 7.6571 9.8158

Table 3: Performance comparison using different Flow Matching
losses, presented as percentages (%). The v-prediction approach
employs the naive training loss. FMREC utilizes the modified Flow
Matching loss.

erences, which significantly undermines the model’s perfor-
mance.

Beauty Movielens-100k
25 1
10 = Cosine [ Cosine
I FMRec 20 { HEE FMRec
8 B
4 ¥ 15 1
® 6 ]
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HR@5 HR@10 HR@20 HR@5 HR@10 HR@20

Figure 3: Performance comparison based on different flow trajec-
tories, measured as percentages(%): “Cosine” represents the results
obtained using the Cosine trajectory, while “FMREC” denotes the
use of the straight trajectory.

Effectiveness of Straight Trajectories To demonstrate the
effectiveness of straight trajectories, we use the Cosine tra-
jectory as a baseline for comparison. This trajectory has been
employed in IDDPM [Nichol and Dhariwal, 2021] to achieve
superior performance compared to DDPM [Ho er al., 2020].
In Figure 3, we present the results for both the Cosine trajec-
tory (denoted as “Cosine”) and straight trajectories (FMREC)
on the Beauty and Movielens-100k datasets. The figure re-
veals a noticeable performance drop when using the Cosine
trajectory, highlighting that straight trajectories improve ro-
bustness against error propagation. This robustness facilitates
faster convergence to optimal results with fewer iterations.
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Figure 4: Comparison of model performance across various v and
(3 on the Beauty dataset, measured as percentages(%). These param-
eters affect the importance of the cross-entropy loss and the recon-
struction loss.

Effectiveness of Regularized Lossesd FMREC incorpo-
rates two regularized loss functions to enhance the model’s

ability for recommendation. This section analyzes its effec-
tiveness by examining the influence of the parameters a: and
B, as illustrated in Figure 4. Specifically, the figure displays
the model’s performance when trained with various combi-
nations of « and 3 on the Beauty dataset. From Figure 4, we
observe that an optimal setting of &« = 0.2 and 5 = 0.4 yields
the best performance. Low values of « can significantly im-
pact model performance, while excessively high values of «
can also adversely affect it to some extent. In contrast, choos-
ing an appropriate 3 can enhance the overall performance of
the model. These results indicate that both regularized loss
functions are crucial for maintaining the effectiveness of
the proposed FMREC model.

Beauty Movielens-100k
25 1
3 0.1 3 0.1
101 =3 o.01 3 0.01
B 0.001 207 mmm 0.001

HR@K
()]
HR@K

HR@5 HR@10 HR@20

HR@5 HR@10 HR@20

Figure 5: Performance comparison across different values of ¢, mea-
sured as percentages(%), where § controls the weight of noise per-
turbation in the user’s sequential interactions fed into the model.

Influence of Noise Perturbation Before feeding the user’s
sequential interactions into the model, FMREC incorporates
noise to meet the requirements of Flow Matching, where §
controls the fusion ratio’s influence. To examine the im-
pact of noise perturbation, we conduct experiments with § €
{0.1,0.01,0.001}. Figure 5 presents the performance com-
parison across different § values. From the figure, we ob-
serve that the best performance is achieved when § was set to
0.001, demonstrating that an appropriate level of noise per-
turbation enhances performance. Conversely, too large noise
perturbation might lead to deviations in the calculation of the
vector field during the reverse process and negatively impact
the generation performance.

6 Conclusion

In conclusion, this work introduces a sequential recommen-
dation model using Flow Matching, a simplified diffusion
model that effectively mitigates noise perturbations of the
diffusion-based model. By employing a straight flow trajec-
tory and deriving a noise-free training target, our method re-
duces error accumulation in modeling user preferences. Ad-
ditionally, the integration of a decoder architecture with an
interaction reconstruction loss increases robustness against
noise, ensuring precise user preference modeling. Further-
more, our deterministic reverse sampler, utilizing the Euler
method, removes random perturbations during recommenda-
tion generation. Extensive experiments on four benchmark
datasets demonstrate that our method, FMREC, achieves an
average improvement of 6.53% over SOTA techniques.
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