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Abstract
The principal portfolio approach is an emerging
method in signal-based trading. However, these
principal portfolios may not be diversified to ex-
plore the key features of the prediction matrix or
robust to different situations. To address this prob-
lem, we propose a novel linear trading position with
sparse spectrum that can explore a larger spectral
region of the prediction matrix. We also develop a
Krasnosel’skiı̆-Mann fixed-point algorithm to opti-
mize this trading position, which possesses the de-
scent property and achieves a linear convergence
rate in the objective value. This is a new theoret-
ical result for this type of algorithms. Extensive ex-
periments show that the proposed method achieves
good and robust performance in various situations.

1 Introduction
In general, asset pricing starts with finding some current sig-
nals St ∈ RN as proxies for the conditional expected returns
Rt+1 ∈ RN at the next time, which gives rise to signal-based
trading [Gibbons et al., 1989]. Since asset correlation ex-
ists in most cases, linear trading strategies are proposed to
exploit cross-predictability (see Figure 1) [Gârleanu and Ped-
ersen, 2013; Collin-Dufresne et al., 2020; Lai et al., 2024;
Lin et al., 2024b; Lin et al., 2024a]. Recently, [Kelly et al.,
2023a] propose to directly combine signals and returns into
a bi-linear form with a “prediction matrix”, and extract sev-
eral principal portfolios (PP) of this prediction matrix to form
a linear trading position (LTP). [Kelly et al., 2023b] further
propose a conditional factor model for individual corporate
bond based on instrumented principal components analysis
(IPCA,[Kelly et al., 2019]). This approach exploits the pre-
dictability from both own-asset signal and other-asset signals,
while keeping a closed-form LTP. It not only keeps a concise
portfolio but also improves interpretability of LTP in finance,
which leads a new direction in future research.

However, LTP composed by several PPs may not be di-
versified to explore the key features of the prediction matrix.

∗Corresponding author.
**The supplementary material and code for this paper are avail-

able at https://github.com/laizhr/LTPSS.
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Figure 1: Top: cross-sectional linear trading position. The arrows
show the information flow from the signals of all the assets to the
position of the fourth asset. Bottom: the closed-form solution (blue
bars, LTP-CF) employs all the principal portfolios; the principal
portfolio strategy (green bars, LTP-PP) selects the first several prin-
cipal portfolios; while the proposed method (red bars, LTPSS) sets
diversified spectral energies in [0, 1].

First, it is recognized in [Kelly et al., 2023a] that including
more PPs into the LTP does not necessarily lead to better per-
formance. Second, the spectral energy of each PP is either 1
(selected) or 0 (non-selected), and cannot be adjusted in the
current framework (green or blue bars in Figure 1). Third, the
choice of PPs relies on empirical experience. [Kelly et al.,
2023a] suggest empirically using the first three PPs (green
bars in Figure 1) as they possess the most proportion of sin-
gular value magnitude, but it may not be robust to different
situations (see Supplementary A.5).

Importance of diversification: given a simple economic
system with 10 states and 10 assets. On each trading pe-
riod, only one state can occur, and each state occurs with
10% probability. If state i occurs, the price of Asset i will
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increase by 10%, while those of others will decrease by 1%.
Then if an investor invests all his/her wealth in only one asset,
he/she will have only 10% probability to gain 10% return, but
90% probability to lose 1%. However, if he/she diversifies the
wealth equally in 10 assets (each with 10% of the position),
he/she will have 100% probability to gain 1% return without
taking the risk of losing wealth.

The same law also holds for PPs, where each PP can be
considered as an asset in the above example. Then the diver-
sification over PPs leads to the sparse spectrum concept
that has been widely used in various machine learning sce-
narios, such as matrix completion [Cai et al., 2010; Candès
and Recht, 2012], knowledge base completion [Lacroix et al.,
2018], graph representation learning [You et al., 2020], and
insufficient-label recognition [Cui et al., 2020]. We aim to
employ this concept in the LTP framework to extract the key
features of the prediction matrix (red bars in Figure 1). There
are some main difficulties: 1. This problem has a three-part
complicated non-differentiable geometrical structure with the
Frobenius, nuclear, and spectral norms. A common solver is
the semi-definite programming (SDP) with a conic reformu-
lation, which is a surrogate model that cannot achieve full-
reinvestment and thus result in poor performance. 2. The
projection onto the self-financing constraint [Lai et al., 2020;
Lai and Yang, 2023] is nonlinear and non-orthogonal, which
rules out most projected subgradient approaches that require
orthogonality and the inner product property of the Hilbert
space. 3. The descent property and the convergence rate of
the solving algorithm are difficult to established.

To address the above challenges, we mainly offer the fol-
lowing contributions. 1. We propose a Linear Trading Posi-
tion with Sparse Spectrum (LTPSS) that can explore a larger
spectral region of the observation matrix, while keeping a
sparse and concise representation. 2. We prove that the non-
linear and non-orthogonal projection onto the feasible set is
non-expansive, which is crucial to the convergence of the
whole solving algorithm. 3. We develop a Krasnosel’skiı̆-
Mann (KM) fixed-point algorithm to solve LTPSS. It pos-
sesses the descent property and achieves a linear convergence
rate in the objective value. To the best of our knowledge, this
is a new theoretical result for KM algorithms, as the current
best result is o

(
1
k

)
in the fixed point iteration gap [Boţ and

Nguyen, 2023], but not in the objective value. This new find-
ing may reveal greater breakthroughs for KM algorithms.

2 Preliminaries and Related Works
2.1 Linear Trading Position with Principal

Portfolios
We start with introducing the concepts of LTP and PP. Let
St ∈ RN and Rt+1 ∈ RN be the signals at time t and re-
turns at time (t + 1) for the N assets in a financial market,
respectively. The portfolio optimization task is to find an LTP
L ∈ RN×N such that

maxE[S⊤
t LRt+1]. (1)

In finance, a self-financing constraint is usually imposed to
ensure a realistic and feasible trading position, which means
that no external money can be added to the position once the

trading strategy starts [Lai et al., 2020; Lai and Yang, 2023].
In the framework of [Kelly et al., 2023a; Kelly et al., 2023b],
the following self-financing constraint is used

Ω := {L ∈ RN×N : ∥L∥2 ⩽ 1}, (2)
where ∥·∥2 denotes the ℓ2 norm (spectral norm) of a matrix. A
trivial strategy satisfying this constraint is the simple factor:

L̂SF := I(N), (LTP-SF)
where I(N) denotes the identity matrix of N dimensions. It
only uses the own signal of each asset to determine its posi-
tion. The original LTP model can be formulated as:

max
L∈Ω

tr(LΠ), Π := E[Rt+1S
⊤
t ], (LTP)

where tr(·) denotes the trace operator of a matrix. This for-
mulation exploits the commutative law and the linearity of the
trace operator:

E[S⊤
t LRt+1] = E[tr(LRt+1S

⊤
t )] = tr(LE[Rt+1S

⊤
t ]).

Π is called a prediction matrix, which contains all the infor-
mation that can be exploited to determine L. [Kelly et al.,
2023a] propose to estimate it by the empirical estimator:

Π̂ :=
1

T

t−1∑
τ=t−T

Rτ+1S
⊤
τ . (3)

Since the matrix ℓ2 norm is equivalent to the Schatten ∞-
norm, it follows from the Hölder’s inequality that

tr(LΠ̂) ⩽ ∥L∥2∥Π̂∥∗, (4)
where ∥ · ∥∗ denotes the nuclear norm of the matrix. The
equality holds if and only if L is linear to (Π̂⊤Π̂)−

1
2 Π̂⊤.

Since ∥L∥2 ⩽ 1,

L̂CF := (Π̂⊤Π̂)−
1
2 Π̂⊤ (LTP-CF)

is exactly the closed-form solution to (LTP) with the empiri-
cal estimator Π̂.

Instead of L̂CF , [Kelly et al., 2023a] propose to use the
PPs of Π̂ to develop the LTP L. To do this, the first step is to
conduct the singular value decomposition (SVD) of Π̂⊤ as

Π̂⊤:=UΣV ⊤,Σ:=diag({σi}Ni=1), σ1⩾σ2⩾ · · ·⩾σN⩾0,
(5)

where U ,V ,U⊤,V ⊤ are orthonormal bases of RN×N .
Then the principal components {unv

⊤
n }Nn=1 are defined as

the PPs of the prediction matrix Π̂, where un and vn are the
n-th columns of the matrices U and V , respectively. [Kelly
et al., 2023a] propose to use the first several PPs to construct
an LTP:

L̂PP :=
l∑

n=1

unv
⊤
n , (LTP-PP)

where l denotes the number of selected PPs. This LTP has
a simple form, and is highly interpretable in the literature of
finance. However, it may not be diversified to capture the
key features of Π̂. First, the setting of l relies on empirical
experience. As indicated by [Kelly et al., 2023a], a larger l
does not necessarily lead to better results. Second, (LTP-PP)
indicates that the spectral energy of a selected PP is fixed as
1, which may not be adaptive to different situations.
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2.2 Surrogate Model
There are some surrogate models for the proposed (LTPSS)
model in Section 3.1. One main approach is to reformu-
late (LTPSS) as a semi-definite conic programming1 (SDCP).
Specifically,

∥L∥2 ⩽ 1 ⇔
[
I(N) L
L⊤ I(N)

]
⪰ 0, (6)

∥L∥∗ ⩽ l ⇔
[
U L
L⊤ V

]
⪰ 0, s.t.

1

2
(trU + trV ) ⩽ l, (7)

where U , V , and l are auxiliary arguments that need to be
optimized simultaneously with L. Then the surrogate model
of (LTPSS) is:

min
L,U ,V ,l

−tr(LΠ̂) + ηl,

s.t.
[
I(N) L
L⊤ I(N)

]
⪰0,

[
U L
L⊤ V

]
⪰0,

1

2
(trU+trV ) ⩽ l.

(SDCP)

This model is not equivalent to (LTPSS). It directly re-
places ∥L∥∗ in (LTPSS) by l, which is only an upper bound
of ∥L∥∗. Besides, the mainstream solvers for (SDCP) are
based on interior-point primal-dual algorithms, which cannot
achieve the equality ∥L∥2 = 1 but only satisfy ∥L∥2 < 1.
In the experiments, we observe that ∥L∥2 ≈ 0.9826 in all the
cases, with both absolute solution tolerance and constraint
tolerance being 1e − 6. In this case, the investing capital
can not be fully exploited and the investing performance is
unsatisfactory (see Table 1). Worse still, it significantly in-
creases computational complexity due to the auxiliary ar-
guments U , V , and l. The dimensionality for the constraints
of (SDCP) quadruples that of (LTPSS).

3 Methodology
To address the above problems, we propose to expand the
spectral region of LTP. First, we consider all the PPs to con-
struct the LTP. Second, we allow for flexible spectral energies
in [0, 1]. Third, we impose sparse spectrum on the LTP to ex-
tract the key features of the prediction matrix Π̂. Fourth, we
develop a KM fixed-point algorithm to directly solve (LTPSS)
instead of using the defective and deficient surrogate model
(SDCP).

3.1 Linear Trading Position with Sparse Spectrum
Since an LTP L ∈ RN×N , our framework is developed on
the linear space RN×N , which is more complicated than RN .
First of all, we consider RN×N as a Hilbert space, then the
trace operator tr(A⊤B) =: ⟨A,B⟩ is the inner product of A
and B, for any A,B ∈ RN×N . Moreover,

√
tr(A⊤A) =

∥A∥F and thus the Frobenius norm is the induced norm from
the trace operator for RN×N . First, we give some properties
of the constraint set Ω defined in (2).

Proposition 1. Ω is a convex, closed, and bounded subset of
RN×N .

1https://www.seas.ucla.edu/∼vandenbe/236C/lectures/conic.pdf

Proof. ∀A,B ∈ Ω and ∀θ ∈ [0, 1],
∥θA+(1−θ)B∥2⩽θ∥A∥2+(1−θ)∥B∥2⩽θ+(1−θ)=1.

(8)

Hence ∥θA + (1 − θ)B∥2 ∈ Ω and Ω is convex. Since
Ω is a sub-level-set of the continuous function ∥ · ∥2, it is

closed [Rockafellar and Wets, 2009]. ∥L∥F =
√∑N

i=1 λ
2
i ,

where {λi}Ni=1 are the singular values of L (singular values
are non-negative). (2) indicates that (max1⩽i⩽N λi) ⩽ 1.
Hence ∥L∥F ⩽

√
N for any L ∈ Ω, which proves that Ω is

bounded.

Next, we propose the following LTPSS model:

min
L∈Ω

F (L) := f(L) + g(L) := −tr(LΠ̂) + η∥L∥∗,
(LTPSS)

where η ⩾ 0 is a regularization parameter. f(L) has the gra-
dient ∇f(L) = −Π̂⊤, while g(L) is non-differentiable. Fur-
thermore, the constraint L ∈ Ω is also a non-differentiable
structure. In summary, (LTPSS) has three parts with the
Frobenius, nuclear, and spectral norms, where the lat-
ter two are non-differentiable. By dropping either g(L)
or L ∈ Ω, it can be reduced to a common problem that
can be solved by either projected gradient or proximal
gradient methods, respectively. However, with both non-
differentiable parts present, (LTPSS) cannot be effectively
and efficiently solved via common approaches.

Fact: there exists at least one solution to (LTPSS). Since
F (L) is a continuous function on L and Ω is a convex and
compact set, this fact follows from the Weierstrass extreme
value theorem.

3.2 Krasnosel’skiı̆-Mann Fixed-point Algorithm
To address the above difficulty, we develop a KM fixed-point
scheme to solve (LTPSS), which alternately minimizes F (L)
and projects L onto Ω. Denote the k-th iterate of L by L(k).
Then in the next iteration, we can use a quadratic approxima-
tion to F (L):

Q(L,L(k)) = −tr(L(k)Π̂)− β

2
∥Π̂∥2F

+
1

2β
∥L−L(k) − βΠ̂⊤∥2F + η∥L∥∗, (9)

where β > 0 is the step size parameter (which can be seen
later). By ignoring the constant terms with respect to (w.r.t.)
the argument L and temporarily relaxing the constraint L ∈
Ω, we minimize Q(L,L(k)):

min
L∈RN×N

Q(L,L(k)) ⇐⇒

argmin
L∈RN×N

{
1

2β
∥L− (L(k) + βΠ̂⊤)∥2F + η∥L∥∗

}
=: proxβη∥·∥∗

(L(k) + βΠ̂⊤), (10)

which is the proximal mapping of (L(k) + βΠ̂⊤) w.r.t. the
function βη∥ · ∥∗. It has a closed form solution [Cai et al.,
2010]. Conduct the SVD of (L(k) + βΠ̂⊤) as

L(k) + βΠ̂⊤ = ŨΛṼ ⊤, Λ := diag({λi}Ni=1). (11)
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Then the singular value thresholding of Λ is

Λ̃ := diag({sign(λi) ·max{|λi| − βη, 0}}Ni=1). (12)

To be intuitive, Λ̃ drags each singular value of Λ towards 0
by a step βη. The closed form solution to (10) is

G (L):=L+βΠ̂⊤, L̃(k):=proxβη∥·∥∗
(G (L(k)))=ŨΛ̃Ṽ ⊤,

(13)
which is actually a proximal-gradient operator. Next, we need
to design a feasible projection operator to project L̃(k) onto
the constraint set Ω.
Definition 2. Recall the singular vectors of Π̂⊤ defined in
(5) as U and V . Given any matrix A ∈ RN×N , let Γ :=
U⊤AV and γii be the i-th diagonal element of Γ. Define

Γ̌ := diag({γ̌i}Ni=1), γ̌i :=

{
sign(γii), if |γii| > 1;

γii, if |γii| ⩽ 1,
,

projΩ(A) := U Γ̌V ⊤. (14)
Note that projΩ is a nonlinear and non-orthogonal pro-

jection, but it is a non-expansive operator, which is crucial
to the convergence of the whole algorithm.
Theorem 3. projΩ defined in (14) is non-expansive.

Proof. First, it can be easily observed from the definition of
projΩ that projΩ ◦ projΩ = projΩ: the first projΩ makes
every γ̌i lie in [−1, 1], then the second projΩ will not change
γ̌i any more. Thus projΩ is a projection (not necessarily lin-
ear or orthogonal) by definition. Second, to prove projΩ is
non-expansive, we need to verify that

∥projΩ(A)−projΩ(B)∥F⩽∥A−B∥F , ∀A,B ∈ RN×N .
(15)

Let A = U(U⊤AV )V ⊤ := UΓV ⊤ and B =
U(U⊤BV )V ⊤ := UΛV ⊤. Then projΩ(A) = U Γ̌V ⊤

and projΩ(B) = UΛ̌V ⊤. (15) is equivalent to

∥U Γ̌V ⊤ −UΛ̌V ⊤∥2F⩽∥UΓV ⊤−UΛV ⊤∥2F ,
tr[(U Γ̌V ⊤−UΛ̌V ⊤)⊤(U Γ̌V ⊤−UΛ̌V ⊤)]

⩽tr[(UΓV ⊤−UΛV ⊤)⊤(UΓV ⊤−UΛV ⊤)].
(16)

Since U and V are orthonormal bases of RN ,
∥UΓV ⊤∥2F = tr(V Γ⊤U⊤UΓV ⊤) = tr(V Γ⊤ΓV ⊤)

=tr(V ⊤V Γ⊤Γ) = tr(Γ⊤Γ) = ∥Γ∥2F . (17)
By similar transformations, (16) can be simplified as

∥Γ̌∥2F+∥Λ̌∥2F−2tr(Λ̌Γ̌)⩽∥Γ∥2F+∥Λ∥2F−2tr(Λ⊤Γ) (18)

⇔
N∑
i=1

(γ̌i − λ̌i)
2 ⩽

N∑
i=1

N∑
j=1

(γij − λij)
2. (19)

(19) will hold if
|γ̌i − λ̌i| ⩽ |γii − λii|, i = 1, · · · , N. (20)

(14) indicates that γ̌i and λ̌i are one-dimensional projec-
tions of γii and λii onto the compact interval [−1, 1], respec-
tively. Such one-dimensional projection is non-expansive,
which means that (20) holds. Back from (20) to (15), projΩ
is non-expansive.

Now L̃k can be projected onto Ω by

projΩ(L̃
(k)) = UΛ̂V ⊤. (21)

(13) and (21) yield a composed operator:

T (L(k)) := projΩ ◦ proxβη∥·∥∗
◦ G (L(k)). (22)

Theorem 4. T : RN×N → RN×N is a non-expansive oper-
ator.

The proof is put in Supplementary A.1.
Proposition 5. There exists a fixed-point in Ω for T .

The proof is put in Supplementary A.2. Denote FΩ :=
{A ∈ Ω : T (A) = A} ̸= ∅ as the fixed point set of T on
Ω. The next step is to develop a convergent algorithm with
T . Given any initial point L(0), let L(1) := T (L(0)) and
then L(1) ∈ Ω. We develop a KM iteration with θ ∈ (0, 1) as
follows

L(k+1) := (1− θ)L(k) + θT (L(k)), k = 1, 2, · · · (23)

Since L(1) ∈ Ω, T (L(1)) ∈ Ω, and Ω is convex, (23) implies
L(2) ∈ Ω. It follows from mathematical induction that the
whole iterative sequence {L(k)}k⩾1 ⊆ Ω.

3.3 Descent Property and Linear Convergence
Rate

Theorem 6 (Krasnosel’skiı̆-Mann). The iterative sequence
{L(k)}k⩾1 produced by (23) converges to a fixed point L∗ ∈
FΩ.

The proof of this theorem is put in Supplementary A.3. In
addition, the corresponding objective value F (L(k)) also de-
scends and converges with a linear convergence rate. This
is a new theoretical result for KM algorithms, as the cur-
rent best result is o

(
1
k

)
in the fixed point iteration gap

∥(L(k) − T (L(k))∥F [Boţ and Nguyen, 2023], but not in
the objective value. In fact, it is difficult to deduce the conver-
gence rate of KM algorithms in the objective value for general
problems.

Theorem 7. The iterative sequence {L(k)}k⩾1 produced by
(23) satisfies the descent property:

F (L(k+1))− F (L(k)) ⩽ 0, ∀k ⩾ 1. (24)

Moreover,
(a) If σi ̸= η and λ

(k)
i ̸= 0 for some i, then F (L(k+1)) −

F (L(k)) < 0.
(b) If σi ̸= η for all i, then F (L(k)) achieves a linear

convergence rate.

Proof. Part (a): Given any initial L(0), since the last com-
ponent of T is projΩ defined in (14), L(1) has the following
form:

L(1)=T (L(0))=projΩ◦proxβη∥·∥∗
◦G (L(0))=UΛ(1)V ⊤,

where Λ(1) := diag({λ(1)
i }Ni=1) with λ

(1)
i ∈ [−1, 1] for all i.

Suppose

L(k) = UΛ(k)V ⊤, λ
(k)
i ∈ [−1, 1], ∀i. (25)
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Similar to the above deduction,

T (L(k)) = UΓ(k)V ⊤, γ
(k)
i ∈ [−1, 1], ∀i. (26)

Note that L(k), T (L(k)) and Π̂⊤ have the same singular vec-
tors U and V . Hence the operators G , proxβη∥·∥∗

, and projΩ
actually act on the diagonal matrix Λ(k) in an element-wise
way, based on their definitions (13) and (14). For each i,

γ
(k)
i =

{
min{max{λ(k)

i +β(σi−η), 0}, 1}, if λ(k)
i +βσi⩾0;

min{λ(k)
i + β(σi + η), 0}, if λ(k)

i + βσi < 0.

(27)

Since β, σi, η ⩾ 0 and λ
(k)
i ⩾ −1, λ(k)

i + β(σi + η) will not
be smaller than −1. Hence the second case is simplified. It
follows from (23) that

L(k+1) =U [(1− θ)Λ(k) + θΓ(k)]V ⊤ =: UΛ(k+1)V ⊤,

λ
(k+1)
i ∈ [−1, 1], ∀i.

By mathematical induction, (25), (26), and (27) hold for any
k ⩾ 1. Direct calculation leads to

F (L(k))− F (L(k+1))

=tr((L(k+1) −L(k))Π̂⊤) + η
N∑
i=1

(|λ(k)
i | − |λ(k+1)

i |)

=
N∑
i=1

[(γ
(k)
i − λ

(k)
i )θσi + η(|λ(k)

i | − |λ(k+1)
i |)]

=:
N∑
i=1

(Fi(L
(k))− Fi(L

(k+1))), (28)

where Fi(L
(k)) := η|λ(k)

i | − σiλ
(k)
i . (29)

We investigate each (Fi(L
(k)) − Fi(L

(k+1))) of (28) in
10 cases, provided in Supplementary A.4. To summarize,
each (Fi(L

(k))−Fi(L
(k+1))) of (28) is non-negative. Hence

F (L(k))−F (L(k+1)) ⩾ 0. Moreover, if σi ̸= η and λ
(k)
i ̸= 0

for some i, then σi − η ̸= 0, σi + η ̸= 0, and λ
(k)
i ̸= 0 for

this i. It can be seen that all the 10 cases lead to a positive
summand, and F (L(k))− F (L(k+1)) > 0.

Part (b): Following similar steps in (28) and (29),

F (L(1))− F (L∗) =

N∑
i=1

(Fi(L
(1))− Fi(L

∗)). (30)

Part (a) has already verified that each Fi(L
(1)) satisfies the

descent property. Moreover, Fi(L
(1)) ↓ Fi(L

∗) for each
i, otherwise F (L(1)) cannot monotonically converges to
F (L∗). Hence we can break (30) into each (Fi(L

(1)) −
Fi(L

∗)) for further investigation.
We further analyze the lower bounds of the 10 cases in Part

(a): Fi(L
(k)) − Fi(L

(k+1)) = θ|η − σi||λ(k)
i | in case 6),

Fi(L
(k))− Fi(L

(k+1)) = θ|η + σi||λ(k)
i | in cases 7) and 8),

and Fi(L
(k)) − Fi(L

(k+1)) ⩾ c > 0 in all the other cases,
where c := βθ(σi − η)2 is a positive constant.

We start with the simplest situation. If Fi(L
(k)) never

falls into cases 6)∼8), then it keeps decreasing by at least
a positive constant c at each iteration. It takes at most
k := ⌈Fi(L

(1))−Fi(L
∗)

c ⌉ iterations to reach the target objec-
tive value. Hence, Fi(L

(k)) converges in constant steps.
Next, we investigate the situation where Fi(L

(k)) always
falls into case 6). Since Fi(L

(1)) ↓ Fi(L
∗) and λ

(k+1)
i =

(1− θ)λ
(k)
i , we have

Fi(L
(1))− Fi(L

∗) = θ|η − σi|
∞∑

m=1

|λ(m)
i |

= θ|η − σi||λ(1)
i |

∞∑
m=0

(1− θ)m. (31)

Dropping the first k terms in the sum of (31) yields

Fi(L
(k+1))−Fi(L

∗) = θ|η−σi||λ(1)
i |(1−θ)k

∞∑
m=0

(1−θ)m

= θ|η−σi||λ(1)
i |(1−θ)k

1

θ
= |η−σi||λ(1)

i |(1−θ)k. (32)

Therefore,
Fi(L

(k+1))−Fi(L
∗) = (1−θ)(Fi(L

(k))−Fi(L
∗)), (33)

which is a linear convergence. Similarly, cases 7) and 8) also
result in a linear convergence.

As for the general situation, Fi(L
(k)) can visit any of the

10 cases at each iteration. Thus its convergence rate is dom-
inated by the slowest case, which is a linear convergence.
Summing up all the (Fi(L

(1)) − Fi(L
∗)) in (30), F (L(k))

achieves an overall linear convergence.

Theorem 7 indicates that LTPSS has a linear convergence
rate and thus requires O(log( 1ε )) iterations to achieve a con-
vergence tolerance of ε > 0. In each iteration, LTPSS re-
quires O(N2), O(N3), O(N2), and O(N2) to conduct a
gradient descent step, a singular value thresholding, a pro-
jection onto the feasible set, and a KM iteration, respec-
tively. Hence the computational complexity for one itera-
tion is O(N3), and the overall computational complexity of
LTPSS is O(N3 log( 1ε )). The computational complexities of
LTP-CF and LTP-PP are both O(N3), since they are closed-
form methods with one singular value decomposition. Nev-
ertheless, LTPSS improves investing performance on LTP-CF
and LTP-PP, which offsets the additional computational cost.

Figure 2 shows an example plot of log(F (L(k)) −
F (L(k+1))) for the proposed KM algorithm in one run that
converges at the 92-nd iteration. Since log(F (L(k)) −
F (L(k+1))) decreases in a step-wise way until convergence,
the KM algorithm enjoys considerable constant-step de-
scents. Other runs of the KM algorithm also have similar
plots. In order to make comparison, we remove the constraint
∥L∥2 ⩽ 1 so that the general proximal gradient method could
be applied, which may be the closest method to the KM al-
gorithm. The plot of the proximal gradient algorithm is also
shown in Figure 2, which indicates a worse convergence rate
than the KM algorithm.
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Figure 2: Convergence plots of the proposed KM algorithm and the
general proximal gradient algorithm.

4 Experimental Results
We follow the experimental framework of [Kelly et al.,
2023a; Lai and Yang, 2023; Lai et al., 2024] to evaluate the
performance of the proposed LTPSS. The experimental set-
tings and more experimental results are put in Supple-
mentary A.5.

4.1 Mean Return
At the t-th trading time, a trading strategy determines an
LTP L̂t+1 for the next trading time. Then the return of
this strategy for the next trading time can be computed by
rt+1 := S⊤

t L̂t+1Rt+1. Suppose there are T trading times in
total. Then the mean return (MR) of this strategy is MR :=
1
T
∑T

t=1 rt. It reflects the average investing gain of a trading
strategy during the whole investment. The MRs of different
trading strategies on the 7 benchmark data sets are shown in
Table 1. It indicates that LTP-PP performs well on the FF25
data sets, which are well interpreted by the Fama-French five
factors. But it deteriorates on the other data sets collected in
diverse financial circumstances. For example, LTP-PP suf-
fers a negative MR on Stoxx50, which represents a financial
market outside US. LTP-SF also performs badly with nega-
tive MRs on MSCI, Stoxx50, FOF, and FTSE100, which in-
dicates that using only the own signal of each asset is inef-
fective. SDCP has similar bad performance as LTP-SF, since
it cannot achieve full-reinvestment on each trade. mSSRM-
PGA has relatively low MRs because it is a uni-linear trading
strategy without an effective signal learning scheme. LTPSS
achieves the best MRs on most data sets except MSCI where
it is slightly worse than LTP-CF, hence more PPs may not
necessarily lead to better performance. It achieves greater ad-
vantage over LTP-SF and LTP-PP on MSCI, Stoxx50, FOF,
and FTSE100. For example, it performs about 1, 2, and 25
times better than LTP-PP on MSCI, FOF, and FTSE100, re-
spectively. These results indicate that LTPSS can extract key
features from the prediction matrix and performs robustly in
diverse financial circumstances.

4.2 Sharpe Ratio
The Sharpe ratio (SR, [Sharpe, 1966]) is a widely-used evalu-
ating metric for the risk-adjusted return of a trading strategy.

It can be calculated as follows in the framework of this pa-
per: SR :=

MR−rf
ŝ(rt)

, where rf is the average risk-free return
during the investment, and ŝ(·) is the sample standard devia-
tion operator. The SR need not be annualized and this does
not affect the assessment. rf is given on the FF25 data sets
but not given on MSCI, Stoxx50, FOF, and FTSE100. Hence
we set rf = 0 for the latter 4 data sets. The SRs of different
trading strategies are shown in Table 1. Again, SDCP, LTP-
SF, and mSSRM-PGA have similar bad performance due to
ineffective investing schemes. LTP-PP outperforms LTP-CF
on FF25BM and FF25MEINV, but it still performs badly on
Stoxx50 and FTSE100. It indicates that the first few PPs may
not be robust enough to different financial circumstances.

LTPSS achieves the best SRs on all the data sets, especially
on Stoxx50, FOF and FTSE100 where it keeps up robust per-
formance. The advantage of LTPSS over LTP-CF and LTP-
PP is large on Stoxx50. These results indicate that LTPSS is
effective and robust in balancing investing return and risk.

4.3 Information Ratio
In finance, it is conventional to factorize the return of a trad-
ing strategy for in-depth analysis of its composition. Follow-
ing [Kelly et al., 2023a], we adopt the following Fama-French
five-factor model:

rt =α+ ζ0rSF,t + ζ1MKTt + ζ2SMBt + ζ3HMLt

+ ζ4RMWt + ζ5CMAt + εt, (34)

where rt and rSF,t denote the returns on the t-th trading time
of a trading strategy and the LTP-SF strategy, respectively.
MKT (market), SMB (size), HML (value), RMW (profitabil-
ity), and CMA (investment) denote the Fama-French five fac-
tors. ζ0 ∼ ζ5 are the coefficients of the corresponding factors.
εt is the residue for this regression model. α [Lintner, 1965]
can be seen as the pure return of the trading strategy excluding
all the above-mentioned factors, which will be further inves-
tigated in Section 4.4. After conducting a regression for (34),
estimations for α̂ and ŝ(εt) can be obtained. The information
ratio (IR, [Treynor and Black, 1973]) is another widely-used
risk-adjusted return: IR := α̂

ŝ(εt)
. It can be seen as the pure

SR hedging out all the above-mentioned factors. Note that the
return of LTP-SF has also been hedged out in (34), thus LTP-
SF does not have IRs itself. As for other trading strategies,
a positive IR can be roughly considered as a better perfor-
mance than LTP-SF. Table 1 shows the IRs of different trad-
ing strategies. LTP-PP performs well on the FF25 data sets
but deteriorates on MSCI, Stoxx50, and FTSE100. In com-
parison, LTPSS outperforms LTP-CF and LTP-PP on all the
data sets, especially on MSCI and Stoxx50 where it achieves
effective and robust performance. These results also show its
good ability in balancing return and risk.

4.4 α Factor
α represents the pure return of a trading strategy based on the
market-neutral perspective, since it hedges out all the market-
related factors. It measures the intrinsic return that is brought
by the traded assets themselves instead of the market volatil-
ity. It is widely employed to evaluate the effectiveness of a
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Eval. Strategy FF25BM FF25MEINV FF25MEOP MSCI Stoxx50 FOF FTSE100

MR

SDCP 0.0121 0.0110 0.0111 -0.0126 -0.0087 -0.0015 -0.0795
LTP-SF 0.0120 0.0107 0.0109 -0.0170 -0.0097 -0.0017 -0.0274
LTP-CF 0.0133 0.0137 0.0130 0.0090 0.0004 0.0022 0.0242
LTP-PP 0.0129 0.0133 0.0126 0.0041 -0.0004 0.0012 0.0013

mSSRM-PGA 0.0006 0.0006 0.0006 -0.0003 -0.0003 0.0006 0.0036
LTPSS 0.0133 0.0143 0.0134 0.0087 0.0012 0.0030 0.0273

SR

SDCP 0.1429 0.1522 0.1626 -0.2702 -0.0738 -0.0254 -0.2802
LTP-SF 0.1356 0.1394 0.1509 -0.2918 -0.0738 -0.0280 -0.0941
LTP-CF 0.2010 0.2590 0.2535 0.2257 0.0070 0.0659 0.1359
LTP-PP 0.2049 0.2642 0.1998 0.1743 -0.0091 0.0312 0.0114

mSSRM-PGA 0.0691 0.0683 0.0693 -0.0277 -0.0214 0.0413 0.1253
LTPSS 0.2049 0.2731 0.2619 0.2445 0.0198 0.0874 0.1521

IR

SDCP 0.1407 0.2103 0.1645 0.0088 0.0922 0.0613 -0.1957
LTP-CF 0.1567 0.2203 0.1938 0.1064 -0.0084 0.1060 0.1314
LTP-PP 0.1489 0.2308 0.1715 -0.0203 -0.0365 0.1060 -0.0468

mSSRM-PGA 0.0852 0.0839 0.0854 -0.0368 -0.0329 0.0417 0.1320
LTPSS 0.1650 0.2418 0.2047 0.1366 0.0053 0.1409 0.1503

α

SDCP 0.0006 0.0009 0.0007 0.0001 0 0.0002 0
LTP-CF 0.0063 0.0081 0.0067 0.0038 -0.0005 0.0028 0.0229
LTP-PP 0.0054 0.0079 0.0056 -0.0004 -0.0015 0.0022 -0.0050

mSSRM-PGA 0.0006 0.0005 0.0005 -0.0004 -0.0004 0.0005 0.0033
LTPSS 0.0063 0.0087 0.0067 0.0043 0.0003 0.0036 0.0264

p-val.

SDCP 0.0007 0 0.0001 0.4700 0.0284 0.2536 0.0263
LTP-CF 0.0002 0 0 0.1807 0.5846 0.1260 0.1794
LTP-PP 0.0002 0 0 0.5694 0.8228 0.1260 0.8140

mSSRM-PGA 0 0 0 0.1176 0.0201 0.0733 0.0002
LTPSS 0.0001 0 0 0.1210 0.4468 0.0643 0.1471

MDD

SDCP 0.8700 0.7805 0.6695 0.7010 1.0000 0.4311 0.9685
LTP-SF 0.8858 0.8083 0.6857 0.7917 1.0000 0.4572 0.9895
LTP-CF 0.7131 0.5309 0.5188 0.3955 0.8944 0.1983 0.5986
LTP-PP 0.6530 0.5078 0.5208 0.1453 0.7780 0.2188 0.4017

mSSRM-PGA 0.6237 0.4834 0.4958 0.5294 0.8676 0.5454 0.4596
LTPSS 0.6918 0.5184 0.5259 0.3295 0.8126 0.1894 0.5141

Table 1: Experimental results of different trading strategies on 7 benchmark data sets.

trading strategy despite the market effect. Along with the re-
gression for (34), a left-tailed t-test can be conducted to obtain
the p-value for the corresponding α. Both αs and p-values of
different trading strategies are presented in Table 1. SDCP
and mSSRM-PGA perform badly on all the data sets. Sim-
ilar to the results of IR, LTP-PP performs badly on MSCI,
Stoxx50, and FTSE100. In comparison, LTPSS achieves the
best performance on all the data sets. Hence LTPSS is effec-
tive in achieving pure returns.

4.5 Maximum Drawdown
The maximum drawdown (MDD, [Magdon-Ismail and Atiya,
2004]) measures the maximum percentage loss of wealth
from a past peak to a past valley for a PO method, which
corresponds to the worst case in the investment. It is mainly
treated by a back-end risk control mechanism, such as setting
stop loss orders. For a reference purpose, we present MDDs
of different trading strategies in Table 1. LTPSS achieves
competitive MDDs, roughly between those of LTP-PP and
LTP-CF. Since LTPSS achieves the best performance in most
cases with other evaluating metrics, it is an effective method
considering both return and risk.

5 Conclusion
In this work, we propose a linear trading position with sparse
spectrum (LTPSS) that can explore a larger spectral region of

the prediction matrix and extract key features from it. Our
approach improves on the existing principal portfolio (PP)
strategy that it allows for all the PPs with flexible spectral
energies. We develop a Krasnosel’skiı̆-Mann fixed-point al-
gorithm to solve the proposed optimization model, which is
able to handle the complicated geometric structure of the con-
straint and the nuclear norm regularization. It also guarantees
a linear convergence and the descent property of the objec-
tive values. Experimental results show that LTPSS achieves
competitive and robust investing performance in diverse fi-
nancial circumstances according to some common evaluating
metrics.

A direct impact of LTPSS is to provide a novel trading
strategy for the interdiscipline of machine learning and finan-
cial technology. It is highly interpretable and understandable
in the general framework of finance, as well as tractable and
reliable with theoretical guarantees. It can enrich the factor
library for quantitative research, or reveal some intrinsic pat-
terns of the asset pool. A possible limitation is that LTPSS
may not be applied to nonlinear trading frameworks, which
is partly due to the lack of such trading frameworks in fi-
nance. As for future works, we can extend LTPSS to more
general factor trading architectures, or develop a nonlinear
trading position that has a stronger signal processing ability.
Exploring the relationship between PPs and conventional fi-
nancial factors is also an interesting topic.
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