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Abstract

Recently, post-training quantization (PTQ) meth-
ods for large language models (LLMs) primarily
focus on tackling the challenges caused by outliers.
Scaling transformation has proven to be effec-
tive while how to enhance the performance of ex-
tremely low-bitwidth (e.g., 2-bit) PTQ under it re-
mains largely unexplored. In this work, a new PTQ
framework, namely MPPQ, is established. Specif-
ically, MPPQ first proposes an enhanced recon-
struction loss based on Mixed metric supervision
to mitigate the distribution inconsistency caused by
quantization while providing strong regularization
for learnable parameters. Secondly, we introduce a
Proxy-based adaptive rounding scheme in weight
quantization, which replaces the round-to-nearest
(RTN) function to minimize the overall quantiza-
tion errors through element-wise scaling. Further-
more, a factor coarse Pre-searching mechanism is
presented to ensure proper coordination between
quantization and clipping patterns, while achiev-
ing optimal initialization of clipping factors before
training. Extensive experiments show that MPPQ
consistently outperforms state-of-the-art methods
in low-bit quantization settings. For instance, the
perplexity of WikiText2 can be dramatically re-
duced to 8.85 (3.9 | vs 12.75 of the latest method,
LRQuant) for the LLaMA-2-7B model, which is
quantized with W4A4.

1 Introduction

Large language models (LLMs) [OpenAl, 2023; Touvron et
al., 2023a; Touvron et al., 2023b] excel at complex natural
language processing (NLP) tasks, yet they also come with
high computational resource and parameter storage demands.
Consequently, it is almost not feasible to deploy LLMs on
constrained hardware. Quantization, especially post-training
quantization (PTQ) [Dettmers et al., 2022; Xiao et al., 2023;
Shao er al., 2024], has recently gained preference from both
industry and academia due to its ability to operate with lim-
ited computational overhead and calibration data.

*Dong Wang is the corresponding author

The PTQ of LLMs presents unique challenges, along with
the inherent flaws of the technique. On the one hand, out-
lier channels [Dettmers et al., 2022] in the intermediate ac-
tivations of LLMs are matters that need to be taken seri-
ously. A feasible solution [Xiao et al., 2023; Wei erf al., 2023;
Shao et al., 2024; Zeng et al., 2024; Zhao et al., 2024] is
to migrate it to the corresponding weights, and then apply
clipping in weight quantization to relieve the impact of out-
liers. In terms of quantization tuning, prevalent PTQ meth-
ods [Shao et al., 2024] for LLMs generally utilize the mean
squared error (MSE) [Choukroun et al., 2019] between the
outputs of full-precision and quantized blocks as a super-
vised signal for updating learnable parameters. This opti-
mization technique, however, offers limited supervision and
falls short in aligning block-level and layer-level output acti-
vations. On the other hand, AdaRound [Nagel et al., 2020]
demonstrated that the round-to-nearest (RTN) operation is
suboptimal and proposed a learnable quantization rounding
in the form of element-wise addition. Meanwhile, recent
progress [Han et al., 2015; Lee et al., 2023b; Lee et al.,
2024] also argued that weights with large magnitudes are
relatively important and should be allowed to be quantized
to discrete values further from themselves. Clearly, existing
PTQ for LLMs methods [Xiao et al., 2023; Shao et al., 2024;
Ma et al., 2024; Zeng et al., 2024; Zhao et al., 2024,
Liu ef al., 2024a] have not yet given sufficient consideration
to this. Moreover, [Gong et al., 2024] suggested that asym-
metric quantization should be paired with asymmetric clip-
ping, and vice versa. Unfortunately, previous methods often
incorrectly initialized the weight clipping factor, leading to an
abnormal combination of quantization and clipping patterns.

To this end, we propose MPPQ, an accurate and efficient
low-bitwidth PTQ framework tailored for LLMs. Specifi-
cally, MPPQ first introduces a novel Mixed Metric Super-
vision (MMS) approach that integrates multi-granularity and
multi-dimensional regularization into block-wise reconstruc-
tion. In terms of granularity, it includes both block-wise
and layer-wise loss, and in terms of dimension, it consid-
ers both magnitude similarity and direction similarity. Such
approach enhances the consistency of quantized blocks with
full-precision while also leading to more robust parameter
learning. Inspired by the Low-Rank Adaptation (LoRA) [Hu
et al., 2022] paradigm, we propose a Proxy-based Adaptive
Rounding (PAR) scheme that employs two learnable low-
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rank matrices and optimizes them under the MMS. By per-
forming the Hadamard product of the low-rank matrices with
the corresponding weights, each element of the weights can
be modified with varying intensities relative to their individ-
ual magnitudes. Notably, this scheme rectifies the inaccura-
cies caused by the RTN operator and leverages the efficiency
of LoRA fine-tuning. Furthermore, our MPPQ proposes a
factor coarse pre-searching (FCP) mechanism. The mecha-
nism engages a grid search algorithm to iteratively identify
the optimal clipping factors based on minimizing quantiza-
tion errors across each weight layer, before the training be-
gins. In this way, the proper combination of quantization and
clipping patterns is ensured, while also promoting the stable
convergence of weight clipping factors in optimization.

The contributions of this paper are summarized as follows:

1. We propose a novel mixed metric supervision approach
under block-wise reconstruction, ensuring the distribu-
tions of quantized blocks align with full-precision coun-
terparts while providing better regularization for param-
eter learning.

2. A proxy-based adaptive rounding scheme for weight
quantization is constructed with the aim of reducing the
quantization error caused by the RTN operator without
incurring any extra inference overhead.

3. We introduce a factor coarse pre-searching mechanism
for better weight clipping, which ensures the correct
combination of quantization and clipping patterns and
provides a better initial learning state for parameters.

4. Extensive experiments across models and datasets ver-
ify the robust performance of MPPQ, particularly in ex-
tremely low quantization bitwidths (e.g., W4A4, W6AG,
and W2A16) scenarios. For example, our average ac-
curacy for the 4/4-bit LLaMA-2-7B model is 54.87%
2.17% 1 vs 52.70% in ABQ-LLM). Similarly, on the
W2A16 configuration of LLaMA-13B, our perplexity on
the C4 dataset is 9.79 (2.67 | vs 12.46 in AffineQuant).

2 Related Work

2.1 Network Quantization

Quantization means to represent the weights, activations, and
even gradients with low-bitwidth, leading to smaller models
and faster inference. This technique can be largely divided
into two categories: quantization-aware training (QAT) and
post-training quantization. Thanks to the straight-through es-
timator (STE) [Bengio et al., 2013], QAT is capable of meet-
ing most of the demands but requires high GPU effort and
leverages the entire dataset. PTQ offers a more friendly al-
ternative, enabling to quickly determine the optimal quan-
tizer for a network using a small amount of data and has re-
cently brought competitive outcomes. AdaRound [Nagel et
al., 2020] showed that the RTN operation is not often the op-
timal solution and proposed reconstructing in a manner based
on per-layer learning. BRECQ [Li et al., 2021] extended
AdaRound to per-block reconstruction by utilizing the Fisher
information.  [Wei et al., 2022a] proposed QDrop, which
randomly discards quantized activation values during PTQ to
further enhance low-bit performance. PD-Quant [Liu et al.,

2023] incorporated global prediction differences into recon-
struction and adjusted the distribution of activations to allevi-
ate the issue of overfitting.

2.2 Quantization on LLMs

LLMs quantization can be broadly divided into weight-only
quantization [Frantar e al., 2022; Lin et al., 2024; Cheng
et al., 2023; Kim et al., 2024; Chee et al., 2024; Lee et al.,
2023a] and weight-activation quantization [Dettmers et al.,
2022; Yao et al., 2022; Yuan et al., 2023; Xiao et al., 2023;
Wei et al., 2023; Shao et al., 2024; Liu et al., 2024b;
Zeng et al., 2024; Zhao et al., 2024] based on the quantiza-
tion objects. The former typically employs techniques such
as compensation, scaling, rotation, and mixed-precision to
compress weights. However, matrix operations at the hard-
ware level are still executed with high precision, meaning
that weight-only quantization fails to truly accelerate the in-
ference of LLMs. Conversely, the latter can invoke specific
hardware units during the inference phase, but outliers in ac-
tivations are also a tough issue that must be addressed. To this
end, SmoothQuant [Xiao et al., 2023] utilized mathematical
equivalent transformations to shift outliers to corresponding
weights. [Wei et al., 2023] further expanded channel-wise
shifting while [Shao er al., 2024] employed a differentiable
approach to learn the optimal parameters mentioned above,
as well as weight clipping factors. QLLM [Liu er al., 2024a]
proposed to reallocate the outliers to other channels to miti-
gate their impact on the quantization range. LRQuant [Zhao
et al., 2024] sought better quantization performance by re-
fining the initialization of the learnable smoothing parame-
ters. In a notable difference, our proposed MPPQ focuses on
loss construction, rounding optimization, and pattern match-
ing to overcome the poor performance of existing works in
extremely low-bitwidth quantization.

3 Preliminaries

3.1 b-bit Quantization

In this paper, we adopt hardware-friendly uniform asymmet-
ric quantization for both weights and activations. For the ma-
trix W € R™*™ with floating-point values and a quantiza-
tion bitwidth of b, the quantization and de-quantization pro-
cedures can be expressed as follows:

. W,
W, =s [clamp({ s]—‘ + 2p;0,2° — 1) —zp] , (D

where s and zp represent the quantization step size and the
zero point, respectively:
> max(V\;l — rlnin(W) = {min(W)-‘ )

S

|-] represents the RTN function and clamp(z, Zmin, Tmax)
denotes the operation that constrains the value z within
[©min, Tmax]- Weight-only quantization enables memory foot-
print savings, while weight-activation quantization can fur-
ther accelerate inference. Previous studies [Dettmers et al.,
2022; Xiao et al., 2023; Wei et al., 2022b] have revealed
that several outlier channels are prevalent in the activations of



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

6 Trainable

Frozen

Quantized Block
Full-Precision
Biok

.77 7S, MSE+CS

Quar.ltized -
Weights

Weights Scaling

o021 243 192

|
I
|
|
: 081 32 - -
|
|
I
|

12 002 147

MSE+KLD

]
I
I
|
Pre-trained .y i
:
I
I
I
]

Figure 1: The overall framework of MPPQ. (a): Mixed metric supervision approach for block-wise reconstruction. The green and yellow
arrowed lines represent data flows, while the green and yellow rectangles denote full-precision and quantized transformer blocks, respectively.
(b): The proxy-based adaptive rounding scheme leveraging the LoRA structure. (c): An exemplary view of the proposed factor coarse pre-

searching mechanism.

LLMs, which enlarges the quantization range and thus hin-
ders the accurate mapping of floating-point values with vary-
ing magnitudes. Therefore, the current consensus is that what
must be done before activation quantization is to suppress the
widespread outliers.

3.2 Scaling Transformation

Given the input activation X!~! € R™*™, a mainstream ap-
proach to suppress outliers is to first determine a diagonal
matrix A € R™*", based on the heuristic principle. Then,
left-multiply it by the weight and right-multiply the activation
with its inverse, respectively, to ensure computational invari-
ance.

X! = (XITTATH (AW ). 3)
By inserting such transformations into LLMs, the impact of
outliers on the quantization errors is effectively mitigated. In
parallel, A can be incorporated into W T, thereby eliminating
the runtime burden. The diagonal element A; within A is
computed by the following formula:

A; = max(|X;|)*/max(|W;[)}~2, “4)

where « represents the migration strength and is often set
manually. Building on this point, [Wei et al., 2023] further
introduced an additional channel-wise shifting operation:

X=X -8 oA - AW +5WT (5

where 6 € R'" and A € R'*" represent matrices com-
posed of per-channel shifting and scaling, respectively.

4 Approach

In this section, we present the details of our proposed quan-
tization framework. The overall pipeline of MPPQ is illus-
trated in Figure 1 and mainly consists of three components.

MPPQ adheres to scaling transformation [Xiao et al., 2023;
Wei et al., 2023; Shao et al., 2024] for handling outliers in
activation, then it performs the Hadamard product with the
weight and two learnable low-rank matrices, in anticipation
of altering the quantization rounding of the weights. This is
followed by determining the optimal initial values of weight
clipping factors using grid search. Finally, MPPQ utilizes the
proposed mixed metric supervision to calculate quantization
loss and update all learnable parameters until convergence.

4.1 Mixed Metric Supervision

Previous findings [Li et al., 2021; Wei et al., 2022a] have
suggested that it is necessary to optimize layers with depen-
dencies together in PTQ. Based on this, a block-wise quan-
tization reconstruction paradigm has been widely applied in
current PTQ methods for LLMs. The paradigm typically em-
ploys MSE to compute the loss between the outputs of the
full-precision and quantized blocks, and then uses it as the
sole metric to guide the quantization process:

migl ||‘F(W7Xfp) 7‘F(Qw(w§9w)7Qa(X

wyYa

0))|| 5
(6)

where F (-) represents the mapping function for a transformer
block in LLMs, @, (-) and Q. () are the weight and acti-
vation quantizers, respectively, with parameters 6, and 6,.
||| » denotes the Frobenius Norm.

Eq. (6) can be further simplified to:

ngCMSE(‘Ffp(Xfp)a‘Fq(Xm‘9))7 (7

where Xy, and X, are the inputs of the full-precision and
the quantized block, respectively, which also correspond to
the outputs of their respective previous blocks. Weights are
omitted in Eq. (7).
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Figure 2: Visualization of the output distribution of different blocks
from LLaMA-2-7B on WikiText2 under W4A4 quantization.

As observed in Figure 2, the significant difference between
the output distributions of full-precision and quantized blocks
suggests that relying solely on MSE loss for block-wise quan-
tization reconstruction may not be sufficient to effectively
align them. To address this, we propose a novel reconstruc-
tion loss function based on mixed metric supervision to im-
pose stronger constraints on the distributional similarity be-
tween the layer-wise and block-wise outputs, thereby miti-
gating quantization errors.

Concretely, we first align the input of the quantized trans-
former block with its full-precision counterpart and devise a
novel variant that differs from the losses used in prior works:

meinﬁMSE(]:fp(Xfp)» Fq(Xpp; 0)). ¢))

Next, for Eq. (7) and Eq. (8), we add cosine similarity (CS)
loss to capture the directional differences as well as to achieve
a more robust parameter optimization.

Furthermore, we impose additional constraints on the fea-
ture representation of certain layers within the quantized
block, ensuring that its overall distribution is closer to that
of the full-precision block while helps to smooth outliers in
the feature space. In the end, we integrate these loss func-
tions to formulate the final optimization objective L;o1q; as
follows:

minE [o<1>(f(w,Xfp),f(Qw(W;ewﬂL),Qa(Xq;Oa))

+ OD(F(W, X 1), F(Qu(W: b, 01.), Qu (X3 6a) |
)

where O and O@) represent the loss functions. The com-
mon procedure of both, as well as the part unique to @) are

as follows, respectively:

1 FJ . Qj
KF,Q) =|F-Qlz+ -3 (1 - =),
Pt 20 [ e,
(10)
H(f.q) = |f; — qill3 + Dxr(o(f), o(ai)),
s.t. i € {o_proj, down_proj}. (11)

In which, F and Q denote the full-precision and quantized
block outputs, with f; and q; representing the full-precision
and quantized outputs at layer 4, respectively. ||-||, denotes
the Euclidean Norm. D, (+) represents the Kullback-Leibler
divergence [Kullback and Leibler, 1951] and o is the softmax
function.

4.2 Proxy-Based Adaptive Rounding

PTQ typically assigns each weight to its nearest fixed-point
representation, whereas AdaRound [Nagel et al., 2020] has
demonstrated that this approach is not optimal. It introduced
a method to adaptively determine the best rounding for each
weight of the model through back-propagation, as illustrated
below:

W,
W,; = s |clamp ({SJJ + h(Vij) + zp,n,p> —zp|,

(12)
where W and W represent the pre-trained weight and its
quantized version, respectively. h(V) € {0,1}™*" is the
learnable rounding matrix and its size must be consistent with
‘W. Directly applying AdaRound to LLMs quantization is
not feasible, as LLMs typically have billions of parameters,
which makes solving h(V) on a small calibration dataset
challenging. Moreover, previous studies [Lee et al., 2024;
Han er al., 2015] have demonstrated that the fixed-point
representations of weights with large magnitudes in LLMs
should be allowed to deviate more from their floating-point
values. Therefore, there is an urgent need to propose a new
rounding method within the aforementioned limitations.

Inspired by the parameter sharing of the LoRA struc-
ture, we explore a proxy-based adaptive rounding scheme for
weight quantization. As shown in Figure 1, two learnable
low-rank matrices are deployed and their product serves as
the proxy rounding matrix, which is then merged with the
weight by performing the Hadamard product. PAR achieves
element-wise scaling of weights with varying intensities prior
to quantization, and thus is able to adjust the quantization
rounding values accordingly for each weight.

The aforementioned process can be summarized as fol-
lows:

W,; = s |clamp ({‘N”@SP”’Y—‘ + zp,n,p) —2zp
(13)

In which, P is the proxy rounding matrix that is defined as
P;; = exp(B-A);;. B € R™*" and A € R"*" are low-rank
matrices with a rank of r and initialized by random Gaussian
and zeros, respectively. v serves for balancing.

On the flip side, the gradient of L;:4; With respect to P
can be derived as follows':

8‘Ctotal _ 8£total 8W N
oP;;  OW 0P

8‘Ctotal
W, - —. 14
(Wij ) oW (14)

As expected, Eq. (14) indicates that the scaling degree of
each pre-trained weight is proportional to its own magnitude,
which matches the findings of [Lee et al., 2023b]. In other
words, the larger W is, the greater the chance that Wij de-
viates from W;;. Notably, after the reconstruction, the low-
rank matrices can be absorbed by the network without intro-
ducing any extra inference costs.

'The detailed proof can be found in Appendix A.
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Algorithm 1 Factor Coarse Pre-searching

Input: Pre-trained FP transformer block
Parameter: Number of weight layers N, grid search iterations m,
starting search point p, initial loss and clipping factors £*, 6,4,
and 0},
Output: Optimal clipping factors 6}, and 0;,,;,,

1: Let £L* to 400, 0;,4, and 0;,,;,, to —1.

2: whilen < N do

3:  while j < mdo

4: Calculate the 6,4, and vimqe by Eq. (15) and Eq. (16).
5: while £ < m do

6: Calculate the 6,,;», and vy by Eq. (15) and Eq. (17).
7: Quantize weight layer n based on Eq. (1).

8: Calculate £ using Eq. (18).

9: if £* > L then

10: LY < L, 0500 < Omaz, Onin < Omin.

11: end if

12: end while

13: end while
14: end while
15: return 0, and 0;,,,,

4.3 Factor Coarse Pre-searching

Reducing errors caused by outliers in weights or activations
in the quantization of LLMs is crucial. Previous studies, in-
cluding [Shao er al., 2024], have implemented weight clip-
ping with clipping factors that are symmetrically initialized
by hand. Obviously, this method fails to consider the cru-
cial compatibility between quantization and clipping patterns,
as well as whether the clipping factors are in the optimal
initial state before training, which is also highly question-
able. In this section, we present a factor coarse pre-searching
mechanism for weight quantization, which can serve as a pre-
operation and skillfully overcome the aforementioned issues.

The running procedure of the mechanism is summarized
in Algorithm 1 and can be roughly divided into four steps.
We first exploit a grid search algorithm and set its hyper-
parameters, including the total number of iteration rounds m
and the starting search point denoted as p € [0, 1]. Next, the
maximum and minimum values of all quantization intervals
for the weight W to be updated under the current iteration
round A € [0, m).

i i 1—p
omaac’ emin =p+ TAa (15)
Vimaz = Oz X max(W;), (16)
U'fnin = ezm’n X min(wi)a (17)

where W represents the i-th quantization interval. 67, and
¢ .. represent its maximum and minimum clipping factors,
respectively. Subsequently, we use the Eq. (1) to quantize
‘W, and then calculate the quantization error using the MSE

distance:
1 L2
Li== HW —w,| . (18)

n 2

The final step involves adjusting the optimal maximum or
minimum clipping factor of the quantization interval if the
quantization error in the current round is less than that in the

previous round.

S Experiments

5.1 Settings

Models and Datasets. We evaluate MPPQ on LLaMA-1
(7B, 13B), LLaMA-2 (7B, 13B), and OPT? (125M, 1.3B,
2.7B, 6.7B, 13B) models. In zero-shot question-answering
(QA) tasks, we report the accuracy of models on several
datasets: PIQA [Bisk et al., 2020], ARC [Clark ef al., 2018],
HellaSwag [Clark et al., 2018], WinoGrande [Sakaguchi et
al.,2021], and BoolQ [Clark et al., 2019]. For language gen-
eration tasks, we measure the perplexity (PPL) on datasets
including WikiText2 [Merity ef al., 2016] and C4 [Raffel et
al., 2020].

Quantization Settings. In terms of the quantization gran-
ularity, we employ per-token and per-channel quantization
for activation and weight, respectively. Regarding the ob-
jects of quantization, we perform weight-only and weight-
activation quantization. Meanwhile, the attention probabili-
ties are maintained in full-precision for alignment with prior
research. We also focus on quantization at low-bitwidth, in-
cluding W2A16 and W4A4, among others.

Baseline Methods. Several recently prominent methods
have been selected for benchmarking against MPPQ to high-
light its superiority, including GPTQ [Frantar er al., 2022],
AWQ [Lin et al., 2024], OmniQuant [Shao et al., 2024],
AffineQuant [Ma et al., 2024], and ABQ-LLM [Zeng et al.,
2024] for weight-only quantization and SmoothQuant [Xiao
et al., 2023], OmniQuant, QLLM [Liu et al., 2024al, ABQ-
LLM, and LRQuant [Zhao et al., 2024] for weight-activation
quantization.

Implementation Details. We randomly sample 128 seg-
ments with a sequence length of 2048 from WikiText2 as our
calibration training dataset. During the training phase, we
adopt the AdamW optimizer with zero weight decay. Each
transformer block is employed for 20 epochs with a batch size
of 1 to complete the quantization reconstruction. Besides, the
learning rates for the learnable outlier transformation factors
and weight clipping factors are set to 5e-3 and 5e-4, respec-
tively. For the learnable matrices in the PAR, we set the rank
7 to 128 and the learning rate to 1le-4. The entire training pro-
cedure is completed on a NVIDIA RTX 6000 48G GPU and
we use the LM Evaluation Harness Toolbox for evaluation.

5.2 Experimental Results

Experiments on Language Generation Tasks. Table 1
presents a comparison of the PPL results for LLaMA-1 and
LLaMA-2 models. As can be seen, with the reduction in
quantization bitwidth or the model size becomes smaller, the
enhancements shown by MPPQ become more pronounced.
In particular, in the W6A6 quantization of the LLaMA-2-7B
model, the margin of PPL between the MPPQ and FP16 base-
line has narrowed to 0.14 and 0.23, respectively, which under-
scores the effectiveness of our approach. Furthermore, MPPQ
reduces the PPL of the LLaMA-7B model on the WikiText2
dataset from 11.48 (ABQ-LLM) to 8.91 under the W2A16
quantization configuration, which was previously unattain-
able. These consistent superiority at low-bitwidth settings

2All results about OPT models are reported in Appendix B.
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: aMA- aMA- aMA-2- aMA-2-
Bits Method LLaMA-7B LLaMA-13B LLaMA-2-7B LLaMA-2-13B
WikiText2 C4 WikiText2 C4 WikiText2 C4 WikiText2 C4
FP16 - 5.67 7.08 5.09 6.61 547 6.97 4.88 6.46
SmoothQuant 6.03 7.47 542 6.97 6.20 7.76 5.18 6.76
OmniQuant 5.96 7.43 5.28 6.84 5.87 7.48 5.14 6.74
W6A6 QLLM 5.89 7.34 5.28 6.82 5.72 7.31 5.08 6.71
ABQ-LLM 5.81 7.27 5.21 6.77 5.63 7.21 5.00 6.64
LRQuant 5.88 7.35 5.27 6.84 5.67 7.24 5.07 6.68
MPPQ 5.79 7.27 5.19 6.76 5.61 7.20 4.99 6.64
SmoothQuant 25.25 32.32 40.05 47.18 83.12 71.27 35.88 43.19
OmniQuant 11.26 14.51 10.87 13.78 14.26 18.02 12.30 14.55
W4A4 QLLM 9.65 12.29 8.41 10.58 11.75 13.26 9.09 11.13
ABQ-LLM 8.63 12.10 7.69 10.90 9.31 12.85 8.62 11.47
LRQuant 11.25 14.14 11.26 13.19 12.75 15.82 12.23 14.02
MPPQ 8.42 11.23 7.57 10.07 8.85 11.87 8.13 10.66
GPTQ 2.1e3 689.13 5.5¢e3 2.5e3 7.7¢€3 NaN 2.1e3 323.12
W2A16 QmniQuant 15.47 24.89 13.21 18.31 37.37 90.64 17.21 26.76
AffineQuant 9.53 14.89 7.54 12.46 35.07 572.22 12.42 23.67
ABQ-LLM 11.48 15.74 9.34 12.28 13.11 17.81 13.09 20.49
MPPQ 8.91 11.94 7.39 9.79 9.40 12.91 7.53 10.08
GPTQ 8.06 9.49 6.76 8.16 8.37 9.81 6.44 8.02
AWQ 11.88 13.26 7.45 9.13 24.00 23.85 10.45 13.07
W3A16  QmniQuant 6.49 8.19 5.68 7.32 6.58 8.65 5.58 7.44
AffineQuant 6.30 8.03 5.60 7.20 6.55 8.57 5.62 7.56
ABQ-LLM 6.29 8.01 5.56 7.24 6.28 8.10 5.44 7.26
MPPQ 6.14 7.84 5.46 7.12 6.02 7.84 5.29 7.06

Table 1: Perplexity ({) results comparison of LLaMA-1 and LLaMA-2 models under weight-only quantization and weight-activation quanti-

zation. “NaN” represents an infinity error.

highlights our proficiency in maintaining generative capabil-
ity under aggressive compression rates, without being depen-
dent on any quantization-specific.

Experiments on Zero-shot QA Tasks. We further evaluate
the performance of MPPQ on multiple zero-shot benchmarks
using the accuracy metric. As illustrated in Figure 3, on al-
most all datasets and models, MPPQ has significantly out-
performed existing SOTA baseline methods, showcasing its
impressive and powerful generalization ability. For instance,
in Figure 3a, our average accuracy outperforms LRQuant by
approximately 4% while for larger models (e.g., LLaMA-2-
13B), this advantage still remarkable exists.

Combining the consistent gains elaborated in the above two
subsections, we deduce that our MPPQ has established a new
SOTA in any quantization scenario.

5.3 Ablation Study

We conduct detailed ablation study to thoroughly analyze the
efficacy of the proposed MMS, PAR, and FCP. The experi-
mental results in Table 2 and Figure 4 indicate the contribu-
tions of each component.

It can be observed from Table 2 that enabling FCP re-
duces the perplexity from 5.97 to 5.82 (0.15 |), emphasizing
the critical importance of properly aligning quantization and
clipping patterns, an aspect often overlooked in prior work.
Building on this, the inclusion of PAR further improves accu-
racy by 0.78 under W3A16 as shown in Figure 4, demonstrat-
ing that adaptive rounding is one of the keys to significantly
enhancing quantization quality. Finally, the combination ver-

sion delivers the best overall performance and is selected as
our default configuration.

5.4 Discussions

The Effectiveness of MMS. Figure 2 indicates that our
proposed MMS mitigates the inconsistency between distribu-
tions, while its ability to smooth outliers is shown in Figure 5.

It is evident that the Vanilla reflects the original distribution
of activation, which is highly lacking in smoothness and is
thus not preferred for quantization. The SmoothQuant and
OmniQuant are able to yield relative improvements, yet both
still have distinct limitations. In contrast, MPPQ provides

#Bits Parts PPL |

FCP PAR MMS WikiText2 C4

5.97 7.63

? Y 5.82 7.40

WAAS 5.66 7.26
v v 5.72 7.28

v /7 v 5.61 7.20

6.63 8.64

? Y 6.54 8.56

W3AL6 6.22 8.14
v v 6.45 8.32

/7 v 6.02 7.84

Table 2: Ablation study on the primary innovations of MPPQ, in-
cluding the FCP, PAR and MMS. All experiments are conducted on
the LLaMA-2-7B model.
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(2) LLaMA-1-7B_W4A4

(b) LLaMA-2-13B_W4A4

(c) LLaMA-2-13B_W6A6

Figure 3: Zero-shot QA (1) accuracy of LLaMA-1 and LLaMA-2 models under weight-activation quantization.
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Figure 4: Ablation study on the contribution of different components
to the improvement in accuracy.

more precise smoothing for outliers and thus obtains betters
gains in Table 1 and Figure 3.

Effectiveness Analysis of FCP. As depicted in Figure 6a,
there are over 20% learned factors close to 1, indicating that
numerous outliers still exist, which further leads to subopti-
mal quantization results. In contrast, our clipping factors are
mostly concentrated between 0.6 and 0.75, implying effective
clipping of outliers.

6 Conclusion

In this study, we have introduced MPPQ, a novel PTQ frame-
work for LLMs that targets extremely low-bitwidth scenar-
i0os. MPPQ relies on scaling transformation for outlier han-
dling and consists of three innovative optimizations. Firstly,
MPPQ introduces a mixed metric supervision approach for
block-wise quantization reconstruction to effectively allevi-
ate the deviation between quantization and full-precision dis-
tributions, while providing better regularization guidance for
parameter learning. Subsequently, we have successively pro-
poses a proxy-based adaptive rounding scheme and a fac-
tor coarse pre-searching mechanism for weight quantization.
The primary objective of the former is to minimize errors

12 ~——MPPQuant 30 — MPPQuant
10 ——OmniQuant ) — OmniQuant
S SmoothQuant | © SmoothQuant
S 8 ‘ ——Vanilla éGO — Vanilla
s c
c 6§ 540

©
24 =
20
= 2 —
0 0
0 203 4e3 6e3 8e3 le4 0 1e3 2e3 3e3 4e3
Channels Channels

(a) Xg of the 5" transformer (b) X, of the 31" transformer
block. block.

Figure 5: Visualization of the input distribution for linear layers
down_proj and o_proj within certain transformer blocks of the
LLaMA-2-7B model, arranged by the channel magnitudes (i.e., the
Frobenius norm) in descending order.
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Figure 6: Visualization of the learned clipping factors in W3A16
quantization of the LLaMA-2-7B model. Here, for a fair compari-
son, our MPPQ activates only the FCP component.

caused by the RTN operator, while the latter aims to ensure
proper alignment between weight quantization and clipping
patterns. Both can play a role in tackling their respective chal-
lenges. Extensive experimental results in language generation
and zero-shot QA tasks indicate the superiority of the pro-
posed method. For example, it reduces the gap in PPL to less
than 0.5 with FP16 for W3A 16 quantization on the LLaMA-
7B model. Moreover, the models quantized by MPPQ, with-
out any additional structures, facilitate their subsequent de-
ployment on edge devices.
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