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Abstract
Deepfake detection is increasingly crucial due to
the rapid rise of AI-generated content. Existing
methods achieve high performance relying on com-
putationally intensive large models, making real-
time detection on resource-constrained edge de-
vices challenging. Given that deepfake detection
is a binary classification task, there is potential for
model compression and acceleration. In this pa-
per, we propose a low-bit quantization framework
for lightweight and efficient deepfake detection.
The Connected Quantized Block extracts common
forgery features via the quantized path and re-
tains method-specific textures through the short-
cut connections. Additionally, the Shifted Log-
arithmic Redistribution Quantizer mitigates infor-
mation loss in near-zero domains by unfolding the
unbalanced activations, enabling finer quantization
granularity. Comprehensive experiments demon-
strate that this new framework significantly reduces
10.8× computational costs and 12.4× storage re-
quirements while maintaining high detection per-
formance, even surpassing SOTA methods using
less than 5% FLOPs, paving the way for efficient
deepfake detection in resource-limited scenarios.
Code is in https://github.com/rstao-bjtu/QMDD.

1 Introduction
With the advancement of deep learning [Tao et al., 2021; Wei
et al., 2020; Wu et al., 2024; Tao et al., 2022], recent progress
in deepfake detection [Liu et al., 2023; Tan et al., 2025; Le
and Woo, 2024; Tao et al., 2025a] has increasingly relied on
large-scale models, including convolutional neural networks
(CNNs) and transformer-based architectures, to achieve state-
of-the-art performance. These models [Tao et al., 2025b;
Le and Woo, 2024] excel at capturing intricate patterns within
data, allowing them to detect even the most subtle manipu-
lations. However, their reliance on computational resources
for both training and inference often brings difficulties in
deployment on resource-constrained environments, such as
edge applications or real-time scenarios [Asnani et al., 2023;

∗Corresponding author.

ResNet-50
CLIP

Ours 0.2

162

4.8

GFLOPs

CLIP
ResNet-50

Ours

88.3

25.6
5.0
Storage (MB)

100

80

60

40

20

0

A
cc
ur
ac
y

CLIP ResNet-50 Ours

Cross-GAN-Sources Evaluation on Seen/Unseen data

Cross-Diffusion-Sources Evaluation on Unseen data

Figure 1: Comparison of deepfake detection models with different
models, including the accuracy performance in four cases, the model
storage and computational complexity.

Vice et al., 2024; Ding et al., 2023; Zeng et al., 2024]. The
rise of AI-generated content on social platforms [Wu et al.,
2023] necessitates the development of efficient detection sys-
tems to have low latency and computational requirements,
no matter deploying on the cloud to process vast volumes of
data, or carrying on the edge devices to safeguard the end
users. Addressing the challenge requires minimizing the size
and computational complexity of deepfake detection models
without sacrificing performance. A promising approach is
model quantization technique, which reduces the data pre-
cision and compacts the model while keeps the accuracy ,
paving the way for the deployment of deep learning models
on resource-constraint scenarios.

The simplicity of the binary classification task suggests
possible redundancy , leaving room for compression. As il-
lustrated in Figure 1, we compare CLIP-ViT-L with 124M
parameters, ResNet-50 with only 25.6M parameters and our
model across three testing scenarios: seen domains generated
by the same generator as the training data (light green) and
unseen domains generated by other GAN generators (dark
green) and Diffusion models (blue). The figure shows that
smaller models can also do the same job. This raises the ques-
tion: Do we really need to rely on large models for deepfake
detection, especially on resource-constrained edge devices?

In this paper, we propose a novel quantization framework
to compress deepfake detection models while maintaining
high performance. We first identify and validate the effec-
tiveness of the NPR (Neighboring Pixel Relationships) rep-
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resentation as a quantization-friendly alternative compared
to original RGB images, which displays better compatibil-
ity to quantization errors, ensuring the feature consistency
with low-bit representations. Based on this, we design a
quantized model equipped with the Connected Quantized
Block (CQB), which extracts forgery features by combining
method-specific textures from full-precision shortcut connec-
tions with common features captured in the quantized main
path. The auxiliary connections in CQB help preserve fine-
grained details, effectively addressing the distortion caused
by quantization. Additionally, we introduce the Shifted Log-
arithmic Redistribution (SLR) quantizer to handle the un-
balanced distribution of intermediate activations. By unfold-
ing the negative ranges, SLR enhances the representation of
forgery-related features and reduces information loss result-
ing from coarse quantization granularity. Together, these in-
novations form a robust framework for efficient and accurate
deepfake detection.

Our carefully designed quantization framework achieves
a substantial reduction in computational overhead by 10.8×
and model storage by 12.4× without compromising perfor-
mance. Notably, it outperforms state-of-the-art deepfake de-
tection methods such as CNNDetection [Wang and others,
2020], LGrad [Tan et al., 2023], FrePGAN [Jeong and others,
2022c] using less than 5% of the FLOPs. The results validate
the hypothesis of parameter redundancy in deepfake detection
models and strongly demonstrates the potential of lightweight
models. Beyond reducing memory footprint and inference la-
tency, our framework enhances the ability to extract forgery-
specific features across various generators, paving the way for
efficient and scalable deepfake detection systems, especially
for resource-constrained environments. The main contribu-
tions are summarized as follows:

• We are the first to explore quantization in deepfake
detection. Through extensive experiments, we demon-
strate the potential of smaller models.

• We propose the Connected Quantized Block to comple-
ment method-specific fine textures into universal arti-
facts , compensating for the details.

• We introduce the Shifted Logarithmic Redistribution
Quantizer, unfolding the clustered and unbalanced ac-
tivations to mitigate the loss from coarse quantization.

• Our quantized deepfake detection model achieves a re-
markable 10.8× and 12.4× reduction in computation
and model storage, while maintaining or even surpass-
ing the accuracy of full-precision counterparts.

2 Related Work
2.1 Deepfake Detection
Various strategies have been employed to enhance the gener-
alization of detectors to unseen sources. These strategies in-
clude diversifying training data through augmentation meth-
ods [Wang and others, 2020; Wang and others, 2021; Yin et
al., 2024], adversarial training [Chen and others, 2022], re-
construction techniques [Cao and others, 2022; He and oth-
ers, 2021], fingerprint generators [Jeong and others, 2022b],
and blending images [Shiohara and others, 2022]. Specific

methodologies such as BiHPF [Jeong and others, 2022a] am-
plify artifacts’ magnitudes through two high-pass filters. Fre-
GAN [Jeong and others, 2022c] addresses the overfitting of
training sources by mitigating the impact of frequency-level
artifacts through frequency-level perturbation maps. Ju et
al.[Ju and others, 2022] integrate global spatial information
and local informative features in a two-branch model. Alt-
Freezing by Wang et al.[Wang et al., 2023a] leverages both
spatial and temporal artifacts for Face Deepfake Detection.
Approaches by Ojha et al.[Ojha et al., 2023] and Tan et
al.[Tan and others, 2023] utilize feature maps and gradients,
respectively, as general representations. DIRE by Wang et
al. [Wang and others, 2023] introduces a novel image repre-
sentation by measuring the feature distance between an in-
put image and reconstruction counterpart, aiming to alleviate
generalization issues.

2.2 Model Quantization
Quantization has been applied on various downstream appli-
cations as a widely-used compression technique, due to its
practicability. Particularly in platforms with limited compu-
tational resources and low task complexity, such as monitor-
ing camera, mobile apps, and IoT devices [Ding et al., 2024;
Hernández et al., 2024; Wang et al., 2023b]. However, few
works focus on deepfake detection. Lanzino et al. [Lanzino
et al., 2024] utilizes binarization on deepfake detection to un-
cover manipulation traces in frequency and texture domains
but reduce the computational overhead by binarized opera-
tions. However, since binarization is an extreme quantiza-
tion technique, the accuracy drop is always inevitable, and
the computational complexity and parameter storage can be
further reduced, which we have compared in our experiments.

3 Method
3.1 Problem Definition
A widely adopted approach for deepfake detection involves
training a binary classifier using supervised deep learning
methods to differentiate between real and fake images. This
task is predominantly deployed on the cloud due to the limited
computational capabilities of user-end devices. With the rise
in popularity of video streaming platforms, deploying deep-
fake detection models directly on edge devices can greatly
lower detection costs and latency while improving user secu-
rity by protecting against deception from AI-generated con-
tent. To enable deployment on edge devices, minimizing
the model’s computational cost and storage size is crucial.
However, the impact of backbone network size on this task
remains unexplored. To address this, we evaluate CNNDe-
tection [Wang and others, 2020] with backbones of varying
sizes, assessing its performance on the training data domain
as well as its generalization capabilities to other domains gen-
erated by different models. As shown in Table 1, increasing
the backbone network size does not yield significant improve-
ments in generalization performance. This phenomenon has
led us to consider: Do we truly need larger models to perform
binary classification for deepfake detection tasks, particularly
in resource-limited scenarios?
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ResNet-23 ResNet-34 ResNet-50
Seen 99.9% 99.9% 99.9%

Unseen 77.6% 80.0% 79.4%

Table 1: Performance of different backbones on ForenSynths.

Opportunities and Challenges of Quantization. We
apply quantization techniques to deepfake detection models
and achieve promising results. Specifically, we quantize a
ResNet-23 model to 8-bit, 4-bit, and 2-bit using LSQ [Esser
et al., 2019], and further binarize it using ReActNet [Liu et
al., 2020]. Results in Figure 2 reveal that the quantized mod-
els maintain comparable accuracy, especially when tested
on the seen data domain generated by ProGAN. It suggests
that deepfake detection models have redundancy in parameter
bitwidth, leaving room for further compression by quantiza-
tion techniques.

3.2 Preliminary: Quantization-friendly NPR
Representation

To harness the benefits of quantization while addressing the
issue of detail loss caused by rounding, we propose a tailored
quantization framework for deepfake detection.

Specifically, we adopt NPR [Tan et al., 2024b] (Neigh-
boring Pixel Relationships) as the representation of artifacts
due to its robustness against quantization. NPR is an effec-
tive approach for detecting forged images by capturing up-
sampling artifacts, i.e., patterns generated by interpolation or
transposed convolutions, which are commonly used in gener-
ative models. The definition of NPR is

x̂ = up(x), (1)
I = conv(x̂), (2)

where x is the up-scaled feature map. Therefore, NPR fo-
cuses on the relationships between neighboring pixels, high-
lighting that these local interactions are more likely to contain
potential artifacts. By removing semantic information while
preserving edges, patterns, and pixel relationships, NPR re-
duces the reliance on large receptive fields, enabling the net-
work to distinguish between real and forged images by focus-
ing on small-scale details and artifact patterns.

Generally, NPR smooths out minor differences and thus
enhances contrasts, which is an fundamentally similar ef-
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Figure 2: Effect of quantization to various bitwidths on ResNet-23.
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Figure 3: Quantization error of each layer when the input data is
original RGB images or NPR representations.

FP Quantized FP Quantized
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Figure 4: Visualizations for (a) RGB images and (b) NPR-processed
representations of full-precision (FP) and MinMax Quantized.

fect to quantization. It suggests us to verify the compatibil-
ity between NPR and quantization, particularly in preserving
forgery-related details.

First, quantization maps continuous real numbers to a dis-
crete space with N values (N = 2k, k is the bitwidth). For
example, in integer quantization, we have predefined thresh-
old set T , and the input data x can be quantized as

Q(x) =

N−1∑
i=0

IiJx ≥ tiK, (3)

where ti =
1+2(i−1)

2k−1
∈ TN is the threshold of i-th value and

I = {1, . . . , 1} ∈ ZN is an all-one vector. J·K is the Kro-
necker delta function, which takes the value of 1 if the con-
dition is met; otherwise, it takes 0. Methods like LSQ [Esser
et al., 2020], N2UQ [Liu et al., 2022] and QIL [Jung et al.,
2019] have a trainable threshold set T , allowing the model to
learn optimal quantization parameters during training.

Since the representation space is limited, it is inevitable for
quantization to smooth out fine details, which can be formu-
lated as

Q(x± δ)−Q(x) = 0, (4)
where δ represents a small variation in the image feature adja-
cent to the pixel x, as the quantization granularity around x is
greater than δ. Fortunately, when applying NPR(·) represen-
tation as pre-processing, the quantization within the adjacent
variation of x can be

Q(NPR(x± δ))−Q(NPR(x)) = Q(δ)−Q(0). (5)

It shows the consistency of NPR and quantization in terms
of smoothing minor changes in adjacent pixels. Furthermore,
NPR concentrates the image into a limited color space, only
preserving the outline of the figure. It facilitates quantization
by finer-grained threshold set T to minimize quantization er-
ror and retain essential details.

We perform a quantitative analysis of the quantization er-
ror by calculating the MSE loss for each layer using the im-
ages and NPR representations of Motorbike class in ProGAN
dataset. The results are plotted in Figure 3. It suggests that
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Figure 5: Overview of our quantization framework for the deepfake detection task.

using the original image as input leads to larger quantization
errors, particularly in the earlier layers. Although the quan-
tization errors diminish in the later layers, the fine-grained
features may already be disrupted.

To give an intuitive conception, we visualize the RGB im-
age and NPR representation under full-precision and 4-bit
quantization. As shown in Figure 4, RGB images under 4-
bit quantization experience noticeable changes in lighting and
pixel intensity relationships, resulting in sharper visual con-
trasts. This quantization process alters the balance of bright-
ness and shadows. These effects are likely to be misinter-
preted as artifacts generated by AI models during deepfake
detection. However, quantization applied to NPR preserves
most of the information.

3.3 Framework Overview
As shown in the left part of Figure 5, our framework in-
troduces a lightweight CNN module named the Connected
Quantized Block (CQB), built upon residual structures. It
consists of a quantized main path with basic CNN blocks
and a full-precision auxiliary path using only pooling and
sampling. The quantized path, trained with learnable low-
bit quantization, captures general features, albeit with poten-
tial detail loss due to rounding. To compensate, the aux-
iliary path preserves fine textures via shortcut connections
with minimal overhead, effectively mitigating quantization-
induced information loss. Details are provided in Sec. 3.4.
To further address activation imbalance, where values cluster
densely in certain regions, we propose Shifted Logarithmic
Redistribution (SLR) (see the right of Figure 5). SLR redis-
tributes compact negative activations, reducing quantization
errors caused by uniform binning and recovering critical tex-
ture details for forgery detection. Its formulation is discussed
in Sec. 3.5.

3.4 Connected Quantized Block for Forgery
Feature Compensation

In this section, we first outline the construction of the quan-
tized CNN block and demonstrates the detailed implementa-
tion of the shortcut connections.

When quantized to extremely low bit-widths, the represen-
tation capacity of the parameters becomes significantly con-
strained. For instance, in a convolution layer Conv(·) with
k-bit, the integer space is limited to 2k discrete values. As k
decreases, this discrete space becomes smaller, leading to re-
stricted representation capabilities. To mitigate the limit, we
enhance the original block with a few full-precision paths,
preserving and restoring the lost details with minimal com-
putational cost. This approach is hardware-friendly and effi-
cient, as it does not introduce additional intensive computa-
tions (such as multiplications) in the auxiliary path.

Specifically, we introduce the Connected Quantized
Block (CQB) based on the residual block. The expand and
reduction in the full-precision path introduced by CQB can
be flexibly adjusted through the scaling ratio s. A typical
residual block comprises three types of quantized convolution
layers: QConvdn for downsampling, Convup for upsampling
and Conveq for those do not change the channel number, re-
spectively. In our CQB, these layers are all quantized, and we
add weighted full-precision shortcut connections besides the
three layers. For downsampling layer Convdn, we take the
average for every s input:

QConvdn(xi) = α1Q(Convdn(xi)) (6)

+(1− α1)

(
1

s

s∑
j=0

x

[⌊
Ci

4

⌋
× 4 + j,Hi,W i

])
, (7)

where xi is the i-th input at location Ci, Hi,W i, with [·, ·, ·]
representing the indices along with the channel, height and
width dimensions. The connection of Convup is constructed
by concatenation function to interpolate values and align with
the output dimension of the convolution layer:

QConvup(x) = α2Q(Convup(x))+(1−α2)repeatC(x, s), (8)

where repeatC(·, ·) means copied along channel dimension
for input x by s times. As for Conveq , the connection is

QConveq(x) = α3Q(Conveq(x)) + (1− α3)Avgpool(x). (9)

α1, α2, α3 in above equations are learnable scalars to balance
the quantized and full-precision passes.

We showcase feature visualization heatmaps to illustrate
the differences in features captured by the two paths and
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Figure 6: Heatmaps of activations in one block for a fake image of
the “bird” by using the proposed CQB.

demonstrate the effectiveness of combining learnable quan-
tized blocks with full-precision shortcuts for deepfake detec-
tion. And the results can be found in Sec. 4.2.

3.5 Shifted Logarithmic Redistribution for
Texture Unfolding

When quantizing the activations below 4-bit, we observe a
significant accuracy drop due to the feature distortion caused
by quantization. And the results can be found in Sec. 4.2.

Therefore, we propose a Shifted Logarithmic Redistri-
bution (SLR) Quantizer for the unbalanced activation dis-
tribution, which unfolds the clustered activations near zero,
assigning fine-grained quantization intervals using a non-
uniform quantizer to better quantize the majority of values.

Ideally, a well-trained quantizer prefers to have the values
equally distributed within the quantized grids to maximize the
information entropy. However, if we use uniform quantizer to
unbalanced data in Figure 7(a), there will be nearly 80% in-
tegers dealing with less than 5% of activations, while the rest
95% activations are coarsely fallen into few intervals. This
inspires us to adopt non-uniform quantizer to preserve more
information at post-activation function quantization, but the
initialization and training of non-uniform quantizers are non-
trivial. Therefore, we first apply an offset off for the input
activation X to shift the range into the domain of the loga-
rithmic function:

off = min(max (|X|) , ϵ) + τ, (10)

where min(·),max(·), | · |, are the minimum, maximum and
absolute functions, ϵ ≥ 1 is a minimal offset to avoid steeper
slopes of the logarithmic function in the range of (0, 1] (re-
fer to the illustration on the right part of Figure 5). And τ
is a layer-wise parameter, which is trained together with the
whole network, making the quantizer flexible between layers.

3
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(a) Post-Activation Distribution (b) Logarithmic Post-Activation
Distribution
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Figure 7: Distributions of post-activation function, where (a) is the
original activation, (b) is the logarithmic of shifted activation.

Next, the SLR quantizer can be written as

Q(X) =

N−1∑
i=0

IiJln(X + off) ≥ tiK, (11)

where ln(·) means logarithmic function. By applying the off-
set, we leverage the gentler region of the logarithmic function
to redistribute unbalanced parameters. Notably, the proposed
SLR quantizer can be seamlessly integrated into a quantizer
based on a lookup strategy. For Eq. (3), the threshold set T
transformed into T ′ = {et0−off, . . . , etN−1−off}. By merg-
ing the offset and logarithmic operations into the set T , SLR
quantizer introduces no extra computational overhead.

4 Experiments
4.1 Experimental Settings
Baselines: CNNDetection [Wang and others, 2020], Frank
[Frank and others, 2020], Durall[Durall and others, 2020],
Patchfor [Chai and others, 2020], F3Net [Qian and others,
2020], SelfBland [Shiohara and others, 2022], GANDetec-
tion [Mandelli and others, 2022], BiHPF [Jeong and others,
2022a], FrePGAN [Jeong and others, 2022c], LGrad [Tan
et al., 2023], Ojha [Ojha et al., 2023] and FreqNet [Tan et
al., 2024a]. Evaluation Metrics: Following common prac-
tices [Jeong and others, 2022a; Jeong and others, 2022c;
Ojha et al., 2023], we use average precision (AP) and ac-
curacy (Acc) as the evaluation metrics.

4.2 Preliminary experiments
Feature Visualization. We visualize the features for each
quantized convolution layer as the Main Path and their cor-
responding full-precision connections as the Auxiliary Path,
as shown in Figure 6. Each row has three images: the output
of the shortcut connection and the quantized convolution, as
well as the weighted combination of the two features. It can
be observed that quantization captures the primary features,
especially edge information. However, due to the rounding
operations , many important information and details are lost.
For instance, the background and the main subject are shown
as the same color. Fortunately, the auxiliary path preserves
much of the original information, particularly textures and
key elements in the image (such as the bird’s beak). By com-
bining the features from both paths, the final feature map re-
tains the outline of subject, the distinction to the background,
and critical details and texture, achieving more robust and
comprehensive representations.
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Methods ProGAN StyleGAN StyleGAN2 BigGAN CycleGAN StarGAN GauGAN Deepfake Avg.
Acc AP Acc AP Acc AP Acc AP Acc AP Acc AP Acc AP Acc AP Acc AP

CNNDetection 91.4 99.4 63.8 91.4 76.4 97.5 52.9 73.3 72.7 88.6 63.8 90.8 63.9 92.2 51.7 62.3 67.1 86.9
Frank et al. 90.3 85.2 74.5 72.0 73.1 71.4 88.7 86.0 75.5 71.2 99.5 99.5 69.2 77.4 60.7 49.1 78.9 76.5
Durall et al. 81.1 74.4 54.4 52.6 66.8 62.0 60.1 56.3 69.0 64.0 98.1 98.1 61.9 57.4 50.2 50.0 67.7 64.4

Patchfor 97.8 100.0 82.6 93.1 83.6 98.5 64.7 69.5 74.5 87.2 100.0 100.0 57.2 55.4 85.0 93.2 80.7 87.1
F3Net 99.4 100.0 92.6 99.7 88.0 99.8 65.3 69.9 76.4 84.3 100.0 100.0 58.1 56.7 63.5 78.8 80.4 86.2

SelfBland 58.8 65.2 50.1 47.7 48.6 47.4 51.1 51.9 59.2 65.3 74.5 89.2 59.2 65.5 93.8 99.3 61.9 66.4
GANDetection 82.7 95.1 74.4 92.9 69.9 87.9 76.3 89.9 85.2 95.5 68.8 99.7 61.4 75.8 60.0 83.9 72.3 90.1

BiHPF 90.7 86.2 76.9 75.1 76.2 74.7 84.9 81.7 81.9 78.9 94.4 94.4 69.5 78.1 54.4 54.6 78.6 77.9
FrePGAN 99.0 99.9 80.7 89.6 84.1 98.6 69.2 71.1 71.1 74.4 99.9 100.0 60.3 71.7 70.9 91.9 79.4 87.2

LGrad 99.9 100.0 94.8 99.9 96.0 99.9 82.9 90.7 85.3 94.0 99.6 100.0 72.4 79.3 58.0 67.9 86.1 91.5
Ojha et al. 99.7 100.0 89.0 98.7 83.9 98.4 90.5 99.1 87.9 99.8 91.4 100.0 89.9 100.0 80.2 90.2 89.1 98.3
FrqeNet 99.6 100.0 90.2 99.7 88.0 99.5 90.5 96.0 95.8 99.6 85.7 99.8 93.4 98.6 88.9 94.4 91.5 98.5

Lanzino et al. (1-bit) 73.2 80.8 60.3 64.4 53.9 56.8 56.5 57.0 57.9 56.5 62.2 71.5 61.1 61.8 54.0 54.3 59.8 62.9
MinMax (4-bit) 91.0 97.5 74.4 84.4 73.7 88.7 48.9 49.0 50.9 51.0 78.3 97.8 47.4 45.7 54.8 54.2 64.9 71.1

LSQ (4-bit) 99.6 100.0 82.2 90.4 79.6 94.3 62.7 65.7 68.6 75.3 100.0 100.0 41.0 42.5 84.9 93.1 77.3 82.6
N2UQ (3-bit) 99.5 100.0 83.1 89.9 83.7 97.1 64.6 66.4 71.4 82.0 100.0 100.0 37.9 39.8 77.2 89.0 77.1 83.1
Ours (3-bit) 99.3 100.0 96.4 99.4 96.9 99.5 93.1 96.4 88.2 96.0 97.9 99.9 92.1 94.6 67.0 64.9 91.4 93.9
Ours (2-bit) 99.8 100.0 96.1 99.5 99.4 100.0 93.3 97.2 86.7 90.3 93.4 99.8 89.3 93.0 76.9 81.2 91.8 95.1

Table 2: Cross-GAN-Sources Evaluation on the ForenSynths. Separated by a horizontal line, the upper section presents the full-precision
models and algorithms, while the lower section displays the low-bit quantized models with various quantization methods and bitwidth.

Method DALLE Glide 100 10 Glide 100 27 Glide 50 27 ADM LDM 100 LDM 200 LDM 200 cfg Avg.
Acc AP Acc AP Acc AP Acc AP Acc AP Acc AP Acc AP Acc AP Acc AP

CNNDetection 51.8 61.3 53.3 72.9 53.0 71.3 54.2 76.0 54.9 66.6 51.9 63.7 52.0 64.5 51.6 63.1 52.8 67.4
Frank 57.0 62.5 53.6 44.3 50.4 40.8 52.0 42.3 53.4 52.5 56.6 51.3 56.4 50.9 56.5 52.1 54.5 49.6
Durall 55.9 58.0 54.9 52.3 48.9 46.9 51.7 49.9 40.6 42.3 62.0 62.6 61.7 61.7 58.4 58.5 54.3 54.0

Patchfor 79.8 99.1 87.3 99.7 82.8 99.1 84.9 98.8 74.2 81.4 95.8 99.8 95.6 99.9 94.0 99.8 86.8 97.2
F3Net 71.6 79.9 88.3 95.4 87.0 94.5 88.5 95.4 69.2 70.8 74.1 84.0 73.4 83.3 80.7 89.1 79.1 86.5

SelfBland 52.4 51.6 58.8 63.2 59.4 64.1 64.2 68.3 58.3 63.4 53.0 54.0 52.6 51.9 51.9 52.6 56.3 58.7
GANDetection 67.2 83.0 51.2 52.6 51.1 51.9 51.7 53.5 49.6 49.0 54.7 65.8 54.9 65.9 53.8 58.9 54.3 60.1

LGrad 88.5 97.3 89.4 94.9 87.4 93.2 90.7 95.1 86.6 100.0 94.8 99.2 94.2 99.1 95.9 99.2 90.9 97.2
Ojha 89.5 96.8 90.1 97.0 90.7 97.2 91.1 97.4 75.7 85.1 90.5 97.0 90.2 97.1 77.3 88.6 86.9 94.5

FrqeNet 97.2 99.7 87.9 96.0 84.4 95.6 86.6 95.8 67.2 75.4 97.8 99.9 97.4 99.9 97.2 99.9 89.5 95.3
Lanzino et al. (1-bit) 55.2 57.9 59.7 62.5 59.9 63.2 61.6 65.0 57.2 59.3 60.8 63.5 61.5 65.4 57.1 59.6 59.1 62.0

MinMax (4-bit) 54.8 58.7 60.0 65.6 59.7 66.4 63.3 70.5 58.9 61.3 79.7 90.0 80.2 90.4 77.7 87.0 66.8 73.8
LSQ (4-bit) 66.0 94.0 91.9 99.5 88.2 99.1 90.3 99.3 72.1 79.4 95.2 99.8 96.0 99.8 94.0 99.7 86.7 96.3

N2UQ (3-bit) 71.9 84.5 87.8 95.6 83.7 92.8 85.5 93.8 68.5 76.7 91.0 97.3 90.8 97.0 90.3 97.1 83.7 91.8
Ours (3-bit) 82.7 96.0 96.4 99.3 94.3 98.9 93.5 98.8 86.0 94.6 97.9 99.5 97.5 99.4 97.8 99.5 93.3 98.2
Ours (2-bit) 82.5 94.0 96.5 99.3 96.2 99.5 95.6 99.4 82.5 94.0 95.7 99.3 94.7 99.2 95.1 99.3 92.4 98.4

Table 3: Cross-Diffusion-Sources Evaluation on the UniversalFakeDetect. Separated by a horizontal line, the upper section presents the
full-precision models and algorithms, while the lower displays the low-bit quantized models with various quantization methods and bitwidth.

Activation Visualization. We visualize the intermediate
activations at post-activation function in Figure 7(a). Each
individual channel of activation are represents by x-axis, and
the y-axis indicates the value distribution, with darker col-
ors indicating higher densities. It is evident that after passing
through the activation function, a large proportion of activa-
tions concentrate near zero, with only a small fraction of val-
ues much greater than zero, resulting in an imbalanced dis-
tribution. After quantization, there is always only very few
effective bits represent the majority of values, leading to sub-
stantial information loss. While in Figure 7(b), after adding
an offset to the parameters and mapping them to the logarith-
mic space, the activations are flattened and balanced, creating
a more uniform distribution, friendly for quantization.

4.3 Detection Performance
In this section, we show the accuracy performance of our
proposed lightweight designs compared to existing deepfake
detection models and algorithms in Table 2 for Cross-GAN-
Sources Evaluation on ForenSynths [Wang and others, 2020]
and Table 3 for Cross-Diffusion-Sources Evaluation on Uni-
versalFakeDetect [Ojha et al., 2023]. Among these, only Pro-
GAN is tested on seen data, while others are unseen.

When on the seen data domain, i.e., images generated by
ProGAN, the detection accuracy of the quantized model with
proposed methods is comparable to that of the models with-
out quantization. For example, in Table 2, when we ap-
ply 2/3-bit weight and activations, our proposed quantization
models have nearly no accuracy loss. And for unseen data
domain, our method shows its effectiveness across different
GAN and Diffusion. Under Cross-GAN-Source Evaluation,
our method performs best in accuracy which is 91.8% on av-
erage, and the 95.1% AP also surpasses most of the previous
methods. Especially, our model has 2.7% and improvement
in Acc compared to CLIP model, while only utilizing 5% pa-
rameters and much fewer FLOPs. Meanwhile, under Cross-
Diffusion-Source Evaluation, our method also achieves the
best performance, which are 2.4% and 3.1% higher than the
previous SOTA in Acc and AP on average performance.

4.4 Generalization Performance
To show the generalization ability on different backbones of
our methods, we conduct experiments on different sizes of
ResNets, i.e., ResNet-23/50 and MobileNet, which has a dif-
ferent fundamental architecture compared to residual blocks.
We show the accuracy performance of the quantized models
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Figure 8: Average performance on eight GAN-based methods.

Method Backbone FLOPs (G) Storage (MB)

Frank et al. 4-Layer CNN 0.0238 0.68
FreqNet CNN 5.1 1.9
F3Net Xception 8.4 22.9

CNNDetection ResNet50 4.8 25.6
Ojha et al. CLIP ResNet50 12.2 25.6
Ojha et al. CLIP VIT-L/14 162 88.3
SelfBland ResNet50+ 8.34 44.6

LGrad Discriminator+ 75 46.6
GANDetection EfficentNetB4×5 21 95
Lanzino et al. BNext-T [1-bit] 0.89 13.3
Lanzino et al. BNext-M [1-bit] 3.4 46.5

FP Basline ResNet-23 2.7 62
LSQ ResNet-23 [4-bit] 0.37 7.9

N2UQ ResNet-23 [3-bit] 0.30 6.9
Ours ResNet-23 [3-bit] 0.32 6.9
Ours ResNet-23 [2-bit] 0.25 5.0

Table 4: Efficiency of methods, backbones and quantized bitwidth.
For low-bit quantized methods, we calculate OPs as theoretical com-
putation complexity, while for full-precision models, we use FLOPs.

using naive quantization techniques (light blue/yellow bars),
or equipped with our proposed methods (dark blue/yellow
bars) in Figure 8(a). All the cases are tested on Foren-
Synths, and we only show the average Acc and AP for sim-
plicity. The experimental results demonstrate that our pro-
posed method consistently and significantly improves detec-
tion performance across both ResNet and MobileNet archi-
tectures, achieving more than a 20% improvement in Acc
and a 15% improvement in AP. Notably, due to the inherently
lightweight structure of MobileNet, directly applying conven-
tional quantization methods results in severe accuracy degra-
dation. In contrast, our method achieves remarkable improve-
ments, boosting Acc by 25.6% and AP by 26.6%. These gains
are mainly attributed to our CQB module, which enhances the
information density of the MobileNet architecture.

Regarding different quantizers, we evaluated our quanti-
zation method with MinMax,LSQ [Esser et al., 2020], and
N2UQ [Liu et al., 2022] quantizers. As shown in Figure 8(b),
our SLR consistently achieves stable improvements across
all quantizers, which demonstrates that by leveraging shift
and logarithmic redistribution, SLR effectively mitigates the
issue of unbalanced parameter distribution, thereby signifi-
cantly enhancing the performance.

4.5 Efficiency Performance
We analyze the efficiency of various methods and backbones
in Table 4, reporting theoretical GFLOPs and storage (MB).

The methods can be roughly categorized into two kinds de-
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Figure 9: Ablation study on Cross-GAN-Sources Evaluations.

pending on the data preprocessing. Methods like [Durall and
others, 2020; Frank and others, 2020; Tan et al., 2024a] are
based on frequency analysis, which may have relatively fewer
model storage but increased FLOPs due to DCT computation.
Other approaches use diverse backbones such as CLIP-ViT,
ResNet, or EfficientNet. CLIP-based models are the most
resource-intensive, with up to 162 GFLOPs and 88.3MB stor-
age. With quantization, the FLOPs can be reduced by higher
throughput computations, and the storage can also be com-
pact by packing the low-bit parameters together. For instance,
BNext-T [Lanzino et al., 2024] uses binarization to achieve
0.89 GFLOPs and 13.3MB, though at a cost of significant ac-
curacy loss. Therefore, we adopt 2/3-bit quantization in our
method, allowing us to use smaller models while maintaining
the accuracy. Based on ResNet-23, our model achieves strong
compression, requiring only 0.25 GFLOPs and 5.0MB under
2-bit, while maintaining competitive accuracy.

4.6 Ablation Study
We evaluate each proposed component in Figure 9 on Cross-
GAN-Source Evaluations. The baseline (blue bar) uses 2-bit
N2UQ on RGB images. Replacing RGB with NPR (pink bar)
significantly boosts performance by 7.4% in Acc and 9.3% in
AP, highlighting NPR is more quantization-friendly due to its
compact value range and finer quantization intervals.

Adding shortcut connections in CQB (brown bar) yields
a further 7.5% Acc gain by preserving fine-grained texture
through the full-precision auxiliary path. Finally, our SLR
quantizer (purple bar), designed for post-activation imbal-
ance, brings a 2.1% improvement. These results confirm that
combining NPR, CQB, and SLR effectively enhances detec-
tion performance under low-bit quantizationacross different
generation models.

5 Conclusion
In this paper, we focus on the lightweight deepfake detection
models and propose low-bit quantization method. It includes
a Connected Quantized Block (CQB), which preserves fine
details and textures to compensate for the forgery features in
quantized convolutional layers, and the Shifted Logarithmic
Redistribution (SLR) Quantizer, which unfolds unbalanced
activations to make them more quantization-friendly and re-
duce the information loss. The proposed quantized deepfake
detection model achieves a 10.8× reduction in computation
and a 12.4× decrease in model storage, while maintaining
accuracy comparable to full-precision or larger models.
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