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Abstract
Image restoration aims to recover details and en-
hance contrast in degraded images. With the grow-
ing demand for high-quality imaging (e.g., 4K and
8K), achieving a balance between restoration qual-
ity and computational efficiency has become in-
creasingly critical. Existing methods, primarily
based on CNNs, Transformers, or their hybrid ap-
proaches, apply uniform deep representation ex-
traction across the image. However, these methods
often struggle to effectively model long-range de-
pendencies and largely overlook the spatial charac-
teristics of image degradation (regions with richer
textures tend to suffer more severe damage), mak-
ing it hard to achieve the best trade-off between
restoration quality and efficiency. To address these
issues, we propose a novel texture-aware image
restoration method, TAMambaIR, which simul-
taneously perceives image textures and achieves
a trade-off between performance and efficiency.
Specifically, we introduce a novel Texture-Aware
State Space Model, which enhances texture aware-
ness and improves efficiency by modulating the
transition matrix of the state-space equation and
focusing on regions with complex textures. Ad-
ditionally, we design a Multi-Directional Percep-
tion Block to improve multi-directional receptive
fields while maintaining low computational over-
head. Extensive experiments on benchmarks for
image super-resolution, deraining, and low-light
image enhancement demonstrate that TAMambaIR
achieves state-of-the-art performance with signifi-
cantly improved efficiency, establishing it as a ro-
bust and efficient framework for image restoration.

1 Introduction
Image restoration as a fundamental task in computer vision
and image processing, aiming to recover details and improve
image contrast from degraded images [Liang et al., 2021a;
Tsai and Huang, 1984; Guo et al., 2024a; Zamir et al., 2022;
Xiao et al., 2022], which has been widely applied in imag-
ing devices and various vision systems [Zheng et al., 2022;

Figure 1: (a-b) We compute the residual error map between the high-
resolution and low-resolution images in the DIV2K and Manage109
datasets and find that the degree of degradation varies across dif-
ferent regions of the image. (c) We divide image patches into 10
groups sorted by texture complexity (measured by statistical vari-
ance) and calculate the average PSNR for each group in all Man-
age109 datasets. It can be observed that regions with richer textures
suffer more severe degradation, resulting in lower PSNR values.

Li et al., 2022]. With the continuous advancements and
widespread deployment of modern smartphones and cam-
eras, the demand for higher image quality has significantly
increased from the 1K resolutions (1280 × 720) to 4K (4096
× 2160) [Kong et al., 2021]. Therefore, balancing the grow-
ing demand for high-quality restoration quality and model
efficiency has become a critical challenge in image restora-
tion [Liang et al., 2021b; Guo et al., 2024a].

With the rapid advancement of deep learning, various im-
age restoration methods have been proposed. Early research
in image restoration primarily focused on convolutional neu-
ral networks (CNNs) [Zhang et al., 2018; Sun et al., 2023],
which offer high computational efficiency. However, limited
by the local receptive fields of CNNs, these methods struggle
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to model long-range dependencies, resulting in suboptimal
restoration quality. Therefore, Vision Transformers are intro-
duced to improve image restoration performance due to their
ability to model long-range dependencies [Chen et al., 2023a;
Zhou et al., 2023; Cai et al., 2023a]. Despite these advance-
ments, the high computational complexity of Transformers
remains a major obstacle for real-world deployment, espe-
cially for high-resolution images.

To seek efficient frameworks, many previous works have
proposed combining the efficiency of CNN with the global
modeling capabilities of Transformers, resulting in hybrid
CNN-Transformer models that aim to balance performance
and complexity [Liang et al., 2021b; Zhou et al., 2023;
Fang et al., 2022]. However, these approaches often overlook
the spatial characteristics of degradation, where regions with
richer textures tend to suffer more severe damage, applying
uniform deep representation extraction across the image. This
uniform approach makes it challenging to achieve a trade-off
between performance and efficiency. Specifically, we argue
that regions with richer textures are generally more prone to
severe quality degradation. To clarify this observation, we
conduct a statistical analysis on image super-resolution (ad-
ditional analyses of low-light image enhancement are shown
in the appendix). First, we divide the low-resolution or low-
quality images into patches and measure the texture complex-
ity of each patch using statistical variance. We then evalu-
ate the PSNR between the degraded patches and their ground
truth counterparts. The results, as shown in Figure 1, reveal
that regions with richer textures tend to suffer more severe
degradation, resulting in lower PSNR values. This highlights
the importance of paying more attention to regions with com-
plex textures. Although these methods [Kong et al., 2021;
Jeong et al., 2025] attempt to address this issue by clas-
sifying image patches/pixels and applying different-sized
CNNs, they still face challenges in perceiving image textures
and modeling contextual information, making it difficult to
achieve high-efficiency.

To address these issues, we propose a novel Texture-Aware
State Space Model (TA-SSM) to simultaneously achieve ef-
ficient contextual modeling and texture awareness, enabling
an optimal trade-off between performance and efficiency.
Specifically, we modulate the transition matrix of state-space
equations to mitigate catastrophic forgetting in regions with
richer textures, enhancing texture perception. Furthermore,
by focusing more on challenging texture regions, the pro-
posed method improves overall efficiency. Additionally, for
the first time, we introduce positional embeddings into SSM,
improving their ability to perceive contextual positions. To
further reduce computational costs while maintaining multi-
directional perception, we design a Multi-Directional Percep-
tion Block to enhance efficiency. Extensive experiments on
various image restoration benchmarks including image super-
resolution, image deraining, and low-light image enhance-
ment, demonstrate that the proposed method significantly
improves the efficiency of Mamba-based image restoration.
This provides a more powerful and efficient framework for
future image restoration tasks.

The contributions of this paper can be summarized:
• We propose a novel and efficient Texture-Aware State

Space Model (TA-SSM) that perceives complex textures
by modifying the state-space equations and transition
matrices and simultaneously focuses on more challeng-
ing texture regions to enhance efficiency.

• An efficient Multi-Directional Perception Block is pro-
posed to expand the receptive field in multiple direc-
tions while maintaining low computational costs. Fur-
thermore, position embedding is introduced into SSM to
enhance its capability of perceiving contextual positions.

• Based on these, a straightforward yet efficient model
TAMambaIR is proposed, showcasing superior perfor-
mance in both efficiency and effectiveness across vari-
ous image restoration tasks and benchmarks, offering an
efficient backbone for image restoration.

2 Related Work
2.1 Image Restoration
Images captured in complex real-world scenarios often suf-
fer from degradations like low resolution, low-light, rain, and
haze, resulting in reduced contrast and detail loss [Rim et al.,
2020; Wang et al., 2018; Li et al., 2025; Peng et al., 2024a;
Peng et al., 2025; Peng et al., 2024c; Peng et al., 2024b]. Im-
age restoration aims to enhance contrast and recover details,
improving visual quality. Advances in deep learning have
significantly boosted its effectiveness [Liang et al., 2021b].
Dong et al. [Dong et al., 2015] introduced SRCNN in 2015,
pioneering deep learning for image super-resolution (SR).
Since then, numerous CNN-based methods have emerged to
address image restoration tasks [Zhang et al., 2018; Dai et
al., 2019], though their lightweight designs often limit recep-
tive fields. To address this issue, Vision Transformers (ViTs)
have been introduced to leverage long-range modeling for
image restoration. Chen et al. [Chen et al., 2021] demon-
strated their effectiveness in image denoising, while the Swin
Transformer [Liang et al., 2021b] captured multi-scale fea-
tures hierarchically. However, increasing image resolutions
pose significant computational challenges for Transformer-
based methods [Guo et al., 2024a]. While CNN-Transformer
hybrids aim to balance performance and efficiency, they of-
ten overlook the spatial characteristics of degradation, where
regions with richer textures tend to suffer more severe dam-
age. As a result, they apply uniform enhancements and strug-
gle to effectively focus on the damaged textures. Patch-
or pixel-level classification methods [Kong et al., 2021;
Jeong et al., 2025] address this partially but fail to effectively
model textures and contextual information. To tackle this,
we adopt efficient global modeling with State Space Model
(SSM) and introduce texture-aware capabilities to better han-
dle complex textures, achieving a balance between perfor-
mance and efficiency.

2.2 State Space Model
State Space Model (SSM), originally developed in the 1960s
for control systems [Kalman, 1960], has recently been ex-
tended to applications in computer vision [Zhu et al., 2024;
Xiao et al., 2025]. The introduction of SSM into computer
vision was pioneered by Visual Mamba, which designed the
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Figure 2: The overall framework of TAMambaIR consists of a feature extractor and several TASSGs, with an upsampler by pixel shuffle.

VSS module to achieve superior performance compared to
Vision Transformers (ViTs) [Dosovitskiy et al., 2020], while
maintaining lower model complexity. This breakthrough in-
spired a wave of research utilizing SSM in various tasks [Guo
et al., 2024b; Qiao et al., 2024]. Notably, MambaIR [Guo
et al., 2024b] is the first to employ SSM for image restora-
tion, demonstrating improved efficiency and enhanced global
perceptual capabilities. However, directly applying SSM to
image restoration poses challenges in effectively enhancing
texture-rich regions, which limits the full potential of the
State Space Model in this domain.

3 Proposed Method
3.1 Traditional State Space Model
Let’s briefly review the traditional State Space Model (SSM),
which maps sequence input x(t) to output y(t) through an
implicit latent state h(t) ∈ RN [Guo et al., 2024b] and can
be represented as a linear ordinary differential equation:

ḣ(t) = Ah(t) +Bx(t),

y(t) = Ch(t) +Dx(t),
(1)

where N is the state size, A ∈ RN×N , B ∈ RN×1, C ∈
R1×N , and D ∈ R. Discretized using a zero-order hold as:

A = exp(∆A),

B = (∆A)−1(exp(∆A)− I)∆B,
(2)

After the discretization, the discretized version of Eq. (1) with
step size ∆ can be rewritten as:

hk = Ahk−1 +Bxk,

yk = Chk +Dxk,
(3)

The advent of SSM has garnered significant attention for its
ability to perform global modeling with linear complexity
in image restoration [Guo et al., 2024a]. However, tradi-
tional SSM still faces two critical challenges: (1) It con-
sistently handles flat and texture-rich regions, spending
too much computation on easily recoverable flat areas (as
shown in Figure 1), resulting in inefficiency. (2) It lacks
an effective texture-awareness mechanism, which not only
leads to catastrophic forgetting of texture information but
also hinders the model’s ability to focus on challenging
texture-rich regions.

3.2 Texture-Aware State Space Model
To address these limitations, we propose a novel Texture-
Aware State Space Model to fully unlock the potential of
SSM in image restoration, as shown in Figure 2. We tackle
the aforementioned challenges from two perspectives. First,
we propose a novel Texture Area Filtering method, which
utilizes variance statistics to identify texture-rich and flat re-
gions and pay less/more computation on flat/texture-rich re-
gions, thereby improving efficiency. Second, we propose a
novel Texture-Aware Modulation, which ranks regions based
on their texture richness in descending order and enhances
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SSM’s historical retention of texture-rich information by
modulating the transition matrix in the state-space equation.
Texture Area Filtering. We first patchify the image/feature
x ∈ RC×H×W into patches p ∈ RC×h×w to obtain a se-
quence {Pi}, as follows:

{Pi} = Patchify(x), i = 1, 2, . . . , N. (4)
where N represents the number of patches. Then, we sort this
patch sequence based on the texture complexity from high to
low, which is measured by statistical variance (other measure-
ments of compression are provided in the appendix), resulting
in a new ordered patch sequence {P ′

i }, as follows:

µ(Pi) =
1

|Pi|
∑
j∈Pi

Pij ,

Var(Pi) =
1

|Pi|
∑
j∈Pi

(Pij − µ(Pi))
2
,

{P ′
i}ni=1 = argsort↓

(
Var(Pi)

)
,

(5)

Then, we process the top p% patches with the highest texture
complexity and skip the easy flat regions (which will be en-
hanced by the following full-sequence scan and convolution
as shown in the (a) of Figure 2 ), directing SSM focus on the
more challenging region as follows:

{Pi}top−p% =
{
P ′
i | i ≤ ⌈p ·N⌉

}
, (6)

Texture-Aware Modulation In traditional SSM, the transi-
tion matrixes B and ∆ are expressed as follows:

B = Linear(x),∆ = Linear(x). (7)
This way may lead to two key issues: (a) The transition ma-
trix relies solely on the input itself and lacks the ability to per-
ceive texture information, resulting in catastrophic forget-
ting of texture-related representations in the state-space
history, thereby weakening the model’s ability to enhance
fine details, as shown in the (d) of Figure 2. (b) Flat regions,
which are easier to enhance, dominate the state-space history,
leading to an excessive focus on flat areas and hindering
the model’s ability to address challenging texture-rich re-
gions. To address these issues and enhance texture awareness,
we first sort the patches as described in Eq.6, and then pro-
pose modulating the transition matrix within the state-space
model to improve its capability of preserving historical tex-
ture information, as shown in Figure2 (b) and (e).

Bvar = V ar(x) · Linear(x),
∆var = V ar(x) · Linear(x). (8)

Through this method, the transition matrices Bvar and ∆car

are able to capture the varying texture complexities of dif-
ferent patches. Furthermore, they retain the historical infor-
mation of regions with richer textures, effectively alleviating
catastrophic forgetting and enhancing the ability to represent
fine details in image restoration, as illustrated in Figure 2
(e). Finally, the state-space function formulation of Texture-
Aware State Space Model can be expressed as follows:

Avark = exp(∆varkA)

Bvark = (∆varkA)
−1(exp(A)− I) ·∆varkBvark

hk = Avarkhk−1 +Bvarkxk

yk = Chk +Dxk.

(9)

Position Embedding. It is well known that the traditional
SSM adopts a linear sequence scanning method, which in-
evitably limits the contextual receptive field. Although SSM
proposes scanning in four directions to partially improve the
contextual receptive field, the perception capabilities of con-
textual positions remain limited. On the other hand, consid-
ering that our TA-SSM employs a texture complexity-based
scanning method, this further exacerbates the contextual po-
sition perception process. To address this, we propose to in-
troduce position embedding, which is widely used in Trans-
formers, into SSM to enhance its contextual position aware-
ness. This method enables SSM to capture the global posi-
tional relationship of the current token during each sequence
scan, thereby improving its ability to perform global texture
arrangement and contextual modeling. Specifically, we add a
learnable position embedding Pos to each patch after Eq. 6:

{Pi}top−p% = {Pi + Pos(Pi) | Pi ∈ {Pi}top−p%}. (10)

3.3 Multi-Directional Perception Block
Through Texture-Aware State Space Model can model the
global information of different patches based on their tex-
ture complexity. However, the contextual perception within a
patch remains critical. Existing approaches often adopt multi-
directional scanning within a single SSM, which can lead to
significant computational overhead. To address this issue,
we propose a novel Multi-Directional Perception Block that
sequentially connects four different scaning directions (Top-
Left Horizontal, Bottom-Right Horizontal, Top-Left Verti-
cal, and Bottom-Right Vertical) to reduce computational cost
while enhancing multi-directional perception, as shown in
Figure 2 (a) and (c). Additionally, low-texture complexity re-
gions (e.g., flat areas), which are relatively easier to enhance,
are also crucial for image restoration. Therefore, we intro-
duce a full-scan SSM and convolution layer to ensure the net-
work can also focus on these regions, facilitating interactions
between high-texture complexity patches and flat patches.

3.4 TAMambaIR
Following the previous approach in [Guo et al., 2024a], we
adopt a simple yet efficient architecture to build TAMam-
baIR, as depicted in Figure 2. TAMambaIR comprises a fea-
ture extractor, a Texture-Aware State Space Group, and an
upsampler. Specifically, convolution layers and pixel shuffle
are used in the feature extractor and upsampler. Due to lim-
ited space, the implement details of the Texture-Aware State
Space Group and Texture-Aware State Space Block are pro-
vided in Appendix Section 8.

3.5 Loss Function
Following previous works [Zamir et al., 2022; Cui et al.,
2023], we utilize the L1 loss L1 and frequency loss Lfft for
training. The total loss is presented as follows:

Ltotal = λ1L1(O,Ogt) + λ2Lfft(O,Ogt). (11)

where O and Ogt denote the model output and the ground
truth, respectively. The parameters λ1 and λ2 are balancing
factors. We set λ1 and λ2 to 1, 0.05, respectively.
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Set5 Set14 BSDS100 Manga109 FLOPs (G) Params (M)Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
RCAN 38.27 0.9614 34.12 0.9216 32.41 0.9027 39.44 0.9786 62.75 15.44
SAN 38.31 0.9620 34.07 0.9213 32.42 0.9028 39.32 0.9792 64.11 15.71
ClassSR 38.29 0.9615 34.18 0.9218 32.45 0.9029 39.45 0.9786 40.78 30.10
IPT 38.37 - 34.43 - 32.48 - - - - 115.61
CSNLN 38.28 0.9616 34.12 0.9223 32.40 0.9024 39.37 0.9785 481.97 6.21
NLSA 38.34 0.9618 34.08 0.9231 32.43 0.9027 39.59 0.9789 182.82 41.80
EDT-B 38.45 0.9624 34.57 0.9258 32.52 0.9041 39.93 0.9800 30.22 11.48
EDSR 38.11 0.9602 33.92 0.9195 32.32 0.9013 39.10 0.9773 166.84 40.73
RDN 38.24 0.9614 34.01 0.9212 32.34 0.9017 39.18 0.9780 90.60 22.12
HAN 38.27 0.9614 34.16 0.9217 32.41 0.9027 39.46 0.9785 258.82 63.61
SwinIR 38.42 0.9623 34.46 0.9250 32.53 0.9041 39.92 0.9797 51.33 11.75
SRFormer 38.51 0.9627 34.44 0.9253 32.57 0.9046 40.07 0.9802 62.95 10.40
TAMambaIR-S 38.53 0.9627 34.64 0.9262 32.57 0.9046 40.23 0.9806 56.88 12.19

MambaIR 38.57 0.9627 34.67 0.9261 32.58 0.9048 40.28 0.9806 110.49 20.42
TAMambaIR 38.58 0.9627 34.72 0.9265 32.58 0.9048 40.35 0.9810 89.99 16.07

Table 1: Quantitative comparison on ×2 image super-resolution with state-of-the-art methods. The best and the second best results are in
bold and bold.

4 Experiences
4.1 Experimental Settings
Training Details. Following prior works [Liang et al.,
2021b; Guo et al., 2024a], the training batch sizes for im-
age super-resolution, image deraining, and low-light image
enhancement are set to 32, 16, and 16, respectively. Dur-
ing training, the original images are cropped into 64 × 64
patches for image super-resolution, and 256 × 256 patches
for image deraining and low-light image enhancement. Top
p% epirically is set at 0.5. Following [Liang et al., 2021b;
Guo et al., 2024a], we use the UNet architecture for image
deraining and low-light image enhancement. The Adam op-
timizer [Kingma and Ba, 2014] is used to train our method,
with β1 = 0.9, β2 = 0.999, and an initial learning rate of
2 × 10−4. The standard model consists of 7 intermediate
blocks with a depth of 7, while the small version consists of
6 intermediate blocks with a depth of 6. All experiments are
conducted on 8 NVIDIA V100 GPUs. Additional details of
the implementation are provided in Appendix Section 9.
Dataset. To evaluate our method, we select three pop-
ular and representative image restoration tasks, including
image super-resolution (SR), image draining (Derain), and
low-light image enhancement (LLIE). Specifically, for SR,
DIV2K [Timofte et al., 2017] and Flickr2K [Lim et al., 2017]
are employed to train the network, while Set5 [Bevilacqua et
al., 2012], Set14 [Zeyde et al., 2012], B100 [Martin et al.,
2001], and Manga109 [Matsui et al., 2017] are used for eval-
uation. For Derain, we follow [Chen et al., 2023b] and val-
idate our approach on both popular benchmarks: Rain200H
and Rain200L [Yang et al., 2017], which contain heavy and
light rain conditions, respectively, for training and evaluation.
For LLIE, we follow [Cai et al., 2023b] and validate our ap-
proach on the synthetic version of the LOL-V2 dataset [Yang
et al., 2021]. More details about the datasets used are pro-
vided in the Appendix Section 10.
Evaluation Metrics. Following previous work [Chen et al.,
2023b; Cai et al., 2023b; Guo et al., 2024a], we use Peak

Signal-to-Noise Ratio (PSNR) and Structural Similarity In-
dex (SSIM) as evaluation metrics. For the image super-
resolution and deraining tasks, evaluation is performed on the
Y channel of the YCbCr color space, while for the low-light
enhancement task, evaluation is conducted in the RGB space.
Comparisons with State-of-the-art Methods. We com-
pare with many existing state-of-the-art methods. Image
super-resolution: we compare our method against thirteen
state-of-the-art methods, including: RCAN, SAN, ClassSR,
IPT, CSNLN, NLSA, EDT-B, EDSR, RDN, HAN, SwinIR,
SRFormer, and MambaIR. Image deraining: we compare
our method against fifteen state-of-the-art methods, includ-
ing: DDN, RESCAN, PReNet, MSPFN, RCDNet, MPR-
Net, SwinIR, DualGCN, SPDNet, Uformer, Restormer, IDT,
DLINet, DRSformer, and MambaIR. Low-light image en-
hancement: we compare our method against fifteen state-
of-the-art methods, including: RetinexNet, KinD, ZeroDCE,
3DLUT, DRBN, RUAS, LLFlow, EnlightenGAN, Restormer,
LEDNet, SNR-Aware, LLFormer, RetinexFormer, CIDNet,
and MambaIR. Due to the limited space, more detail and ref-
erences are provided in Appendix Section 11.

4.2 Ablation Study
Table ?? presents the results of our ablation study on
TAMambaIR-S at Manga109 datasets, showing the impact
of removing critical components from the model. Ex-
cluding positional embeddings (w/o PosEmb) reduces the
PSNR to 40.11, indicating their importance in enhancing the
model’s ability to perceive and utilize spatial context, which
is especially beneficial for accurately restoring global struc-
tures. Removing the Multi-Directional Perception Block (w/o
MDPB) and using a single direction to replace it reduces the
PSNR to 40.14, demonstrating its role in capturing features
from multiple directions efficiently. Replacing TA-SSM with
traditional SSM and keeping the similar complexity causes
the PSNR to decline to 39.98. This emphasizes the crucial
role of TA-SSM in prioritizing complex textures and effec-
tively modeling challenging regions. The complete model
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Figure 3: Qualitative comparison on image super-resolution and low-light image enhancement.

Normal GT MeanMethods PSNR↑ SSIM↑ PSNR↑ SSIM↑
RetinexNet 17.137 0.762 19.099 0.774
KinD 13.290 0.578 16.259 0.591
ZeroDCE 17.712 0.815 21.463 0.848
3DLUT 18.040 0.800 22.173 0.854
DRBN 23.220 0.927 - -
RUAS 13.765 0.638 16.584 0.719
LLFlow 24.807 0.919 27.961 0.930
EnlightenGAN 16.570 0.734 - -
Restormer 21.413 0.830 25.428 0.859
LEDNet 23.709 0.914 27.367 0.928
SNR-Aware 24.140 0.928 27.787 0.941
LLFormer 24.038 0.909 28.006 0.927
RetinexFormer 25.670 0.930 28.992 0.939
CIDNet 25.705 0.942 29.566 0.950
MambaIR 25.830 0.953 30.445 0.957
TAMambaIR 26.735 0.951 31.358 0.961

Table 2: Quantitative comparison on low-light image enhancement
with state-of-the-art methods.

achieves the highest PSNR of 40.23, underscoring the ne-
cessity and complementary contributions of all components
in delivering optimal performance. More ablation studies are
provided in Appendix Section 12.

4.3 Quantitative Results
Image Super-Resolution. We compare our method against
thirteen state-of-the-art CNN-based, transformer-based, and
Mamba-based SR approaches. As shown in Table ??, our
method achieves the best performance across all four bench-

Rain200L Rain200HMethods PSNR↑ SSIM ↑ PSNR ↑ SSIM ↑
DDN 34.68 0.9671 26.05 0.8056
RESCAN 36.09 0.9697 26.75 0.8353
PReNet 37.80 0.9814 29.04 0.8991
MSPFN 38.58 0.9827 29.36 0.9034
RCDNet 39.17 0.9885 30.24 0.9048
MPRNet 39.47 0.9825 30.67 0.9110
SwinIR 40.61 0.9871 31.76 0.9151
DualGCN 40.73 0.9886 31.15 0.9125
SPDNet 40.50 0.9875 31.28 0.9207
Uformer 40.20 0.9860 30.80 0.9105
Restormer 40.99 0.9890 32.00 0.9329
IDT 40.74 0.9884 32.10 0.9344
DLINet 40.91 0.9886 31.47 0.9231
DRSformer 41.23 0.9894 32.17 0.9326
MambaIR 41.13 0.9895 32.18 0.9295
TAMambaIR 41.25 0.9896 32.19 0.9345

Table 3: Quantitative comparison on image deraining with state-of-
the-art methods.

marks. Specifically, the small version of our method sur-
passes SRFormer by 0.15 dB and 0.20 dB on the PSNR of
Manga109 and Set14 datasets, respectively. Moreover, the
standard version of our method outperforms the current state-
of-the-art method, MambaIR, with PSNR improvements of
0.07 dB and 0.05 dB on the Manga109 and Set14 datasets, re-
spectively. These results highlight the superior performance
and effectiveness of our approach.
Model Complexity Comparison. As shown in Table ??,
benefiting from its strong texture-awareness capability, our
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w/o PosEmb w/o MDPB w/o TA-SSM Ours

PSNR 40.11 40.14 39.98 40.23
SSIM 0.9801 0.9802 0.9796 0.9806

Table 4: Ablation studies on our proposed core module.

method not only achieves the best performance but also
demonstrates significant advantages in computational effi-
ciency, including FLOPs (with input size 64 × 64) and model
parameters. Specifically, the small version of our model
TAMambaIR-S achieves state-of-the-art performance with
relatively low complexity, surpassing SRFormer in terms of
performance while reducing FLOPs by 6.07G. Furthermore,
the standard version of our network outperforms MambaIR
while achieving reductions of 20.5G (18.5%) in FLOPs and
4.35M (21.3%) in parameters. These results highlight the ef-
ficiency of our method. More comparisons of inferencing
time are provided in Appendix Section 13.
Image Deraining. We compare our method against fifteen
state-of-the-art deraining approaches, including CNN-based,
transformer-based, and Mamba-based methods. As shown
in Table ??, our method achieves the best performance on
both Rain200L and Rain200H datasets in terms of PSNR and
SSIM. Specifically, our method achieves a PSNR of 41.25
dB and an SSIM of 0.9896 on Rain200L, surpassing DRS-
former, the previous best method, by 0.02 dB and 0.002, re-
spectively. Similarly, on Rain200H, our approach attains a
PSNR of 32.19 dB and an SSIM of 0.9345, outperforming
MambaIR by 0.01 dB and 0.005, respectively.
Low-Light Image Enhancement. We compare our method
with thirteen state-of-the-art approaches, including both
CNN-, Transformer- and Mamba-based methods. We follow
the Normal and GT Mean test settings in [Feng et al., 2024],
and the results are shown in Table ??. Our method achieves
the best performance on all settings in terms of PSNR and
SSIM. Specifically, under the Normal setting, our method
achieves a PSNR of 26.735 dB and an SSIM of 0.951, sig-
nificantly surpassing RetinexFormer by 1.03 dB in PSNR
and 0.021 in SSIM. Under the GT Mean setting, our method
achieves a PSNR of 31.358 dB and an SSIM of 0.961, out-
performing MambaIR by a notable margin. These results
demonstrate that our approach effectively enhances low-light
images while preserving details.

4.4 Qualitative Results
We present qualitative comparisons to demonstrate the ef-
fectiveness of our method on both image super-resolution
(SR) and low-light image enhancement (LLIE), as shown at
the top of Figure 3. For SR, our method reconstructs fine-
grained textures and sharp details that are highly consistent
with the ground truth (GT), in regions with complex textures
and high-frequency details. This highlights the superiority
of our approach in generating realistic and visually pleas-
ing results. For LLIE, our method achieves significant im-
provements in both visual clarity and natural color restora-
tion, as shown at the bottom of Figure 3. Compared to exist-
ing approaches, our results better preserve structural details
and generate more accurate brightness adjustments, making

Figure 4: User study on image visual quality.

them closely aligned with the GT. More visual comparisons
are provided in Appendix Section 14. Furthermore, to evalu-
ate the visual quality, a user study is conducted for the image
super-resolution. Specifically, we randomly select 15 images
from the test datasets. Fifteen participants were asked to rate
the visual quality of each processed image on a scale from 0
(poor quality) to 10 (excellent quality). The aggregated re-
sults, as shown in Figure 4, reveal that existing methods often
fail to fully restore image quality, leading to lower user satis-
faction. In contrast, our method achieves the highest average
score of 8.4, demonstrating superior visual performance and
generalization capabilities.

5 Limitaion and Future Work
While our TAMambaIR demonstrates strong performance on
three representative restoration tasks, its evaluation is cur-
rently confined to these specific domains. Future work will
aim to extend our method to a broader range of low-level vi-
sion tasks, such as image dehazing, debluring, denoising, and
inpainting, among others, to further investigate its generaliz-
ability. Additionally, the top p% of different images in the
current framework is uniform, which may not fully account
for the varying texture complexities of different images. Im-
ages with richer textures often pose greater challenges than
those with fewer textures. Developing adaptive processing
strategies, such as texture-aware top p% selection mecha-
nisms, could enhance performance by dynamically allocat-
ing computational resources based on image characteristics.
These adaptations will be a key focus of our future research.

6 Conclusion
In this paper, we proposed TAMambaIR, a novel framework
for image restoration that achieves a balance between high
restoration quality and computational efficiency. Leverag-
ing the statical characteristics of image degradation, a novel
Texture-Aware State Space Model is introduced, which en-
hances texture awareness and improves performance by mod-
ulating the state-space equation and focusing more attention
on texture-rich regions. Additionally, the Multi-Directional
Perception Block expands the receptive field in multiple di-
rections while maintaining low computational overhead. Ex-
tensive experiments on benchmarks for super-resolution, de-
raining, and low-light image enhancement demonstrate that
TAMambaIR achieves state-of-the-art performance with sig-
nificant improvements in efficiency, providing a robust and
effective backbone for image restoration.
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