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Abstract
The over-smoothing has emerged as a major chal-
lenge in the development of Graph Neural Net-
works (GNNs). While existing state-of-the-art
methods effectively mitigate the diminishing dis-
tance between nodes and improve the perfor-
mance of node classification, they tend to be
elusive for graph-level tasks. This paper intro-
duces a novel entropy-based perspective to explore
the over-smoothing problem, simultaneously en-
hancing the distinguishability of non-isomorphic
graphs. We provide a theoretical analysis of the re-
lationship between the smoothness and the entropy
for graphs, highlighting how the over-smoothing in
high-entropic regions negatively impact the graph
classification performance. To tackle this issue, we
propose a simple yet effective method to Sample
and Discretize node features in high-Entropic re-
gions (SDE), aiming to preserve the critical and
complicated structural information. Moreover, we
introduce a new evaluation metric to assess the
over-smoothing for graph-level tasks, focusing on
node distributions. Experimental results demon-
strate that the proposed SDE method significantly
outperforms existing state-of-the-art methods, es-
tablishing a new benchmark in the field of GNNs.

1 Introduction
Graph Neural Networks (GNNs) have become powerful
tools for analyzing structured data and have been widely
employed in various fields [Cui et al., 2024a; Bai et al.,
2022], including social networks [Guo and Wang, 2021],
molecules [Wollschläger et al., 2024], recommendation sys-
tems [Yang et al., 2021], etc. The core idea of GNNs is to
learn node representations by iteratively propagating and ag-
gregating the features of neighboring nodes, similar to the
Weisfeiler-Lehman(WL) graph isomorphism test [Leman and

∗Corresponding Author: Lu Bai

Weisfeiler, 1968]. The difference is that the WL method it-
eratively aggregates discrete node labels, while GNNs aggre-
gate continuous node features. For GNNs, stacking multiple
layers in the network architecture is essential for capturing
long-range dependencies and enhancing the expressiveness
of the model. However, this leads to a notorious phenomenon
known as over-smoothing [Li et al., 2018; Rusch et al., 2023;
Cai and Wang, 2020], where node representations tend to
be gradually indistinguishable when the number of layers in-
creases.
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Figure 1: The impact of increasing network layers on node distance
and classification accuracy based on the MUTAG dataset.

Recently, several methods have been proposed to address
the over-smoothing, following the common principle of re-
ducing the similarity between node features. These state-of-
the-art methods can be roughly categorized into three cate-
gories, i.e., random dropping methods, normalization-based
methods, and residual-based methods. One notable method
is the DropEdge [Rong et al., 2020], that randomly removes
a certain rate of edges during the training process. Similar
methods include the Drop-connect [Hasanzadeh et al., 2020]
and DropMessage [Fang et al., 2023], that randomly drop
edge weights and messages respectively. [Zhao and Akoglu,
2020] have proposed the PairNorm method to mitigate the
over-smoothing by normalizing the differences between node
features, ensuring that the feature variance remains balanced
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during the training process. Other normalization-based meth-
ods include the NodeNorm [Zhou et al., 2020] and Group-
Norm [Zhou et al., 2021]. Inspired by the success of
ResNet [He et al., 2016], several methods incorporate the
residual connection to deep GNNs [Klicpera et al., 2019;
Chen et al., 2020], and effectively prevent node features from
significantly converging as the number of layers increases.
However, they are still limited to node classification tasks.

To validate the above limitation, we conduct an experiment
to demonstrate the less effectiveness of the aforementioned
methods for graph classification. Since the Graph Isomor-
phism Network (GIN) [Xu et al., 2019] has proven highly
effective for graph classification, we adopt the GIN as the
backbone network and incorporate the DropEdge, PairNorm,
and ResNet respectively. We report the curves of average dis-
tance and classification accuracies when the number of lay-
ers increases in Figure 1. The average distance between all
node pairs in each graph is defined to measure the smooth-
ness. When the number of layers increases to 8, the DropE-
dge, PairNorm, and ResNet effectively slow down the de-
crease in the distance between node features. However, these
methods still have lower classification accuracy than the orig-
inal GIN architecture. This indicates that merely reducing
the similarity between node features does not alleviate the
impact of over-smoothing for graph classification. For graph-
level tasks, it is essential to preserve the features that capture
the complicated information of graphs (i.e., the key structural
characteristics). Therefore, we need to move beyond existing
measures and focus on the overall distribution of the graph to
prevent the smoothing of crucial local information.

Figure 2: Comparison of structural entropy in example graphs

In this paper, we propose a new perspective to explore
the over-smoothing problem for graph classification. Specif-
ically, we focus on the distribution of subgraphs and em-
phasize the impact of over-smoothing on high-entropic local
structures. To illustrate this, we provide a toy example in
Figure 2. We can observe that although graph G1 is highly
sensitive to the over-smoothing, it is easily distinguishable
from G′

1 due to its relatively simple structural distribution,
i.e., the relatively smaller graph entropy. In contrast, G3 has

the highest structural entropy, thus reflecting a more com-
plicated and diverse structural distribution. The representa-
tive characteristics of the graphs are likely to be smoothed
out, making it difficult to distinguish from G′

3 and ultimately
leading to misclassification. As a result, we hypothesize that
the over-smoothing in high-entropic regions has a more sig-
nificant impact for graph classification performance. In the
following sections, we will provide a theoretical proof that
this conclusion also holds true in general. Inspired by [Bai
and Hancock, 2014], we employ the depth-based subgraph
entropy to capture the dominant structural characteristics of
graphs. To prevent the key structural characteristics of the
graph from being over-smoothed, we propose a simple yet ef-
fective method: Sampling and Discretizing the node features
in high-Entropic regions (SDE), making the feature distribu-
tions between nodes more distinct. We summarize our main
contributions as follows:

• We commence by analyzing the limitations of exist-
ing over-smoothing theories and propose an innovative
perspective to explore the over-smoothing problem for
graph-level tasks. Moreover, we theoretically demon-
strate the importance of high-entropic regions in improv-
ing graph classification performance.

• We adopt the depth-based subgraph entropy to capture
the dominant characteristics and select the top-k highest
entropy nodes for discrete sampling, thereby preventing
the over-smoothing.

• We incorporate state-of-the-art over-smoothing mitiga-
tion techniques into GNNs and evaluate their perfor-
mance on downstream graph classification tasks. Ex-
perimental results demonstrate that the proposed model
significantly outperforms existing methods, establishing
a new benchmark in the field.

2 SDE Versus Existing Methodologies
In this section, we provide a brief overview of three classi-
cal methods that aim at addressing the over-smoothing and
conduct a comparative analysis with our findings.

SDE Versus ContraNorm. ContraNorm [Guo et al., 2023]
is an innovative technique that addresses the over-smoothing
problem for GNNs, by contrastively normalizing node fea-
tures. The method identifies the dimensional collapse [Jing
et al., 2022] as another cause of over-smoothing, in contrast
to previous works that primarily focus on reducing the node
similarity. ContraNorm minimizes the uniformity loss and
makes node features away from each other, leading to a more
uniform distribution. The proposed discretization method
SDE also takes the node distribution into the consideration.
To some extents, ContraNorm shares certain similarities with
our proposed method.

SDE Versus Graph Sparsification. [Hossain et al., 2024]
propose a Truss-based Graph Sparsification (TGS) model, the
first to address the over-smoothing problem for graph classi-
fication. The TGS method prunes the edges with the high-
est support, where the support of an edge e is defined as the
number of triangles involving e, thereby sparsifying the dense
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regions of the graph. Our theory states that reducing the den-
sity of a graph results in a decrease in its entropy. Therefore,
TGS can be viewed as mitigating the over-smoothing prob-
lem in the high-entropic regions of the graph, aligning with
the insights discussed in this paper.
SDE Versus Dense-Based GNNs. Dense-based methods
aggregate the embeddings of all network layers into a fi-
nal representation. Examples include the JKnet [Xu et al.,
2018], DCGCN [Liu et al., 2020], and DAGNN [Guo et al.,
2019]. These methods allow the model to capture both lo-
cal and global features, thus alleviating the impact of over-
smoothing. Since the backbone network GIN also concate-
nates the outputs from each layer to produce the final repre-
sentation, our proposed model is also a dense-based method.
To make a fair comparison, we adopt the same dense-based
strategy for all baseline methods.

3 Alleviating the Over-smoothing Through
An Entropy-Based Viewpoint

In this section, we commence by theoretically analyzing the
effect of over-smoothing in high-entropic regions, for the dis-
tinguishability of non-isomorphic graphs. To tackle the over-
smoothing problem and simultaneously improve the graph
classification performance, we propose a simple yet effec-
tive method. Furthermore, to consider the node feature dis-
tribution, we introduce a new metric to evaluate the over-
smoothing for graph-level tasks.

3.1 Theoretical Insights of the Over-smoothing for
High-Entropic Graphs

Previous studies have not explored the relationship between
the graph classification performance and the regions suffered
from the over-smoothing. We argue that the over-smoothing
in high-entropic regions has a more significant impact for
graph classification. Below, we provide theoretical supports
for this claim. We commence by defining the graph entropy.
Definition 1. (The Shannon entropy [Shannon, 1948])
Given a graph G with node set V , let the degree of the i-th
node be di. The structural Shannon entropy is defined as

H(G) = −
|V |∑
i=1

di∑|V |
j=1 dj

log
di∑|V |
j=1 dj

. (1)

Our theoretical analysis is divided into two parts. When
all graphs are loosely connected, non-isomorphic graphs with
fewer nodes are more easily distinguishable by the model,
even though the over-smoothing occurs. The following The-
orem 1 establishes the relationship between the number of
nodes and the graph entropy. When graphs have the same
number of nodes, the graphs with denser connections are
more likely to suffer from over-smoothing than graphs with
sparser connections. However, graphs with denser connec-
tions often have more complicated local structures, better rep-
resenting the core structure of a graph. As a result, the over-
smoothing restricts the ability to distinguish non-isomorphic
graphs. Theorem 2 provides a detailed analysis of the rela-
tionship between the connectivity and the graph entropy.

Theorem 1. In the case where both graphs have loosely con-
nected nodes, graph G1 with fewer nodes has a lower entropy
than graph G2 with more nodes.

Proof. Assume G1 has n nodes and the degree distribu-
tion probability pn of the n-th node is divided into m
parts, corresponding to the degree distribution probabilities
q1, q2, . . . , qm of m nodes, i.e.,

∑m
j=1 qj = pn. Conse-

quently, graph G2 consists of n − m + 1 nodes. Based on
the additivity of the entropy function, the following equality
holds:

H(G2) = H(p1, p2, . . . , pn−1, q1, q2, . . . , qm)

= H(p1, p2, . . . , pn−1, pn) + pnH

(
q1
pn

,
q2
pn

, . . . ,
qm
pn

)
≥ H(p1, p2, . . . , pn−1, pn) = H(G1).

(2)
An example is shown in Figure 2. The probability of the
orange node for G1 is 1

2 , that is divided among five orange
nodes, with the probability distribution { 1

10 ,
1
10 ,

1
10 ,

1
10 ,

1
10}.

Obviously, G2 has a higher Shannon entropy than G1. Hence,
given that the connections exhibit the same level of sparsity,
Theorem 1 holds true.

Theorem 2. In the case that both graphs have the same num-
ber of nodes, graph G2 with sparser connections has lower
entropy than graph G3 with denser connections.

Proof. Assume G2 and G3 have the same number of nodes,
but G2 has fewer edges than G3. Furthermore, G3 is obtained
by adding one edge (vn−1, vn) to G2. We use D2 and D3 to
denote the total degree of graphs G2 and G3, respectively.
Thus, D3 = D2 + 2. Assume the added edge is located in
the sparse region of the graph, such that D2 > 2d2,n−1 and
D2 > 2d2,n, where dp,i denotes the degree of the i-th node
of graph Gp. Therefore, we have

H(G3) = −
n∑

i=1

d3,i
D3

log

(
d3,i
D3

)

= −
n−2∑
i=1

d2,i
D3

log

(
d2,i
D3

)
− d2,n−1 + 1

D3
log

(
d2,n−1 + 1

D3

)
− d2,n + 1

D3
log

(
d2,n + 1

D3

)
≥ −

n−2∑
i=1

d2,i
D2

log

(
d2,i
D2

)
− d2,n−1 + 1

D2 + 2
log

(
d2,n−1 + 1

D2 + 2

)
− d2,n + 1

D2 + 2
log

(
d2,n + 1

D2 + 2

)
.

(3)
Since D2 > 2d2,n−1 and D2 > 2d2,n, we have

d2,n−1 + 1

D2 + 2
<

1

2
<

d2,n−1

D2
. (4)

Hence,

H(G3) ≥ −
n∑

i=1

d2,i
D2

log

(
d2,i
D2

)
= H(G2). (5)
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Figure 3: Illustrations of top-k entropy selection and SDE method

An example is shown in Figure 2, where G3 is a 4-regular
graph. Based on the extremality of entropy, the Shannon en-
tropy of G3 is the maximum for a graph with 5 nodes. Clearly,
G2 has a smaller Shannon entropy than G3. Thus, for graphs
with the same node number, Theorem 2 holds true.

In summary, it is crucial to take the structural distribu-
tion of graphs into consideration, since this affects the distin-
guishability of non-isomorphic graphs. According to our the-
ory, alleviating the over-smoothing in high-entropic regions
is more effective in distinguishing non-isomorphic graphs,
thereby improving the graph classification performance.

3.2 The Proposed Method of Relieving the
Over-smoothing for Graph Classification

With the above theoretical proofs to hand, we focus on alle-
viating the over-smoothing in high-entropic regions for graph
classification. We propose to utilize the depth-based subgraph
entropy to identify the dominant region, specifically by se-
lecting the top-k nodes with the highest expansion subgraph
entropy. Furthermore, we define the SDE method to sample
and discretize the distributions of the top-k nodes, thereby
increasing the distributional difference between nodes.

The Top-k Entropy Selection
We first employ the expansion subgraph [Bai et al., 2016] to
capture the dominant substructure, and the subgraph is de-
fined as follows.

Definition 2. (The Expansion Subgraph [Bai and Hancock,
2014]) Given a graph G(V,E), V is the set of nodes and E
is the set of edges. For a specified center node u, the node set
VS of the i-th order expansion subgraph is defined as VS =
{v ∈ V |d(u, v) ≤ i}, where d(u, v) represents the shortest
path length from node u to node v. The edge set ES of the
expansion subgraph contains all edges between nodes in VS ,
i.e., ES = {(v1, v2) ∈ E|v1, v2 ∈ VS}.

As shown in Figure 3, we present an example of the 3-rd
order expansion subgraphs for the blue node u and the orange
node v. Lines 1 to 10 of Algorithm 1 illustrate the detailed

Algorithm 1 Top-k Entropy Selection
Input: A Graph G, adjacency matrix A, number of hops h,
number of nodes k
Output: Top-k nodes

1: for each node u ∈ G do
2: Initialize an empty set for the neighbors of N (u)
3: for i← 1 to h do
4: Construct i-th neighbors Ni(u) based on shortest

paths
5: end for
6: N (u) =

⋃h
i=1 Ni(u) ∪ {u}

7: for each node v ∈ N (u) do
8: dv =

∑
j∈N (u) Avj , Dtotal =

∑
v∈N (u) dv

9: pv = dv/Dtotal

10: end for
11: The subgraph entropy Hu = −

∑
v∈N (u) pv log(pv)

12: end for
13: Sort(u ∈ G, item = Hu) // in non-increasing order
14: Select the top k nodes with the highest entropy values.
15: return the top k nodes

process of constructing the expansion subgraph. Then, we
use Eq.(1) to compute each j-th order expansion subgraph
entropy H(Gi,j) rooted at the i-th node. We sort the ex-
pansion subgraph entropies of all nodes and select the top-k
nodes with the highest entropy. Based on the theorems proven
above, these k nodes can represent the key structural charac-
teristics of a graph.

The Sampling and Discretization
To alleviate the over-smoothing in the core regions of graphs
during the training process, we discretely sample the top-k
node features to increase the variance of their distributions.
Inspired by [Jang et al., 2017], we adopt the Gumbel-Softmax
for differentiable discrete sampling from a categorical dis-
tribution. First, at each layer of the GNNs, we use a linear
transformation (or MLP in GIN) to determine the number of
node categories C. Then, we use a softmax layer to transform
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the node features H ∈ Rk×C into a probability distribution
Z ∈ Rk×C for the top-k nodes. To increase the distributional
differences among these nodes, we represent the node distri-
butions as one-hot vectors, i.e., reassigning the label of each
node. For each logit zk,i, we add Gumbel noise gk,i drawn
from the Gumbel distribution, i.e.,

gk,i = −log(−log(uk,i)), (6)

where uk,i ∼ Uniform(0, 1). To enable the backprop-
agation through discrete variables, we apply the following
Gumbel-Softmax transformation, i.e.,

z̃k,i =
exp((zk,i + gk,i)/τ)∑C

j=1 exp((zk,j + gk,j)/τ)
, (7)

where τ is the temperature controlling the sharpness of the
distribution. As τ → 0, the distribution converges to a one-
hot encoded vector, effectively performing discrete sampling.
This increases the variance in the feature distribution, making
the top-k nodes more distinct from one another.

The Pipeline for Graph Classification
We introduce the pipeline employed for graph classification.
Following the classical dense-based method [Xu et al., 2018;
Liu et al., 2020; Guo et al., 2019], we concatenate the outputs
from all GNN layers to obtain the final node embeddings.
To derive the graph representation, we use SumPooling to
aggregate the node embeddings, and the proposed pipeline is
shown in Figure 4.

Figure 4: Illustration of the GNN Pipeline

3.3 The Metric of Over-smoothing for Graph
Classification

To better capture the distributional differences among nodes,
we propose a new metric based on the Jensen-Shannon Di-
vergence (JSD), for evaluating the over-smoothing problem
for graph classification. Unlike traditional methods that pri-
marily focus on measuring the similarity between nodes, our
approach aims to account for the diverse feature distributions
across nodes. We use a softmax layer to transform the em-
beddings from the final layer into probability distributions.
Let Pu and Pv represent the feature distributions of two nodes
u and v, we compute the JSD DJS between them as

DJS(Pu||Pv) =
1

2
[DKL(Pu||M) +DKL(Pv||M)], (8)

where M = 1
2 (Pu + Pv) and DKL(Pu||M) represents the

Kullback-Leibler (KL) divergence between Pu and the com-
posite distribution M . In addition, the JSD metric possesses
desirable properties such as symmetry, boundedness, and a

strong capacity to capture distributional differences, making
it well-aligned with our theoretical emphasis on distribution-
level analysis rather than similarity. A higher JSD value indi-
cates a larger difference in their feature distributions, suggest-
ing that the over-smoothing has not occurred. By monitoring
the JSD value, we can effectively assess the extent of over-
smoothing in the model.

3.4 The Complexity Analysis
The time complexity of the proposed method mainly relies
on the preprocessing time of the top-k entropy selection al-
gorithm. Assume |V | and |E| are the average number of
nodes and edges, h is the number of hops. The time complex-
ity of the neighborhood construction based on the shortest-
path is O((|V | + |E|)|V |log|V |). The probability calcula-
tion (Lines 7-10 in Algorithm 1) requires a time complexity
O(|V | · |N (u)|2), where |N (u)| is the average number of
node neighbors. The time complexities of the entropy cal-
culation and sorting are O(|V | · |N (u)|) and O(|V |log|V |),
respectively. Given that |N (u)| << |V |, the whole prepro-
cessing time complexity is O(|V |2log|V | + |E||V |log|V |).
Since the discretization process has constant time complex-
ity, the overall training time remains consistent with that of
the original backbone.

3.5 Discussion
We establish a unified framework to address the over-
smoothing problem in graph-level tasks through entropy-
aware analysis. First, we theoretically demonstrate that the
over-smoothing tends to occur more severely in high-entropy
regions of a graph. Building on this insight, we propose a
discrete sampling strategy that samples and discretizes nodes
in high-entropy regions by analyzing their distributional pat-
terns. To support this, we introduce a new evaluation metric,
the Jensen-Shannon Divergence (JSD), to quantify distribu-
tional differences between nodes. Overall, this entropy-aware
perspective not only deepens our understanding of the under-
lying causes of over-smoothing but also provides a principled
and efficient solution to mitigate it.

Datasets # of graphs Mean # nodes Mean # edges classes

MUTAG 188 17.93 19.79 2
PROTEINS 1113 39.06 72.82 2
PTC MR 344 14.29 14.69 2
COLLAB 5000 74.49 2457.78 3
IMDB-B 1000 19.77 96.53 2
IMDB-M 1500 13.00 65.94 3
DD 1178 284.32 715.66 2

Table 1: Information of the graph datasets

4 Experiments
To validate the correctness of our theoretical framework and
demonstrate the effectiveness of the proposed SDE method,
we employ two high-performing GNNs as backbone net-
works and compare the proposed SDE method with existing
state-of-the-art methods.
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Model MUTAG PROTEINS PTC MR COLLAB IMDB-B IMDB-M DD

GIN 89.16±0.93 75.61±0.34 62.23±1.65 79.57±0.28 74.08±0.38 52.15±0.27 76.24±0.61
+ResNet 88.84±1.00 75.26±0.40 61.92±1.00 79.75±0.33 74.09±0.51 52.48±0.28 76.00±0.59
+DropEdge 86.29±0.57 75.38±0.20 61.55±0.67 79.38±0.14 74.25±0.36 51.41±0.41 76.93±0.50
+PairNorm 88.78±1.17 73.34±1.12 61.65±0.85 77.96±0.87 73.55±0.33 50.58±0.67 73.13±0.43
+ContraNorm 88.99±0.98 75.44±1.02 62.04±0.71 79.54±0.31 73.54±0.44 52.23±0.41 OOM
+TGS — 75.31±0.29 61.90±1.06 69.34±0.23 71.67±0.32 47.46±0.30 76.49±0.95
+SDE(ours) 89.32±0.49 76.62±0.35 61.98±1.16 80.12±0.36 74.34±0.54 52.51±0.47 77.25±0.49
GCN 85.95±0.89 73.98±0.11 60.66±0.37 74.13±0.28 70.20±0.22 50.88±0.25 76.37±0.24
+ResNet 85.99±0.45 74.61±0.09 60.67±0.29 72.87±0.19 73.60±0.07 50.98±0.39 76.88±0.28
+DropEdge 86.17±0.82 74.60±0.24 60.29±0.73 74.51±0.17 73.33±0.17 51.11±0.36 76.54±0.24
+PairNorm 86.39±0.79 73.11±0.24 60.73±0.80 72.35±0.32 67.10±0.59 49.00±0.47 76.34±0.91
+ContraNorm 86.35±1.04 74.00±0.19 60.09±0.62 72.93±0.93 73.05±0.07 50.75±0.13 OOM
+TGS — 74.40±0.08 61.07±0.25 66.80±0.20 69.47±0.29 44.44±0.77 76.54±0.50
+SDE(ours) 86.53±1.04 74.62±0.33 62.14±0.79 74.10±0.27 73.70±0.28 50.96±0.16 76.77±0.56

Table 2: Comparison of different models on various datasets. OOM denotes out of memory. ”—” indicates that the MUTAG dataset does not
include Truss-based data. The best result is bold, and the second best is underlined.

4.1 Experimental Setups
Datasets
We conduct extensive evaluations on seven standard graph
datasets, extracted from Small Molecules (Mole), Bioinfor-
matics (Bio), and Social Networks (SN) [Morris et al., 2020].
Detailed statistics of these datasets are shown in Table 1.

Backbone Models
Since GIN [Xu et al., 2019] has been proven a powerful
model for graph classification tasks, we primarily adopt GIN
as the backbone model. To further validate the effectiveness
of the proposed method, we also apply Graph Convolutional
Networks (GCN) [Kipf and Welling, 2017] for graph classi-
fication using the same pipeline shown in Figure 4. In the
GIN backbone, the network depth is set to 5 layers, while in
the GCN backbone, it is set to 6 layers. To make a fair com-
parison, we perform a 10-fold cross-validation. For the GIN
backbone, the experiments are repeated 10 times. Computing
the Laplacian matrix is more time-consuming with the GCN
backbone, but the classification accuracies remain compara-
ble, and the standard deviations are smaller for each repeated
experiment. Therefore, to more precisely assess the stabil-
ity and reliability of the methods, we repeat the experiments
three times for each method.

Baseline Methods
We select three mainstream methods of addressing the over-
smoothing as baselines, i.e., the ResNet [Klicpera et al.,
2019], DropEdge [Rong et al., 2020], and PairNorm [Zhao
and Akoglu, 2020]. Furthermore, we compare our method
with two recent related studies, i.e., the ContraNorm [Guo et
al., 2023] and Truss-based Graph Sparsification (TGS) [Hos-
sain et al., 2024]. Since our pipeline concatenates the out-
puts of all layers to form the final graph representation, we
do not compare our approach with methods based on dense-
based strategies [Xu et al., 2018]. We incorporate these base-
line methods into two backbone models. Note that, under the
same backbone network, both the baseline methods and our
proposed SDE method are evaluated with the same config-
urations. For our method-specific parameters, we employ a

grid search approach to evaluate the performance of differ-
ent parameter combinations, ultimately selecting the optimal
parameter configuration. Based on empirical experience, k
is varied across five percentage levels {1%, 10%, 30%, 50%,
100%}, hop varies from 1 to 3 and the temperature τ varies
from {0.1, 0.3, 0.6, 1.0, 5.0}. Note that, to ensure a fair com-
parison, the hyperparameter C used in the discrete sampling
strategy is set to be equal to the hidden size used in the GIN
baseline configuration. Our code is publicly available1.

4.2 The Experimental Results and Analysis
As shown in Table 2, our proposed method demonstrates
the highly competitive performance. When existing meth-
ods for alleviating the over-smoothing are applied to down-
stream graph classification tasks, their classification accura-
cies are typically lower than the original backbone networks
(GIN or GCN). This observation is consistent with our theo-
retical findings, i.e., focusing solely on node similarity can-
not effectively improve graph classification performance. In
contrast, our method achieves higher classification accura-
cies than GIN and GCN on six datasets. Furthermore, the
proposed SDE method outperforms the existing state-of-the-
art methods for alleviating over-smoothing, especially on the
GIN backbone network. Experimental results show that dis-
cretizing the node distributions in high-entropic regions is
beneficial for graph classification.

4.3 The Over-smoothing Analysis
To validate the effectiveness of the proposed JSD metric, we
compute the averaged JSD values for all node pairs of the
graph and present the variations of JSD values over various
network depths in Figure 5. Since the MUTAG dataset does
not include the Truss-based graph, we do not evaluate the per-
formance of the TGS method on the MUTAG dataset. We
can observe that as the network depth increases, the JSD val-
ues of the original GIN decrease, indicating the occurrence of
over-smoothing. Notably, when the network depth increases

1https://github.com/Sophia0830BNU/SDE

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://github.com/Sophia0830BNU/SDE


Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

GIN GIN_DropEdge GIN_ResNet GIN_PairNorm GIN_ContraNorm GIN_Truss GIN_SDE

4 5 6 7 8 9 10
Layers

0.0

0.3

0.6

0.9

1.2
Av

er
ag

e 
JS

D
 V

al
ue

(a) MUTAG (JSD)

4 5 6 7 8 9 10
Layers

0

1

2

3

Av
er

ag
e 

JS
D

 V
al

ue

(b) PROTEINS (JSD)

4 5 6 7 8 9 10
Layers

0.0

0.3

0.6

0.9

1.2

Av
er

ag
e 

JS
D

 V
al

ue

(c) IMDB-B (JSD)

4 5 6 7 8 9 10
Layers

86

87

88

89

90

Te
st

 A
cc

ur
ac

y 
(%

)

(d) MUTAG (Acc)

4 5 6 7 8 9 10
Layers

73

74

75

76

Te
st

 A
cc

ur
ac

y 
(%

)

(e) PROTEINS (Acc)

4 5 6 7 8 9 10
Layers

69

71

73

75

Te
st

 A
cc

ur
ac

y 
(%

)

(f) IMDB-B (Acc)

Figure 5: The average JSD value and classification performance comparison across various network depths on different datasets.

to 8 layers, the JSD value remains stable rather than drop-
ping sharply, demonstrating that the SDE method effectively
maintains the distribution difference between nodes.

To further demonstrate that our method effectively ad-
dresses the over-smoothing issue, we present the classifica-
tion accuracy based on different network depths. Figure 5
shows that the SDE method achieves the highly competitive
performance. Specifically, when the network layer increases
to 10, our method outperforms all state-of-the-art methods on
both the PROTEINS and IMDB-B datasets.

Method MUTAG PROTEINS IMDB-B

GIN
SDE 89.32±0.49 76.62±0.35 74.34±0.54
SDE L 89.11±0.73 75.01±0.18 73.89±0.42
SDE A 88.52±1.24 76.21±0.25 74.07±0.35

GCN
SDE 86.53±1.04 74.62±0.33 73.70±0.28
SDE L 85.47±0.66 73.34±0.39 72.80±0.37
SDE A 86.01±0.58 74.00±0.06 73.35±0.07

Table 3: The ablation study of SDE.

4.4 The Ablation Study
To validate the effectiveness of selecting the top-k highest en-
tropy nodes, we compare the SDE method with two variants,
i.e., the SDE L performing the discrete sampling on the nodes
with the lowest entropy, and the SDE A sampling all nodes
by removing the top-k entropy selection component. From
the results shown in Table 3, we can draw the following two
conclusions. (1) Selecting high-entropic nodes for discrete

sampling significantly improves classification performance,
whether using GIN or GCN as the backbone. This demon-
strates that addressing the over-smoothing in high-entropic
regions can enhance classification performance. (2) When
the model removes the top-k entropy selection component,
the classification accuracy drops, demonstrating that increas-
ing the distribution differences among all nodes does not im-
prove the over-smoothing problem for graph classification.

0.0 2.5 5.0 7.5 10.0 12.5 15.0

0.00
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Before Discretization

Node 36
Node 39

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.00

0.25

0.50

After Discretization

Node 36
Node 39

Figure 6: Visualization comparison of node distributions.

4.5 The Analysis of the Discrete Sampling Strategy
To better illustrate the effectiveness of the proposed Discrete
Sampling Strategy in mitigating the over-smoothing issue, we
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visualize the distributions of two similar nodes from the PRO-
TEINS dataset before and after discretization with a thresh-
old of τ = 0.6, as shown in Figure 6. Before discretization,
these two nodes exhibit highly similar distribution curves,
indicating potential over-smoothing due to indistinguishable
representations. After applying the discrete sampling strat-
egy, their distributions become significantly more distinct.
This increased divergence highlights the effectiveness of the
proposed method in amplifying structural differences among
nodes, thereby alleviating the over-smoothing problem.

4.6 The Hyper-parameter Analysis
To evaluate the sensitivity of the proposed method with dif-
ferent hyper-parameters, we vary the ratio of high-entropic
nodes and hop counts in the expansion subgraph. Specifically,
the number of hops (ranging from 1 to 3) is used to define the
size of the expansion subgraph, while the high-entropic node
ratios are set to either 10% or 50%, representing the percent-
age of critical nodes. Figure 7 shows that, on the PROTEINS
dataset, constructing subgraphs with 2-hop neighbors and se-
lecting the top 10% of high-entropic nodes achieves the best
performance. Besides, on the IMDB-B and MUTAG datasets,
1-hop neighbors with a 10% high-entropic node ratio yield
the optimal results. These findings indicate that selecting a
small proportion of high-entropic nodes for discretization can
significantly improve classification performance.
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Figure 7: The hyper-parameter sensitivity study.

4.7 The Scalability Analysis
To validate the correctness of our theoretical analysis and
demonstrate the scalability of the proposed method, we gen-
erate test graphs using network generation models. Table 4
presents the performance comparison between the baseline

GIN model and our proposed method with the SDE mod-
ule on synthetic graph datasets of varying sizes and densi-
ties. As the average graph entropy increases, the classifica-
tion performance of GIN degrades. In contrast, our proposed
method consistently achieves superior performance across all
settings. Notably, the performance gains brought by SDE
become more significant on datasets with higher entropy.
These results empirically validate the effectiveness of our
SDE framework in alleviating over-smoothing.

Method Synthetic Graphs (|V |,|E|)
(20, 39.3) (50, 100) (50, 240)

Ave Entropy 2.4 2.53 3.56
GIN (Acc) 90 76.53 83.33
+SDE (ours) (Acc) 100 78.33 100

Table 4: Comparison on synthetic graph datasets.

4.8 The Runtime Evaluation
In this section, we compare the training time of the proposed
SDE method with various baselines. To make a fair com-
parison, we compute the training time on one same fold, ex-
cluding the preprocessing time. The results in Table 5 demon-
strate that our proposed method achieves competitive training
times across all datasets. On the IMDB-B dataset, the SDE
method outperforms all baselines. On the other three datasets,
the training time of SDE is only slightly higher than that of
the ResNet method, but still comparable. This demonstrates
the efficiency of the proposed SDE method.

Method MUTAG PROTEINS IMDB-B DD

ResNet 3m11s 4m35s 4m15s 22m8s
DropEdge 3m20s 4m39s 4m1s 25m31s
PairNorm 3m40s 4m38s 5m2s 24m10s
TGS 3m30s 5m52s 4m9s 34m16s
ContraNorm 3m47s 5m15s 4m43s OOM
SDE 3m14s 4m38s 3m45s 23m39s

Table 5: Training time comparison using the same fold.

5 Conclusion
In this paper, we have proposed a new perspective to explore
the over-smoothing problem for graph-level tasks. The theo-
retical analysis has strongly demonstrated that addressing the
over-smoothing in high-entropic regions can significantly en-
hance the discriminative power between graphs. Moreover,
we have defined a novel SDE method to tackle the over-
smoothing problem, significantly improving the graph classi-
fication performance. Experiments have shown that the pro-
posed SDE method outperforms the existing state-of-the-art
methods. In future work, we plan to explore alternative graph
entropy measures, e.g. the von Neumann entropy, and inves-
tigate the use of entropy maximization to identify regions that
contribute to over-smoothing [Sun et al., 2024]. We also con-
sider incorporating quantum-inspired methods to more pre-
cisely localize and characterize these critical regions [Cui et
al., 2024b; Bai et al., 2023].
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