
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Improvements to the Generate-and-Complete Approach to Conformant Planning

Liangda Fang1,3 , Min Zhan1 , Jin Tong1 , Xiujie Huang1∗ , Ziliang Chen2 , Quanlong Guan1∗

1Jinan University, Guangzhou, 510632, China
2Pengcheng Laboratory, Shenzhen, 518055, China
3Pazhou Laboratory, Guangzhou, 510330, China

{fangld, t xiujie, gql}@jnu.edu.cn, {zhanmin, tj16164}@stu.jnu.edu.cn, c.ziliang@yahoo.com

Abstract
Conformant planning is a computationally chal-
lenging task that generates an action sequence to
achieve goal condition with uncertain initial states
and non-deterministic actions. The generate-and-
complete (in short, GC) approach shows superior
performance on conformant planning, which
iteratively enumerates the solution of a planning
subproblem for a single initial state and attempts
to extend it for all initial states until a conform so-
lution is found. However, two major drawbacks of
the GC approach hinder its performance: the com-
putational overhead due to state exploration and the
insertion of many redundant actions. To overcome
the above drawbacks, we improve both verification
and completion procedures. Experimental results
show that the improved GC planner has significant
improvements over the original GC approach in
many instances with a large number of initial states.
Our approach also outperforms all of state-of-the-
art planners, solving 989 instances in comparison
to 784, which is the most solved by DNF.

1 Introduction
Conformant planning [Smith and Weld, 1998] aims to gener-
ate an action sequence that guarantees goal achievement un-
der uncertainty in initial states and non-determinism of action
effects. Conformant planning is computationally challenging,
more precisely, EXPSPACE-complete [Haslum and Jonsson,
1999]. Numerous approaches have been developed to tackle
the inherent complexity of conformant planning.

A series of competitive approaches are based on heuristic
search over belief states. Forward search-based planners:
GPT [Bonet and Geffner, 2000], CMBP [Cimatti and Roveri,
2000], KACMBP [Cimatti and Roveri, 2004], conformant-
FF [Hoffmann and Brafman, 2006], POND [Bryce et al.,
2006], T1 [Albore et al., 2011], CPA(H) [Tran et al., 2013],
DNF, CNF, PIP [To et al., 2015] start from the initial belief
state and repeatedly performing executable actions to reach
new belief states towards the goal condition. Backward
search-based planners: CGP [Smith and Weld, 1998], YKA

∗Both are corresponding authors.

[Rintanen, 2002] and CAltAlt [Bryce et al., 2006] work as
forward search-based ones but in an opposite direction from
the goal condition to the initial belief state.

Another series of competitive approaches take advantage
of classical planning. Palacios and Geffner [2009] proposed
a sound translation from conformant planning problems to
classical planning problems. The main idea is to extend each
proposition p to propositions Kp/t and K¬p/t for a set T of
tags where each tag t ∈ T is a set of unknown literals in the
initial formula. Intuitively, Kp/t (resp. K¬p/t) means that p
(resp. ¬p) holds in the initial state consistent with t. When T
covers the initial formula, the translation becomes complete,
but leads to an exponential blowup in the size of T to the
width of the problem. T0 [Palacios and Geffner, 2009] firstly
attempts to obtain a solution by using a sound and polynomial
but incomplete translation and then generates a solution by
using a complete translation when the attempt fails.

Grastien and Scala [2020] adopted the counterexample-
guided framework, originally proposed in the field of
computational learning theory [Angluin, 1987] and used in
address the state explosion issue in model checking [Clarke
et al., 2003], and developed a novel approach to conformant
planning, namely CPCES. It maintains a subset S of initial
sets, and computes a candidate solution α that works only
for S not the whole set of initial sets. A conformant planning
subproblem for S is translated to a classical planning problem
via augmenting each proposition p to many copies ps for ev-
ery state s ∈ S. Unlike the translation proposed by Palacios
and Geffner [2009], this translation is complete but unsound.
Since the subset S is often small, a conform plan α can be
computed by a classical planner. If α is incorrect, then an
initial state s, in which α does not hold, is added to S. A new
candidate solution, which is guaranteed to be valid for the
new set S, is generated. The procedure continues until either
a correct plan is found or the problem is proved unsolvable.

Nguyen et al. [2012] designed a conformant planner
following the generate-and-complete framework (in short,
GC). It firstly finds a candidate plan α that works in an
initial state s and then attempts to complete α to be hold
in all initial states. If the completion procedure succeeds, it
finds a conformant solution for all initial states; otherwise,
it tries on another plan that works in s. Both generation
and completion procedures are accomplished by a classical
planner. Although GC exhibits its exceptional performance

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

on conformant planning, it still has the following two draw-
backs: (1) Several procedures of the GC approach explores
all initial states. When the number of initial states is large,
state exploration incurs a substantial computational overhead,
making the problem difficult or even impossible to be solved
within a reasonable time. (2) The completion procedure
inserts many redundant actions into the solution, hence
degrading the solution quality and the overall performance.

This paper is intended to overcome the above two draw-
backs. The main contributions are the following. (1) We
reduce the correct verification of the candidate solution to
a SAT problem, which does not rely on state exploration.
(2) We integrate the counterexample-guided framework into
the completion procedure so as to avoid state exploration.
Additionally, we devise a method to eliminate redundant
segments of the candidate solution α by checking if the belief
state remains unchanged after executing some segments of
α. (3) We modify the main algorithm of the GC approach to
accommodate the above two improvements. (4) We evaluate
our improved GC approach on benchmarks that includes
a total of 50 domains, with 1,179 instances from previous
literature and the IPC competitions. The experimental results
demonstrate that the improved GC planner outperforms the
original one in two aspects: the number of solved instances
and the length of solutions. Furthermore, the improved GC
planner significantly improves upon every current state-of-
the-art planners, solving 989 instances in comparison to 784,
which is the most solved by a state-of-the-art planner DNF.

2 Conformant Planning
Throughout this paper, we fix a set X of propositions. We use
lower case letter (e.g., x, y, z) for propositions and upper case
letters (e.g., Y , Z) for subsets of propositions. A literal l is
a proposition p or it negation ¬p. A propositional formula
ϕ is built from the set X of propositions, the connectives
¬,∨,∧, oneof and two Boolean constants ⊤ (truth) and ⊥
(falsity). The oneof connective is widely used in formulating
conformant planning problems [To et al., 2015; Nguyen et al.,
2011; Nguyen et al., 2012]. Intuitively, oneof(ϕ1, · · · , ϕn)
means that there is an unique formula ϕi holds. A term is a
conjunction of literals. For simplicity, we sometimes use a set
{l1, · · · , ln} of literals to denote a term l1 ∧ · · · ∧ ln. A dis-
junctive normal form (in short, DNF) formula is of the form
ψ1∨· · ·∨ψn and a oneof normal form (in short, ONF) formula
is of the form oneof(ψ1, · · · , ψn) where each ψi is a term.

A state s is a subset of propositions. Given a state s and a
formula ϕ, the notation s |= ϕ means that s satisfies ϕ, which
is defined as usual. A model of ϕ is a state satisfying ϕ. We
use JϕK for the set of models of ϕ. A belief state S is a set of
states and can be represented as a propositional formula.

Definition 1. A deterministic conformant planning problem
P is a tuple ⟨X ,A, I,G⟩ where

• X : a finite set of propositions;

• A: a finite set of actions;

• I: a formula denoting the initial belief state;

• G: a formula denoting the goal condition.

We say a state s is an initial state, iff s ∈ JIK. We define
P(s) = ⟨X ,A, s,G⟩ as a subproblem of P where s ∈ JIK.
Definition 1 allows the initial formula I and the goal formula
G to be arbitrary propositional formulas. As in [To et al.,
2015; Nguyen et al., 2011; Nguyen et al., 2012], we impose
restrictions on I and G: (1) I is restricted to a conjunction
of Il, Io and Id where Il is a set of literals, Io is a set of
ONF-formulas and Id is a set of DNF-formulas, and (2) G is
restricted to a conjunction of Gl and Gd where Gl is a set of
literals and Gd is a set of DNF-formulas.

Each action a ∈ A is defined as a pair ⟨pre(a), eff(a)⟩
where pre(a) is a set of literals indicating the precondi-
tion and eff(a) is a non-empty set of conditional effects
representing the effect. A conditional effect e is defined
as a pair ⟨con(e), lit(e)⟩ where con(e) and lit(e) are
sets of literals. Intuitively, if every literal of con(e) holds
before the execution of e, then every literal of lit(e) holds
after; otherwise, nothing is changed. A conditional effect e
is applicable in s, iff s |= con(e). The positive condition
con+(x, a) of an action a for a proposition x is defined as∨

e∈eff(a),x∈lit(e) con(e). Similarly, the negative condition
con−(x, a) is

∨
e∈eff(a),¬x∈lit(e) con(e). Intuitively, the

positive (resp. negative) condition holds before performing
a implies that x become true (resp. false) after. The positive
effect eff+(s, a) of an action a in a state s is a set of proposi-
tions defined as {x | e ∈ eff(a), s |= con(e), x ∈ lit(e)}.
Similarly, the negative effect eff−(s, a) is defined as
{x | e ∈ eff(a), s |= con(e),¬x ∈ lit(e)}. We
require every action a to be self-contradictory, formally,
eff+(s, a) ∩ eff−(s, a) = ∅ for every state s.

The resulting state τ(s, a) of executing an action a
in a state s is s \ eff−(s, a) ∪ eff+(s, a). The re-
sulting state Γ(s, [a1, · · · , an]) of executing an action
sequence [a1, · · · , an] in a state s is recursively defined by
Γ(s, [a1, · · · , an−1, an]) = τ(Γ(s, [a1, · · · , an−1]), an) and
Γ(s, ε) = s where ε is an empty sequence. An action a is
executable in a state s iff s |= pre(a). An action sequence
[a1, · · · , an] is executable in a state s iff s |= pre(a1) and
Γ(s, [a1, · · · , ai]) |= pre(ai+1) for i ≥ 1.

Given an action sequence α : [α1, · · · , αn], we use αi for
the i-th action ai. An action sequence α is a solution to P , iff
it is executable in every initial state and every resulting state
by performing α from every initial state is a goal state.

We illustrate conformant planning with the robot naviga-
tion problem proposed in [Cimatti and Roveri, 2004].

Example 1. A robot can move in four directions in a 5 × 5
grid. Each cell (i, j) in the grid can be represented by two
propositions xi and yj . For example, x1 ∧ y2 means that the
robot is at cell (1, 2). The robot initially start at any position
and its goal is to reach the center cell (3, 3).

• X = {xi | 1 ≤ i ≤ 5} ∪ {yj | 1 ≤ j ≤ 5};

• I = oneof(x1, · · · , x5) ∧ oneof(y1, · · · , y5);
• G = x3 ∧ y3;

• A = {left, right, up, down};

• pre(left) = pre(right) = pre(up) = pre(down) =
∅;

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Algorithm 1: GC(P)
Input: P = ⟨X ,A, I,G⟩: a conformant planning problem
Output: α: a solution to P

1 I′ ← Combine(I)
2 s← a state of JI′K
3 repeat
4 α← FindNextPlan(P(s))
5 if α = ∅ then return ∅;
6 α← Complete(P, JI′K, α)
7 if Verify(P, α) ̸= ∅ then return α ;
8 until true;

Algorithm 2: Complete(P, S, α)
Input: P = ⟨X ,A, I,G⟩: a conformant planning problem;

S: a set of initial states;
α: a plan to be completed.

Output: α: a possible solution to P .
1 for i = 1 to k do
2 foreach s ∈ S do
3 if VerifyClassicPlan(P(s), α) = true then
4 s′ ← s
5 continue
6 α← Extend(P, s, s′, α)
7 if α = ∅ then return ∅ ;

8 return α

• eff(left) = {⟨{xi+1}, {xi,¬xi+1}⟩ | 1 ≤ i ≤ 4};

• eff(right) = {⟨{xi}, {xi+1,¬xi}⟩ | 1 ≤ i ≤ 4};

• eff(up) = {⟨{yi+1}, {yi,¬yi+1}⟩ | 1 ≤ i ≤ 4};

• eff(down) = {⟨{yi}, {yi+1,¬yi}⟩ | 1 ≤ i ≤ 4} .

One solution to this problem is [left×4, up×4, right×
2, down×2]. The plan α is always executable since all actions
have valid precondition. She can move from any initial cell
to the upper-left corner (x1, y1) via performing four consec-
utive up actions followed by four consecutive left actions.
She finally reaches the center cell (x3, y3) by executing two
consecutive right and two consecutive down actions.

3 The Generate-And-Complete Approach
In this section, we briefly introduce the generate-and-
complete approach to conformant planning, proposed by
Nguyen et al. [2012].

The GC approach utilizes a classical planner Ω, which is
required to not only generate one single solution for a classi-
cal planning problem but also enumerate many different so-
lutions in an iterative manner. The procedure FindNextPlan
aims to iteratively generate a new solution via utilizing a
classical planner Ω and it returns ∅ when Ω cannot find
any new solution. The basic idea behind the GC approach,
illustrated in Algorithm 11, is as follows. It first generates
a solution α of the subproblem P(s) where s is an initial

1The pseudocodes of Algorithms 1 and 2 are slightly different
from that in [Nguyen et al., 2012] since the pseudocodes in our paper
is based on the latest implementation of the GC[LAMA] planner.

Algorithm 3: Extend(P, s, s′, α)
Input: P = ⟨X ,A, I,G⟩: a conformant planning problem;

s: the current state;
s′: the state where α is a solution to P(s′);
α: a plan to be extended.

Output: α: a solution to P(s).
1 s0 ← s
2 for j = 1 to |α| do
3 G′ ← GenerateGoal(αj ,Γ(s

′, [α1, · · · , αj−1]))

4 βj ← FindNextPlan(⟨X ,A, sj−1,G′⟩)
5 if βj = ∅ and sj−1 ̸|= pre(aj) then return ∅ ;
6 sj ← Γ(sj−1, β

j ◦ αj)

7 βG ← FindNextPlan(P(s|α|))

8 if βG = ∅ then return ∅ ;
9 α← β1 ◦ α1 ◦ · · · ◦ β|α| ◦ α|α| ◦ βG

10 return α

state if it exists (line 4). Since α may not be a solution of the
original problem P , it then attempts to repair α to account
for all of initial states (line 6). If the completion procedure
fails to repair α, then it continues to find the next solution of
P(s). The above steps repeat until no more solution of P(s)
is found by Ω (line 5) or a solution of P is generated (line 7).

We say a conformant planner is sound iff it returns a plan
α only if α is a solution to the conformant planning problem
P; it is complete iff it returns ∅ only if P has no solution; and
it is strongly complete for k iff it enumerates all solutions to
P with length up to k, and returns ∅ when such all solutions
exhaust. The above properties for classical planner can be
similarly defined. Since the correctness of α is guaranteed
in line 7, the GC approach is sound. Haslum and Jonsson
[1999] proved that if a conformant planning problem has a
solution, then it has a solution with length up to 22

|X|
where

|X | is the number of propositions. In addition, every solution
to P is also a solution to P(s). In summary, if the underlying
classical planner Ω is strongly complete for 22

|X|
, then the

GC approach is complete. The completeness of Ω cannot
ensure the completeness of GC since Ω is not guaranteed to
generate all solutions to P(s) with length up to 22

|X|
and the

completion procedure is incomplete.
There are three remaining issues of Algorithm 1: (1) how

to obtain an initial state s; (2) how to verify the correctness of
a candidate plan α; and (3) how to repair a candidate plan α.

For the first issue, Algorithm 1 enumerates a collection JIK
of initial states and choose one state from JIK as the initial
state s (lines 1 - 2). In general, large-scale planning problems
involves an enormous number of initial states. To reduce
the number of initial states, Tran et al. [2013] proposed
oneof-combination technique that generates a new initial
formula I ′ by combining some ONF-formulas of the initial
formula I into one. The formula I ′ has two characteristics:
(1) I ′ entails I; and (2) every solution of the new conformant
planning problem ⟨X ,A, I ′,G⟩ is also a solution of the
original problem P and vice versa. For the details of oneof-
combination technique, please refer to [Tran et al., 2013].

The verification procedure addresses the second issue. The

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

GC approach reduces the problem of checking if α is a solu-
tion to every classical planning problem P(s) for every state
s ∈ JI ′K. The latter can be solved in the following. It applies
the effects of actions α1, · · · , αi progressively to obtains
each immediate state Γ(s, [α1, · · · , αi]) for 0 ≤ i ≤ |α|. The
plan α is a solution to P(s) iff (1) α is executable in s; and
(2) the final state Γ(s, α) satisfies the goal condition G.

The completion procedure, illustrated in Algorithm 2, aims
to fix the third issue. It attempts to extend the solution α of
the subproblem P(s) to a solution to P . For each initial state
s ∈ S, the inner loop (lines 2 - 7) sequentially inserts a few
actions into α. At each iteration, s′ is the last state where no
action is needed to be inserted (line 4). Based on s′ and the
current initial state s, actions are inserted into α to ensure that
α becomes a solution for P(s) (line 6), if this is impossible,
the algorithm terminates (line 7). The completed sequence α
is not guaranteed to remain a solution to the subproblem for
previously visited states. As a result, the inner loop will be
invoked by k times where k = 3 in the implementation.

Algorithm 3 inserts some actions into the solution α to a
subproblem P(s′) so that α becomes a solution to P(s). An
action sequence βj is first generated by using the underlying
classical planner and then is inserted between αj−1 and αj

(line 4). To this end, an immediate goal G′ is generated
based on action αj and state s′j : Γ(s′, [α1, · · · , αj−1])
(line 3). Three strategies for generating G′ are proposed
in [Nguyen et al., 2012]: Ignorant: pre(αj); Greedy:
pre(αj) ∧

∧
e∈eff(αj),s′j |=con(e) con(e)); and Hybrid:

pre(αj) ∧
∧

e∈eff(αj),s′j |=con(e),|con(e)|≤1 con(e). All strate-
gies require αj to be executable. The greedy strategy ensures
that the execution of αj preserves the execution of every
applicable conditional effect of αj in s′j while the ignorant
strategy does not. The hybrid strategy is a balance between
them, which considers only applicable conditional effects
whose condition is ⊤ or a single literal. The empirical results
reported in [Nguyen et al., 2012] demonstrated that the
hybrid strategy outperforms the other two. If the subproblem
⟨X ,A, sj ,G′⟩ has no solution and αj is not executable in
state sj , then repairing α to fit s is impossible and the algo-
rithm terminates without a solution (line 5). Otherwise, we
compute the resulting state sj+1 of executing the sequence
βi ◦ αj in sj (line 6). To achieve the goal condition G, an
additional action sequence βG is generated in a similar way
to βj (lines 7 and 8). Finally, we insert each subsequence βj

between αj−1 and αj and append βG to α (line 9).

4 Some Improvements to the GC Approach
In this section, we first analyze two drawbacks of the GC
approach (Sec. 4.1). Then, we observe that the drawbacks lie
in the two verification and completion procedures and hence
propose SAT-based verification procedure (Sec. 4.2) and
counterexample-guided completion procedure (Sec. 4.3).
Finally, we integrate the two above improved procedures into
the main GC algorithm (Sec. 4.4).

4.1 Two Drawbacks of the GC Approach
Although the GC approach is effective in conformant plan-
ning, it has the following two significant drawbacks. (1)

In some conformant planning problems, even using one-of
combination technique, the number of initial states is still
extremely large. For example, the or-dispose problem with 4
objects on 4 × 4 grids has 248 initial states. The overall effi-
ciency of GC drops considerably since the three procedures:
state enumeration, completion and verification traverses
through all initial states. Even the state enumeration proce-
dure sometimes runs timeout. (2) The complete procedure
often introduces a substantial number of redundant actions.
This results in an overly long solution, which negatively
impacts the performance of verification procedure and the
overall efficiency of the GC approach. For example, in the
uts-l problem with 90 nodes, the GC approach generates a
solution with length 4269, approximately 15 times longer
than the shortest solution with only length 268.

4.2 SAT-Based Verification Procedure
We adopt a SAT-based verification procedure,
proposed in [Hoffmann and Brafman, 2006;
Grastien and Scala, 2020], which is a reduction from
correctness verification of candidate solutions to a SAT
problem. The major advantage of the SAT-based method
over the verification in the original GC approach is that it
does not exhaustively enumerates all initial states.

Suppose that P = ⟨X ,A, I,G⟩ is a conformant planning
problem and α is an action sequence. To distinguish the
truth value of a proposition x on different time points during
performing α, we use x0 to represent the value of x in the
initial state, and xi to denote the value of x after executing
the prefix [α1, · · · , αi] one by one. Given a formula ϕ and
an index i, we use ϕi for the formula resulting from ϕ via
replacing every occurrence of proposition x by the i-th
time-stamped version xi.

The core of the SAT-based verification procedure is the
successor state axiom ψi,x,a for proposition x and action a at
time point i, which is defined as:

xi ↔ [con+(x, a)i−1 ∨ (xi−1 ∧ ¬con−(x, a)i−1)].

Intuitively, ψi,x,a means that at the time point i, x holds
after executing a iff the positive condition of a for x holds
before, or x holds before and the negative condition does not.

The trace axiom ϕP,α is defined as

I0 ∧
∧

0<i≤|α|
(
¬pre(αi)i−1 ∧

∧
x∈X ψi,x,αi

)
∧ ¬G|α|.

Let ϕ be a formula over
⋃

0≤i≤|α| Xi. We say a state s
is the initial-projection of an assignment t of ϕ, if for every
x ∈ X , we have x ∈ s iff x0 ∈ t.

The following theorem ensures that if the SAT-based
verification procedure produces an initial state s, then α is
not a solution to P(s).

Theorem 1 ([Grastien and Scala, 2020]). A state s is the
initial-projection of an assignment of ϕP,α iff α is not a solu-
tion to P(s) and s ∈ JIK.

As a corollary, if the SAT-based verification procedure re-
turns no assignment, then α is a solution to P , and vice versa.

Corollary 1 ([Grastien and Scala, 2020]). The action se-
quence α is a solution to P iff ϕP,α is unsatisfiable.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Algorithm 4: CG-Complete(P, s′, α)
Input: P = ⟨X ,A, I,G⟩: a conformant planning problem;

s′: a state;
α: a plan to be completed.

Output: α: a possible solution to P .
1 S ← {s′}
2 repeat
3 s← Verify(P, α)
4 if s = ∅ then return α ;
5 S ← S ∪ {s}
6 α← Extend(P, s, s′, α)
7 s′ ← s
8 if α = ∅ then return α ;
9 α← EliminateRedundantAct(S, α)

10 until true;
11 return α

The trace axiom ϕP,α involves |X |×(|α|+1) propositions
where |X | is the number of propositions and |α| is the length
of α. The performance of SAT solvers is highly sensitive to
the number of propositions and the length of the formula. To
accelerate the verification phase, we will simplify the trace
axiom via forgetting some redundant propositions. Due to
space limit, we introduce the simplification of trace axioms
in extended version.
Example 2. We continue the robot navigation problem il-
lustrated in Example 1. Suppose that a plan α = [left, up].
We first construct the successor state axiom. Since left
action contains only the conditional effect ⟨{x2}, {x1,¬x2}⟩
affecting x1, the positive condition con+(x1, left) of left
for x1 is x2 and the negative condition con−(x1, left)
is ⊤. Hence, the successor state axiom ψ1,x1,left is
x11 ↔ x20 ∨ (x10 ∧ ⊤). The other successor state axioms can
be similarly constructed.

Finally, the trace axiom ϕP,α is the conjunction of the
following formulas:

• oneof(x10, · · · , x50) ∧ oneof(y10 , · · · , y50);

•
∧5

i=1

(
ψ1,xi,left ∧ ψ1,yi,left ∧ ψ2,xi,up ∧ ψ2,yi,up

)
;

• ¬(x32 ∧ y32).
It can be verified that ϕP,α is satisfiable and hence α is

not a solution to P .

4.3 Counterexample-Guided Completion
Procedure

We will introduce two improvements to the completion
procedure, shown in Algorithm 4. The first improvement
is to adopt the counterexample-guided (CG) framework to
avoid explicit state explosion drawback. The CG completion
procedure maintains a subset S of initial states that is used to
eliminate redundant actions, which will be illustrated later.
Initially, it contains only one state s′ (line 1). It firsts checks
if α is a solution of P . If it fails the verification, it will
generate an initial state s, which serves as a witness to the
fact that α is not a solution to P and add s into S (lines 3 and
5). Unlike the original completion procedure, the improved
one does not iterate over JI ′K to extend the candidate plan

α. Instead, it extends α only for each newly generated initial
state s (line 6). Afterward, s′ will be set to the witness s for
the next iteration since α is extended to be a solution of P(s)
(line 7). The above steps repeat until a solution to P is found
(line 4) or α cannot be extend to a solution to P(s) (line 8).

During the extension process, several redundant actions
may be introduced into the candidate plan α, which degrades
both the quality of solutions and the efficiency of the verifi-
cation procedure. To mitigate this drawback, we will remove
redundant actions from α (line 9). We start from an initial
belief state S0, and generate an evolving sequence of belief
states [S0, · · · , Sn] by sequentially executing each action of
α where S0 = S and Si = {Γ(s, [α1, · · · , αi]) | s ∈ S0} for
1 ≤ i ≤ |α|. If two belief states Si and Sj are identical, then
the action subsequences [αi+1, · · · , αj] can be considered
redundant. This is because, for each state s ∈ S, the original
candidate plan α is a solution to P(s) iff the removed plan
[α1, · · · , αi, αj+1, · · · , α|α|] is a solution to P(s). We
repeatedly seek for two identical belief states Si and Sj

and remove the segment [αi+1, · · · , αj] from α until all
belief states are distinct. The experimental evaluation shows
that each Si has at most 3789 states. Hence, each Si is
explicitly represented as a set and this implementation of the
elimination process is effective, which costs at most 200s.
Example 3. Table 1 shows the run of counterexample-guided
completion procedure for the navigation robot problem. Al-
gorithm 4 takes s′ = {x5, y5} and α = [left, up, left, up]
as input. At the 1st iteration, the SAT-based verification
procedure prove that α is not a solution to the navigation
robot problem with an initial state {x4, y4}. Now, the belief
state S contains two states {x4, y4} and {x5, y5}. An action
sequence [left, right × 2, up, down × 2] will be inserted
inbetween the first left action and the first up action of α so
that α becomes a solution for the state {x4, y4}. Algorithm
4 discovers that S = {Γ(s, [left, right]) | s ∈ S} and that
{Γ(s, [left, right × 2]) | s ∈ S} = {Γ(s, [left, right ×
2, up, down]) | s ∈ S}. So the two segments [left, right]
and [up, down] can be eliminated from α. We obtain a simpli-
fied candidate plan α : [right, down, left, up, left, up].

However, the above plan α is not the solution for
every initial state. At the 2nd iteration, the veri-
fication procedure returns a witness {x1, y1} that
is added into S. Then, α is extended to an plan
[right × 3, down × 3, right, down, left, up, left, up].
None of actions in the above plan is redundant according to
the three states: {x1, y1}, {x4, y4} and {x5, y5}. Finally, the
new plan α is a solution to the navigation robot problem.

4.4 The Improved Main Algorithm
The last two subsections introduce improvements to the
verification and completion procedures. We are ready to
propose the modification to the main algorithm of the GC
approach, illustrated in Algorithm 5. The improved GC
approach works as the original GC approach except the
following. (1) It generates a model of I ′ as the initial state s
via utilizing the SAT solver rather than firstly enumerates all
states of JI ′K and then select one of JI ′K as s (lines 1 and 2).
(2) It uses SAT-based verification procedure and CG com-
pletion procedure instead the original two procedures. (3)

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

s Extended Solutions Eliminated Solutions
(x4, y4) [left, right× 2, up, down× 2, left, up, left, up] [right, down, left, up, left, up]
(x1, y1) [right× 3, down× 3, right, down, left, up, left, up] [right× 3, down× 3, right, down, left, up, left, up]

Table 1: A run of CG-Completion Procedure for Navigation Robot Problem.

Algorithm 5: iGC(P)
Input: P = ⟨X ,A, I,G⟩: a conformant planning problem
Output: α: a solution to P

1 I′ ← Combine(I)
2 s← a state of JI′K
3 repeat
4 α← FindNextPlan(P(s))
5 if α = ∅ then return ∅;
6 α← CG-Complete(P, s, α)
7 if α ̸= ∅ then return α ;
8 until true;

The verification procedure is invoked in the CG completion
procedure rather than the main algorithm.

Similarly to the GC approach, we obtain the following two
theorems regarding the soundness and completeness of the
improved GC approach.
Theorem 2 (Soundness). If Algorithm iGC returns a plan α
for P , then α is a solution to P .
Theorem 3 (Completeness). Let Ω be the underlying classi-
cal planner. If Ω is strongly complete for 22

|X|
where |X | is

the number of propositions and P has a solution, then Algo-
rithm iGC will terminate with a solution to P .

4.5 Comparisons to CPCES
We illustrate the main differences between CPCES and our
approach in the following. (1) The main algorithm of our
approach is still the generate-and-complete approach while
CPCES is based on the counterexample-guided framework.
We only integrate the CG framework into completion
procedure. (2) When a candidate plan α is not a solution,
CPCES completely discards α and computes a new solution.
In contrast, we attempt to augment α to make it valid for all
initial states.

5 Experimental Evaluation
5.1 Implementation and Experimental Setup
We implemented the improved GC approach, namely iGC,
on top of the source code of the GC[LAMA] planner. Like
GC[LAMA], we use LAMA [Richter and Westphal, 2010]
as the underlying classical planner. Since the trace formula
defined in Section 4.2 is arbitrary propositional formula, we
employ Z3 [de Moura and Bjørner, 2008] as the underlying
SAT solver of the verification procedure. For the generation
of the immediate goal G′ (line 3 in Algorithm 3), we adopt
the greedy strategy, which is able to solve domains like
btc, grid-empty and grid-wall, which are solved by neither
ignorant nor hybrid strategies.

We collect 50 domains with a total of 1179 instances,
including 7 domains from IPC-5 [Bonet and Givan, 2006]:

adder-ipc5, coins, comm, uts-k, uts-l, uts-r, and sortnet; 6
domains from IPC-6 [Bryce and Buffet, 2008]: uts-cycle,
raos-key, forest, dispose, adder-ipc6, and block; 7 domains
from [Hoffmann and Brafman, 2006]: logistics, bomb, ring,
grid, omlette, cleaner, and safe; 7 domains from [Palacios and
Geffner, 2009]: cube-center, sqr-center, corners-sqr, corners-
cube, look-and-grab, 1-dispose, and push-to; 10 domains
from [To et al., 2015]: new-dispose, new-push, new-ring,
new-uts-cycle, new-uts-k, or-1-dispose, or-coins, or-dispose,
or-new-push, and or-push-to; 2 domains from [Grastien and
Scala, 2020]: grid-empty and grid-wall; 5 domains from
[Nguyen et al., 2012]: 1-dispose-disappear, hall-a, hall-r,
marker-enc1, and look-and-grab-disappear; 2 domains from
[Eiter et al., 2003]: bt and btc; 3 domains from others:
retrieve, reward and to-trash; and 1 domain we propose: or-
1-dispose-disappear, a variant of or-1-dispose, which action
pickup randomly drops the item at any location if it is held.

We compare our approach, namely iGC, with 8 state-of-
the-art planners: DNF, CNF, PIP, T1, CPA(H), gCPCES,
iCPCES and GC[LAMA]. The experiments were run on
Ubuntu 24.04, with an Intel 8086K 4.0 GHz CPU and 64GB
RAM. The memory limit is 16GB, and the time limit is 3600s.

5.2 Comparative Analysis
We first make comparisons among 8 planners together
with the iGC in terms of coverage of solved instance.
Then, we compare the iGC with three most closely solvers
GC[LAMA], gCPCES and iCPCES in detail.

Table 2 summarizes the total number of instances solved
by each planner in each domain. We can make several
observation from Table 2. (1) iGC solves the highest number
of instances (989), followed by DNF, which ranks second
with 784 instances. Moreover, iGC solves the most instances
in 29 domains and ranks second in 8 domains. (2) It is
worth noting that iGC is the only planner capable of solving
77 instances across 6 domains: 1-dis-dis, look-and-grab,
new-dispose, or-1-dis-dis, ring, to-trash. (3) iGC is able
to solve all instances in 24 domains, while GC and DNF
handles all instances in 20 and 16 domains, respectively. (4)
iGC has the same performance as gCPCES in the challenging
domains grid-empty and grid-wall introduced in [Grastien
and Scala, 2020]. Other planners except T1 are unable to
solve any instance of the above two domains. (5) For 101
instances with high uncertainty in the initial state (including
or-1-dis-dis, or-1-dis, or-coins, or-dispose, or-new-push, and
or-push-to), iGC solves a total of 56 instances, which is just
fewer than 84 instances solved by CNF and 78 instances
solved by PIP. In particular, in the or-1-dis-dis domain,
iGC outperforms CNF and PIP by solving 11 instances as
opposed to 5 solved by CNF and PIP. (6) iGC fails to solve
any instance on some domains. In domains: 1-dis, or-1-dis,
omlette, marker-enc1 and new-uts-k, the underlying planner

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Domains DNF CNF PIP T1 CPA(H) iCPCES gCPCES GC iGC
1-dis-dis(90) 24 9 4 36 19 23 10 41 65
1-dis(21) 21 11 8 14 17 9 10 0 0
adder-ipc5(4) 2 0 0 0 0 ER ER ER ER
adder-ipc6(4) 1 0 0 0 1 ER ER ER ER
blocks(5) 3 2 2 2 4 2 4 5 5
bomb(21) 20 21 21 20 10 ER 19 21 21
bt(19) 19 19 19 18 19 19 19 19 19
btc(19) 19 19 19 19 19 19 19 0 19
cleaner(10) 10 9 9 10 10 10 9 3 3
coins(25) 16 15 15 25 15 15 15 15 25
comm(25) 25 15 15 25 25 ER 25 25 25
cor-sqr(19) 19 19 19 18 19 19 0 19 19
cor-cube(22) 22 22 22 17 20 16 0 22 22
cube-center(37) 36 24 27 37 36 17 19 37 37
dispose(98) 97 86 85 91 82 81 41 98 97
forest(8) 3 1 1 6 1 1 7 8 8
grid(15) 13 15 13 15 11 15 15 15 15
grid-empty(18) ER ER ER 4 ER ER 4 0 4
grid-wall(18) ER ER ER 4 0 ER 18 0 18
hall-a(21) 18 9 8 11 21 18 3 18 18
hall-r(11) 11 11 6 11 11 1 0 11 11
logistics(17) 13 13 13 17 12 5 16 16 16
look-and-grab-dis(18) 2 1 7 12 9 10 0 18 18
look-and-grab(80) 71 47 61 25 65 35 3 79 80
marker-enc1(4) ER ER ER 0 2 ER ER 0 0
new-dispose(6) ER ER ER 2 4 5 ER 2 6
new-push(12) 12 9 11 9 2 8 7 2 8
new-ring(11) 11 6 4 0 7 ER 11 7 9
new-uts-cycle(13) 13 1 1 0 0 ER 0 1 ER
new-uts-k(10) 10 6 5 3 5 5 0 0 0
omlette(5) ER ER ER 5 0 ER 0 0 0
or-1-dis-dis(16) 5 5 5 0 ER ER 5 0 11
or-1-dis(16) 8 16 11 2 ER 7 5 0 0
or-coins(10) 1 10 10 10 ER 4 4 0 9
or-dispose(23) 9 23 23 19 ER 18 11 0 16
or-new-push(20) 4 19 16 6 ER 4 5 0 12
or-push-to(16) 6 11 13 3 ER 3 1 0 8
push-to(108) 103 88 91 68 61 20 33 108 108
raos-key(8) 2 1 1 1 2 2 2 2 2
retrieve(15) 9 8 9 10 7 9 5 15 14
reward(15) 9 4 2 9 7 6 5 15 12
ring(100) 10 4 2 39 8 3 47 12 100
safe(6) 6 5 3 6 6 6 6 6 6
sortnet(15) 8 8 8 0 15 ER ER 15 15
sqr-center(30) 30 26 29 30 30 21 30 29 30
to-trash(15) 3 1 0 5 6 4 0 10 12
uts-cycle(28) 10 1 1 0 ER ER 0 15 14
uts-k(19) 17 5 2 13 14 12 14 19 19
uts-l(17) 17 5 2 17 12 17 13 17 17
uts-r(16) 16 4 1 8 13 12 13 16 16
total(1179) 784 634 624 702 627 481 473 761 989

Table 2: Total number of solved instances across 9 conformant plan-
ners. In each row, the number in boldface indicates the best planner.
“ER” denotes the planner cannot parse the PDDL file within timeout
or encounters an error.

LAMA cannot enumerate every solution with length 22
|X|

for the classical planning problem P(s) since it lacks strong
completeness. In addition, our completion procedure cannot
extend any solution for P(s) supplied by LAMA to a correct
solution for all initial states. The built-in PDDL file parser
of GC used by iGC fails to interpret the PDDL file of the 3
domains adder-ipc5, adder-ipc6 and cleaner as presented in
Table 5, and misinterprets some non-mutex propositions into
a multi-valued proposition in domain new-uts-cycle.

iGC vs GC: It can be observed from Table 2, iGC success-
fully solves some instances of the 8 domains: btc, grid-empty
and grid-wall, or-1-dis-dis, or-coins, or-dispose, or-new-push

Instances JIK GC iGC
1-dis-dis-4-6 16.8M TO 0.66/139/15
coins-21 10Q OM 23.82/1009/84
look-and-grab-10-1-3 1M TO 22.11/292/11
new-dispose-4-5 1.05M TO 0.82/252/19
or-1-dis-dis-2-4 65.5K OM 0.07/12/3
or-coins-10 1M OM 0.14/58/16
or-dis-3-2 262.1K OM 0.11/64/17
or-new-push-4-1 65.5K OM 0.12/34/16
ring-13 20.7M TO 0.14/59/4
to-trash-12-3 3.0M TO 210.16/1906/144

Table 3: Some results for instances with a huge number of initial
states. Column JIK refers to the number of initial states where
the abbreviations K, M and Q represent thousand, million and
quadrillion, respectively. “TO” in Column “GC” denotes GC runs
timeout for the instance while “OM” denotes GC runs out of mem-
ory limit. Column “GC” indicates the solving time (in seconds), the
length of solutions and the number of states generated by iGC, re-
spectively.

Domains Length iGC/GCGC iGC
1-dis-dis 496.98 250.34 0.50
blocks 336.8 203.2 0.60
bomb 80.71 80.71 1.00
bt 10.83 10.83 1.00
cleaner 22.5 23.5 1.04
coins 129.73 213.33 1.64
comm 144.36 145.84 1.01
cor-sqr 310.63 308.11 0.99
cor-cube 297.14 295.23 0.99
cube-center 377.59 234.73 0.62
dispose 3623.29 2304.41 0.64
forest 613.25 187.25 0.31
grid 47.67 35.87 0.75
hall-a 51.94 47.06 0.91
hall-r 90.64 46.36 0.51
logistics 100.75 96.25 0.96
look-and-grab-dis 211.17 61.61 0.29
look-and-grab 242.67 59.67 0.25
new-dispose 564 223.5 0.40
new-push 281.5 249 0.88
new-ring 124.14 24.29 0.20
push-to 1980.3 1338.44 0.68
raos-key 257 65 0.25
retrieve 598 1306.36 2.18
reward 468 972.5 2.08
ring 24.25 26.41 1.09
safe 44.17 44.17 1.00
sortnet 45.2 39.73 0.88
sqr-center 253.45 188 0.74
to-trash 3461.6 1277 0.37
uts-cycle 126.57 229 1.81
uts-k 111.95 110.11 0.98
uts-l 940.94 91.53 0.10
uts-r 123.31 123.5 1.00

Table 4: Average length of solutions in commonly solved instances
by GC and iGC.

and or-push-to of which no instance can be solved by GC.
Table 3 highlights some instances with an extremely large
number of initial states (at least 65.5K), where GC is unable
to find solutions. This is because the initial formula contains
no oneof formulas and oneof-combination technique is
invalid in these instances. In contrast, iGC excels in these
instances incredibly quickly since it only deals with a minus-
cule subset of initial states to derive a solution. For example,
in the instance coins-21 with 1016 initial states, iGC requires

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Instance Total Time Solving Time Parsing Time
adder-ipc5-1 3600 - 3600
adder-ipc6-1 3600 - 3600
bomb-200-200 6.38 1.77 4.61
cleaner-2-20 3600 - 3600
cleaner-5-5 98.04 0.01 98.03
forest-9 42.03 34.52 7.51
look-and-grab-dis-8-3-3 18.32 8.85 9.47
new-dispose-7-7 274.20 20.02 254.18
new-dispose-10-10 430.15 273.51 156.64
new-ring-10 119.89 9.90 109.99
new-ring-11 795.60 169.49 626.11

Table 5: Some instances requiring excessive time for parsing PDDL.
Column “Total Time” indicates the overall time, including both pars-
ing and solving phases, “Solving Time” refers to the solving phase
and “Parsing Time” refers to the parsing phase.

only 84 initial states to construct a correct solution within
24s. As illustrated in Table 4, iGC produces a solution with
average length shorter compared to GC in 21 domains thanks
to the elimination of redundant segments in solutions. In
particular, for domains 1-dis-dis, forest, look-and-grab-dis,
look-and-grab, new-ring, raos-key, to-trash and uts-l, iGC
compute the solutions with length only half of those gener-
ated by GC. iGC generates solutions that are at least 60%
longer than those of GC in the 4 domains: coins, retrieve,
reward and uts-cycle. This is because the completion pro-
cedure in the original GC generates more succinct solutions
than the improved planner. In summary, iGC demonstrates
clear advantages over GC in both the number of solved
instances and the quality of solutions across most domains.

iGC vs CPCES: As shown in Table 6, with the exception
of grid-wall, new-push, new-ring, and safe, iGC takes less
time on average for verification than iCPCES and gCPCES.
For example, in cube-center, iGC and iCPCES solve prob-
lems with comparable average iterations and solution lengths.
However, iGC completes verification in only 0.31s while
iCPCES takes 3.99s. In or-dispose, although iGC uses 118.5
iterations on average, while iCPCES has 41.69 iterations, but
the verification time of the former is significantly faster than
that of the latter (1.62s versus 41.29s). This is due to our sim-
plification strategy on the trace axioms and elimination strat-
egy on solutions in iGC which effectively reduces the num-
ber of propositions and the length of the trace axiom, thereby
accelerating the SAT-based verification procedure. How-
ever, iGC performs worse than CPCES in the four domains:
cleaner, new-push, new-ring and safe. In cleaner and new-
ring, iGC takes a majority of time in parsing PDDL file. For
example, the cleaner-5-5 instance takes 98.03s to parse but
only 0.01s to solve, while new-ring-10 requires 109.99s for
parsing and just 9.90s for solving. In addition, some instances
requiring excessive time for parsing PDDL in iGC are shown
in Table 5. In the two domains: new-push and new-ring, iGC
requires much more iterations than iCPCES to construct the
solution. For example, in new-push-4-4 and new-ring-7, iGC
requires 2871 and 1066 iterations while gCPCES needs only
13 and 2 iterations, respectively. In the safe domain, the num-
ber of propositions in the trace axiom generated by CPCES is
only half of that in iGC due to different PDDL file parsers
used by iGC, iCPCES and gCPCES. Overall, iGC is faster
than both iCPCES and gCPCES in the majority of domains.

Domains Total Time Verification Time
iCPCES gCPCES iGC iCPCES gCPCES iGC

1-dis-dis 7.97 0.29 0.07 0.36 0.07 0.01
blocks 0.65 0.30 0.08 0.08 0.07 0.01
bomb NA 303.77 0.17 NA 7.52 0.02
bt 0.72 0.36 0.08 0.09 0.10 0.03
btc 0.73 0.45 0.09 0.11 0.12 0.05
cleaner 0.29 0.44 33.72 0.03 0.19 0.01
coins 6.20 5.18 0.72 3.93 1.02 0.46
comm NA 49.17 0.19 NA 14.78 0.07
cor-sqr 179.99 NA 1.39 14.16 NA 1.14
cor-cube 225.73 NA 0.27 1.96 NA 0.17
cube-center 302.88 144.39 0.41 3.99 4.58 0.31
dispose 35.79 257.36 2.14 33.56 19.52 1.79
forest 0.47 0.28 0.12 0.02 0.05 0.01
grid 0.55 0.36 0.09 0.14 0.11 0.02
grid-empty NA 0.37 0.08 NA 0.09 0.04
grid-wall NA 50.41 7.04 NA 2.03 6.22
hall-a 0.32 0.93 0.07 0.02 0.09 0.01
hall-r 0.48 NA 0.11 0.06 NA 0.03
logistics 0.83 1.91 0.22 0.15 0.30 0.06
look-and-grab-dis 161.75 NA 0.40 0.50 NA 0.09
look-and-grab 0.27 0.22 0.06 0.01 0.05 0.00
new-dispose 554.42 NA 114.88 454.95 NA 54.43
new-push 8.41 4.94 15.42 1.31 0.71 11.34
new-ring NA 0.23 135.91 NA 0.07 32.92
or-dis-dis NA 0.32 0.06 NA 0.09 0.01
or-coins 7.62 7.51 1.06 4.81 1.35 0.44
or-dispose 43.28 116.20 6.07 41.29 11.17 1.62
or-new-push 1.53 2.21 0.17 0.53 0.48 0.06
or-push-to 7.14 34.57 0.26 2.60 0.78 0.10
push-to 188.27 44.69 0.13 1.07 1.21 0.05
raos-key 6.72 3.46 0.14 1.42 1.32 0.07
retrieve 44.53 457.85 1.81 41.06 70.27 1.53
reward 175.58 626.64 3.24 62.93 98.89 2.75
ring 0.34 0.24 0.05 0.02 0.05 0.01
safe 7.40 2.05 4.48 5.13 1.23 4.21
sqr-center 366.97 3.59 1.85 14.31 2.16 1.54
to-trash 133.54 NA 1.54 28.84 NA 1.30
uts-k 233.38 6.79 0.59 3.35 1.60 0.36
uts-l 18.55 121.14 0.80 8.36 4.19 0.67
uts-r 358.48 23.08 1.54 7.53 2.72 1.22

Table 6: Average solving and verification time of iGC, iCPCES and
gCPCES in commonly solved domains. If iCPCES cannot solve any
instance for a domain where both gCPCES and iGC solves at least
one common instance, then the results for that domain are still in-
cluded, and “NA” indicates the failure of iCPCES. The same applies
to gCPCES.

5.3 Ablation Study
Table 7 shows the results about the 42 domains solvable by
iGC with and without optimizations. We use iGC for the iGC
approach without simplification on trace axioms and elim-
ination of redundant fragements, iGC+S for iGC with only
simplification, iGC+E for iGC with only elimination and
iGC+SE for iGC with both optimizations. For iGC+S, 14 do-
mains have an increase of 50 solved instances relative to iGC.
However, 7 domains experience a reduction of 31 solved in-
stances, with notable decreases observed in the 1-dis-dis and
new-push domains, where the number of solved instances
drops by 18 and 6, respectively. Totally, iGC+S increases
the total number of solved instances by 19. In comparison,
iGC+E improves performance in 13 domains, yielding an
additional 64 solved instances, while three domains show a
reduction of 13 solved instances. In summary, iGC+E solves
51 more instances than iGC without optimizations. When
both optimizations are applied together, 14 domains collec-
tively achieve an increase of 73 solved instances, whereas

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Domains Coverage Total Time Length Verificate Time
iGC iGC+S iGC+E iGC+SE iGC iGC+S iGC+E iGC+SE iGC iGC+S iGC+E iGC+SE iGC iGC+S iGC+E iGC+SE

1-dis-dis(90) 70 52 61 65 47.03 15.27 17.93 13.55 326.79 591.36 181.55 250.89 43.20 12.01 10.47 6.77
blocks(5) 5 5 5 5 6.48 7.75 54.67 62.05 328.00 318.80 212.80 203.20 5.74 7.26 34.26 40.55
bomb(21) 21 21 21 21 0.64 0.55 0.68 0.52 80.71 80.71 80.71 80.71 0.15 0.04 0.15 0.04
bt(19) 19 19 19 19 0.09 0.08 0.08 0.08 11.00 11.00 11.00 11.00 0.04 0.04 0.04 0.03
btc(19) 19 19 19 19 0.10 0.09 0.10 0.09 21.00 21.00 21.00 21.00 0.06 0.05 0.06 0.05
cleaner(10) 3 3 3 3 35.01 35.34 33.37 33.72 26.00 26.33 27.67 27.00 0.01 0.01 0.01 0.01
coins(25) 25 25 25 25 17.33 58.43 12.95 44.85 725.60 1414.76 674.04 926.24 15.47 57.07 11.38 33.90
comm(25) 25 25 25 25 0.78 0.23 0.52 0.19 150.04 150.04 145.84 145.84 0.61 0.11 0.36 0.07
cor-sqr(19) 19 19 19 19 1.44 1.39 1.49 1.39 308.11 308.11 308.11 308.11 1.18 1.12 1.20 1.14
cor-cube(22) 22 22 22 22 2.51 2.14 2.54 2.19 301.55 301.55 295.36 295.23 2.20 1.87 2.22 1.93
cube-center(37) 35 37 37 37 102.62 3.91 33.96 3.43 892.43 244.77 219.34 219.34 96.83 3.36 30.02 2.88
dispose(98) 81 97 90 97 258.31 20.76 94.22 19.93 1615.12 1615.12 877.84 1291.47 243.50 20.04 85.59 17.64
forest(8) 8 8 8 8 15.36 17.01 16.44 17.01 189.63 188.88 188.75 187.25 0.09 0.03 0.10 0.04
grid(15) 13 15 15 15 5.02 0.08 0.08 0.08 292.62 54.54 30.23 29.46 4.20 0.02 0.02 0.02
grid-empty(18) 4 4 4 4 0.11 0.08 0.09 0.08 44.50 42.50 22.50 18.50 0.07 0.04 0.04 0.04
grid-wall(18) 8 17 18 18 0.46 0.42 1.35 0.60 111.75 103.00 48.50 55.25 0.41 0.37 1.14 0.50
hall-a(21) 19 18 19 18 0.20 0.21 0.19 0.18 47.06 47.06 47.06 47.06 0.06 0.06 0.07 0.05
hall-r(11) 11 11 11 11 1.14 1.32 1.28 1.34 46.36 46.36 46.36 46.36 0.05 0.06 0.08 0.10
logistics(17) 15 16 16 16 14.81 0.71 0.50 0.35 227.07 230.60 72.67 72.40 11.41 0.37 0.28 0.13
look-and-grab-dis(18) 18 18 18 18 4.10 8.80 7.05 5.43 93.50 108.22 59.11 61.61 1.03 0.86 0.76 0.69
look-and-grab(80) 80 80 80 80 3.47 14.88 12.66 15.86 96.36 108.83 60.96 62.58 2.19 1.35 2.16 1.32
new-dispose(6) 6 5 6 6 862.98 297.54 336.89 146.07 2699.80 2676.60 1193.40 1440.20 791.81 149.43 280.21 98.56
new-push(12) 12 6 9 8 28.71 269.74 10.36 11.28 1758.83 1986.33 150.50 185.50 25.25 264.50 8.65 8.19
new-ring(11) 9 9 9 9 50.54 18.00 39.37 135.91 283.33 91.00 38.67 35.44 33.15 1.85 11.57 32.92
or-1-dis-dis(16) 12 9 15 11 3.78 0.92 3.48 1.49 88.00 87.00 69.75 71.00 3.36 0.74 2.42 0.64
or-coins(10) 9 10 8 9 126.28 21.55 84.98 102.52 1348.71 940.14 1334.00 781.14 114.39 19.97 51.77 14.84
or-dispose(23) 16 19 16 16 342.34 35.82 406.54 238.50 1308.13 1303.13 894.63 904.13 316.31 34.22 193.50 24.65
or-new-push(20) 9 8 11 12 3.22 1.10 247.76 1.64 106.14 108.29 65.67 70.43 2.79 0.85 1.46 0.58
or-push-to(16) 8 9 8 8 47.81 10.33 42.07 21.40 404.00 424.75 292.63 304.13 42.41 8.50 23.37 5.75
push-to(108) 101 108 106 108 201.29 29.66 122.00 24.98 1150.78 1755.31 830.70 1097.18 189.49 27.01 112.29 21.58
raos-key(8) 2 2 2 2 0.21 0.14 0.24 0.14 83.50 88.00 62.50 65.00 0.16 0.09 0.16 0.07
retrieve(15) 13 14 13 14 498.02 172.45 442.84 190.13 690.92 988.54 675.62 985.23 463.09 164.34 402.20 170.89
reward(15) 11 12 11 12 437.84 327.21 418.81 329.60 451.45 759.91 443.55 776.64 412.83 313.76 389.49 304.47
ring(100) 100 100 100 100 5.67 6.27 5.58 5.16 277.61 298.73 265.86 270.67 5.25 5.95 5.14 4.85
safe(6) 6 6 6 6 4.69 4.45 4.72 4.48 44.17 44.17 44.17 44.17 4.44 4.23 4.43 4.21
sortnet(15) 15 15 15 15 0.65 0.35 21.80 25.09 67.87 58.20 39.73 39.73 0.55 0.23 6.22 3.72
sqr-center(30) 30 30 30 30 149.72 3.53 32.41 3.66 945.43 223.37 183.23 182.87 141.78 3.01 28.43 3.10
to-trash(15) 8 11 13 12 68.61 47.41 41.43 30.33 502.50 1188.75 343.25 602.50 63.00 44.84 35.79 27.07
uts-cycle(28) 12 13 13 14 130.22 244.75 28.92 36.11 303.00 569.25 144.75 158.42 129.90 244.23 28.75 35.90
uts-k(19) 11 10 19 19 2.47 11.84 0.19 0.15 65.78 66.56 28.11 28.00 2.21 3.11 0.11 0.07
uts-l(17) 8 10 17 17 5.08 29.43 0.12 0.10 157.63 151.13 25.00 25.00 4.76 28.88 0.07 0.05
uts-r(16) 9 9 16 16 4.13 7.30 0.24 0.19 99.89 97.22 37.56 37.33 3.85 3.07 0.16 0.12
total(1102) 927 946 978 989 - - - - - - - - - - - -

Table 7: Comparisons of iGC with/without simplification and/or elimination optimizations. The reported results are the average value of all
instances that can be solved by all variants of iGC in each domain.

three domains demonstrate a reduction of 10 instances. The
total number of solved instances rises by 62, showing the
complementary nature of these two optimizations.

Regarding solving time, iGC+S exhibits superior perfor-
mance across 28 domains by simplifying trace axioms, which
significantly reduce verification time. Similarly, iGC+E is
faster than iGC in 27 domains. When both optimizations
are employed, the approach iGC+SE is faster in 33 domains
compared to iGC. However, performance degradation is
observed in certain domains, primarily due to the counterex-
amples returned by the SAT solver. Different trace axioms
generates different initial states, and hence affects the overall
performance of iGC planner. For instance, in the 1-dis-dis
domain, instances solvable by iGC fail with iGC+S due to
memory overflow during the subproblem completion process.

In terms of solution length, iGC+E effectively eliminates
redundant actions in 34 domains. Notably, 76.5% of the
domains achieve length reductions exceeding 20%. The
new-push domain demonstrates the most substantial im-
provement, with a 91.4% reduction in solution length. These

results undercover significant enhancements in solution
quality. Although simplifying optimization sometimes
increases solution lengths, the combination with elimination
optimization mitigates this issue.

6 Conclusions
In this paper, we have observed two major drawbacks of
the GC approach: the computational overhead due to state
exploration and the insertion of many redundant actions. To
solve these two drawbacks, we have proposed SAT-based ver-
ification procedure and counterexample-guided completion
procedure, and have integrated them into the GC approach,
resulting in an improved GC planner, namely iGC. We have
demonstrated the superior performance and scalability of
iGC by evaluating it on standard benchmarks for conformant
planning. In particular, iGC is the top planner in terms of
coverage, solving 989 out of 1179 instances. Compared with
the original GC planner, iGC exhibit the quality advantage
of solutions and the ability to solve instances with a huge
number of initial states.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgements
We are grateful to Mingwei Zhang for his constructive
comments on the paper. We sincerely thank Zexin Cai,
Yuchun Zhong and Sijie Yin for their contributions to
collecting and modifying PDDL files of each instance used
in the experiments. This paper was supported by National
Natural Science Foundation of China (Nos. 62206110,
62276114 and 62377028), Guangdong Basic and Applied
Basic Research Foundation (Nos. 2023B1515120064 and
2024A1515011762), Guangzhou Science and Technology
Planning Project (Nos. 202206030007, 2025A03J3565,
Nansha District: 2023ZD001 and Development Dis-
trict: 2023GH01) and Major Key Project of PCL (Nos.
PCL2024A04 and PCL2024AS204).

References
[Albore et al., 2011] Alexandre Albore, Miquel Ramirez, and Hec-

tor Geffner. Effective Heuristics and Belief Tracking for Planning
with Incomplete Information. In Proceedings of the Twenty-First
International Conference on Automated Planning and Schedul-
ing (ICAPS-2011), pages 2–9, 2011.

[Angluin, 1987] Dana Angluin. Learning Regular Sets from
Queries and Counterexamples. Information and Computation,
75(2):87–106, 1987.

[Bonet and Geffner, 2000] Blai Bonet and Hector Geffner. Plan-
ning with Incomplete Information as Heuristic Search in Belief
Space. In Proceedings of the Fifth International Conference on
Artificial Intelligence Planning Systems (AIPS-2000), pages 52–
61, 2000.

[Bonet and Givan, 2006] Blai Bonet and Bob Givan. Results of the
Conformant Track of the 5th Planning Competition, 2006.

[Bryce and Buffet, 2008] Daniel Bryce and Olivier Buffet. The
Uncertainty Part of the 6th International Planning Competition,
2008.

[Bryce et al., 2006] Daniel Bryce, Subbarao Kambhampati, and
David E. Smith. Planning Graph Heuristics for Belief Space
Search. Journal of Artificial Intelligence Research, 26:35–99,
2006.

[Cimatti and Roveri, 2000] Alessandro Cimatti and Marco Roveri.
Conformant Planning via Symbolic Model Checking. Journal of
Artificial Intelligence Research, 13:305–338, 2000.

[Cimatti and Roveri, 2004] Alessandro Cimatti and Marco Roveri.
Conformant planning via symbolic model checking and heuristic
search. Artificial Intelligence, 159(1-2):127–206, 2004.

[Clarke et al., 2003] Edmund M. Clarke, Orna Grumberg, Somesh
Jha, Yuan Lu, and Helmut Veith. Counterexample-Guided Ab-
straction Refinement for Symbolic Model Checking. Journal of
the ACM, 50(5):752–794, 2003.

[de Moura and Bjørner, 2008] Leonardo de Moura and Nikolaj
Bjørner. Z3: An Efficient SMT Solver. In Proceedings of the
Fourteenth International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS-2008), pages
337–340, 2008.

[Eiter et al., 2003] Thomas Eiter, Wolfgang Faber, Nicola Leone,
Gerald Pfeifer, and Axel Polleres. A Logic Programming Ap-
proach to Knowledge-state Planning, II: The DLVK System. Ar-
tificial Intelligence, 144(1-2):157–211, 2003.

[Grastien and Scala, 2020] Alban Grastien and Enrico Scala.
CPCES: A planning framework to solve conformant planning
problems through a counterexample guided refinement. Artificial
Intelligence, 284:103271, 2020.

[Haslum and Jonsson, 1999] Patrik Haslum and Peter Jonsson.
Some Results on the Complexity of Planning with Incomplete In-
formation. In Proceedings of the Fifth European Conference on
Planning (ECP-1999), volume 1809 of Lecture Notes in Com-
puter Science, pages 308–318. Springer, 1999.

[Hoffmann and Brafman, 2006] Jörg Hoffmann and Ronen I. Braf-
man. Conformant planning via heuristic forward search: A new
approach. Artificial Intelligence, 170:507–541, 2006.

[Nguyen et al., 2011] Khoi Nguyen, Vien Tran, Tran Cao Son, and
Enrico Pontelli. On Improving Conformant Planners by Analyz-
ing Domain-structures. In Proceedings of the Twenty-Fifth AAAI
Conference on Artificial Intelligence (AAAI-2011), pages 998–
1003, 2011.

[Nguyen et al., 2012] Khoi Nguyen, Vien Tran, Tran Cao Son, and
Enrico Pontelli. On Computing Conformant Plans Using Classi-
cal Planners: a Generate-And-Complete Approach. In Proceed-
ings of the Twenty-Second International Conference on Auto-
mated Planning and Scheduling (ICAPS-2012), pages 190–198,
2012.

[Palacios and Geffner, 2009] Hector Palacios and Hector Geffner.
Compiling Uncertainty Away in Conformant Planning Problems
with Bounded Width. Journal of Artificial Intelligence Research,
35:623–675, 2009.

[Richter and Westphal, 2010] Silvia Richter and Matthias West-
phal. The LAMA Planner: Guiding Cost-Based Anytime Plan-
ning with Landmarks. Journal of Artificial Intelligence Research,
39:127–177, 2010.

[Rintanen, 2002] Jussi Rintanen. Backward Plan Construction for
Planning with Partial Observability. In Proceedings of the Sixth
International Conference on Artificial Intelligence Planning Sys-
tems (AIPS-2002), pages 173–183, 2002.

[Smith and Weld, 1998] David E. Smith and Daniel S. Weld. Con-
formant Graphplan. In The Fifteenth National Conference on Ar-
tificial Intelligence (AAAI-1998), pages 889–896, 1998.

[To et al., 2015] Son Thanh To, Tran Cao Son, and Enrico Pontelli.
A Generic Approach to Planning in the Presence of Incomplete
Information: Theory and Implementation. Artificial Intelligence,
227:1–51, 2015.

[Tran et al., 2013] Vien Tran, Khoi Nguyen, Tran Cao Son, and En-
rico Pontelli. A Conformant Planner Based on Approximation:
CpA(H). ACM Transactions on Intelligent Systems and Technol-
ogy, 4(2):36:1–36:38, 2013.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

