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Abstract

Graph recommendation systems have been widely
studied due to their ability to effectively capture
the complex interactions between users and items.
However, these systems also exhibit certain vulner-
abilities when faced with attacks. The prevailing
shilling attack methods typically manipulate rec-
ommendation results by injecting a large number of
fake nodes and edges. However, such attack strate-
gies face two primary challenges: low stealth and
high destructiveness. To address these challenges,
this paper proposes a novel graph backdoor attack
method that aims to enhance the exposure of target
items to the target user in a covert manner, without
affecting other unrelated nodes. Specifically, we
design a single-node trigger generator, which can
effectively expose multiple target items to the tar-
get user by inserting only one fake user node. Ad-
ditionally, we introduce constraint conditions be-
tween the target nodes and irrelevant nodes to mit-
igate the impact of fake nodes on the recommen-
dation system’s performance. Experimental results
show that the exposure of the target items reaches
no less than 50% in 99% of the target users, while
the impact on the recommendation system’s perfor-
mance is controlled within approximately 5%.

1 Introduction
Recommendation systems play a vital role in modern infor-
mation societies and are widely applied in areas such as e-
commerce, social media, and content platforms. By provid-
ing users with personalized content and services, they signif-
icantly enhance user experience and platform revenue. Tra-
ditional recommendation systems, typically based on collab-
orative filtering [Sarwar et al., 2001; Hu et al., 2008], ma-
trix factorization [Koren et al., 2009; Abdi et al., 2018], or
sequence model techniques [Hidasi et al., 2016; Bai et al.,
2024], often struggle to fully explore the potential high-order
relationships and contextual information between users and
items. To better capture complex interaction patterns, Graph

∗Corresponding author

(a) Yelp (b) Gowalla

Figure 1: We investigate the impact of the injected false user ratio
on the accuracy of recommendation systems using the AutoAttack
method on the Yelp and Gowalla datasets. The ’Inject size’ denotes
the ratio of injected false users to target users, ’ACC’ indicates the
proportion of successful recommendations among target users, and
’HR@20’ is the evaluation metric for recommendation performance.

Neural Networks (GNNs) have been widely adopted in rec-
ommendation systems due to their ability to model relational
data[Wang et al., 2024a; Wang et al., 2024b; Zheng et al.,
2025; Zheng et al., 2022; Zhang et al., 2024a]. By lever-
aging GNNs,Graph-based Recommendation Systems (GRSs)
can effectively represent users, items, and their interactions
as a graph structure, enabling a more comprehensive discov-
ery of latent user behavior patterns.By modeling high-order
connectivity and complex relationships, GRSs improve per-
sonalized recommendation accuracy [Yang and Toni, 2018;
Dong et al., 2024; Jin et al., 2023b].

However, recommendation systems based on Graph Neu-
ral Networks have certain vulnerabilities [Chen et al., 2021;
Geisler et al., 2021; Zhang et al., 2024b], and recent studies
have focused on shilling attacks in recommendation systems.
Attackers can achieve targeted attacks by carefully design-
ing perturbations to nodes or edges, such as GOAT [Wu et
al., 2021] who first proposed injecting fake user features and
link structures in the graph to recommend target items to the
user group. AutoAttack [Guo et al., 2023] consider enhanc-
ing the exposure of target items within the interested group
from a more realistic perspective. However, current methods
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Model
Training

Model
Training

(a) Single-entity Level

(b) Recommendation Level

Ground-truth label

Target label

Trigger node

Target user

Trigger user

General user

Target item

General item

Figure 2: The difference between (a) traditional single-entity back-
door attacks and (b) recommendation system backdoor attacks.

have two significant flaws, as shown in Figure 1. First, to
achieve better attack effectiveness, existing methods require
injecting a large number of fake nodes, which lack stealth.
Second, as graph-based recommendation systems rely on the
bipartite graph structure between users and items to gener-
ate personalized recommendations through information prop-
agation via historical interaction edges, the large amount of
false information injected by shilling attacks can corrupt the
graph structure and the information propagation process, sig-
nificantly disrupting the accuracy and stability of recommen-
dations.

Graph backdoor attacks are a covert form of graph struc-
ture attack, where an attacker quietly implants malicious
nodes or edges in the graph to influence the overall behav-
ior of the graph when specific conditions are triggered. The
primary advantage of such attacks lies in their stealthiness, as
the malicious modifications are typically difficult to detect,
allowing the attack to remain dormant and effective without
alerting the system [Wang et al., 2025; Wang et al., 2023;
Xi et al., 2021; Zhang et al., 2024c]. However, directly ap-
plying backdoor attacks to recommendation systems presents
two challenges. First, current graph backdoor attacks mainly
focus on single-entity classification tasks. Specifically, they
generate specific triggers for a single node [Dai et al., 2023;
Feng et al., 2024; Jin et al., 2025; He et al., 2025; Zhu et
al., 2024] or a single graph [Zhang et al., 2021; Zheng et
al., 2024; Jin et al., 2023a] to influence its classification re-
sults, as shown in Figure 2(a). However, in a graph-based
recommendation system, recommendations are generated by
computing the similarity between users and items. There-
fore, the key challenge is how to generate triggers that can
simultaneously affect both target users and items, as shown
in Figure 2(b). Second, even if a backdoor attack method is
successfully applied to the recommendation system, generat-
ing specific triggers for each target item poses a challenge.
Once a large number of trigger nodes are injected, the fake
information contained in these triggers will still be spread to
unrelated users and items through message propagation, sig-
nificantly disrupting the recommendation performance of the
original system. Thus, another key challenge is how to pre-
vent the trigger information from affecting irrelevant nodes.

To address these challenges, we propose a backdoor attack
method named Single-Node Trigger Backdoor Attacks in
Graph-Based Recommendation Systems(SNT-BA). Specifi-
cally, we introduce a single-node trigger generator for target
items and users. By inserting a fake user as a trigger into
all target items, we can significantly increase the exposure of
these items to the target user. We achieve this by introducing
latent edges in the graph, allowing the trigger to simultane-
ously affect both the target items and the users. Moreover,
since it is a single-trigger structure, only a single piece of
fake information is propagated to irrelevant items and users,
thus minimizing the impact on the original recommendation
system’s performance. In addition, we design constraints be-
tween user and item nodes to ensure the stability of the distri-
bution of user and item nodes, further enhancing the stealth of
the attack. Finally, our proposed attack method is an end-to-
end approach, where, during application, inserting the trigger
user into the target items is sufficient to achieve the attack
objective. The contributions of our work are as follows:

• We propose a backdoor attack approach for graph-based
recommendation systems, which, to the best of our knowl-
edge, is the first work to apply backdoor attacks in the con-
text of graph recommendation systems.

• We propose a more effective recommendation attack
method, which not only solves the problems of low stealth-
iness and high destructiveness in existing graph recommen-
dation attack methods, but also reduces the attack cost.

• We conduct experiments on multiple datasets, ensuring that
the exposure of the target item to at least 50% of the target
users is achieved in 99% of cases, while the impact on the
performance of the recommendation system is controlled to
around 5%.

2 Preliminary
In this section, we will define graph-based recommendation
systems and backdoor attack methods targeting graph neural
networks.

2.1 Graph-based Recommendation System
A graph-based recommendation system models users and
items as nodes, with their interactions as edges. It leverages
the graph structure to infer user preferences for unseen items
based on connectivity patterns.

Let the graph in the recommendation system be defined as
G = (V,E), where V is the set of nodes, V = U ∪ I , U is
the set of user nodes, and I is the set of item nodes. E is the
set of edges that represents the interactions between users and
items. Each edge eu,i ∈ E represents an interaction between
user u ∈ U and item i ∈ I .

In graph-based recommendation systems, the goal of the
model is to learn low-dimensional vector representations for
users and items, and to perform prediction tasks based on
these representations. Let hu(θ) represent the embedding
vector of user u, and hi(θ) represent the embedding vector
of item i, where θ denotes the model parameters. These em-
bedding vectors are optimized by learning the graph structure
to improve the accuracy of the recommendation.
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A typical objective in the recommendation task is to predict
the rating that a user would give to an item. Suppose the goal
is to predict the rating r̂ui that user u gives to item i, this
rating can be computed using the following formula:

r̂ui = f(hu(θ), hi(θ)), (1)

where f(·) is the rating prediction function. By training the
model and optimizing the parameters θ, the prediction er-
ror between the predicted and actual ratings is minimized,
thereby accomplishing the recommendation task.

2.2 Graph Backdoor Attacks on GRSs
In recommendation systems, the goal of a backdoor attack is
to manipulate the similarity prediction between user u and
item i by introducing triggers, such as fake users or false in-
teractions.

Specifically, after training the model with a backdoor at-
tack, we leave a backdoor in the recommendation graph. Dur-
ing the application of the model, once the trigger is inserted
for the target item, the model will output a higher similarity
score for the target user and target item, thereby prioritizing
the items that the attacker wants to be recommended. In con-
trast, without the trigger, the model will perform the recom-
mendation task normally, without any detectable anomalies.
In a backdoor attack, the similarity prediction can be repre-
sented as:

r̂ui =

{
max

G∈Gtrigger
f(hu(θ), hi∗(θ)), if G contains the trigger,

f(hu(θ), hi(θ)), otherwise.
(2)

Let Gtrigger be the attacked graph with the inserted trigger.
When the trigger is present, our goal is to maximize r̂ui∗ ,
where i∗ is the target item, to ensure that the target item is pri-
oritized in the recommendation. At the same time, when no
trigger is injected, the model continues to make recommen-
dations according to Equation (1), ensuring the stealthiness
of the model.

3 Methods
Previous graph recommendation system attack methods have
suffered from poor stealth and strong disruption due to the
injection of a large number of fake nodes. In this paper, we
propose a more covert and flexible backdoor attack method.
This method can dynamically generate a single specific trig-
ger based on the features of all attacked nodes, thereby avoid-
ing the limitations of attack node structure and quantity on
the attack’s effectiveness. This section will elaborate on the
structure and principles of the proposed model.

3.1 The Backdoor Attack Framework
Figure 3 shows the architecture of the backdoor attack model
for graph-based recommendation systems. Our task is to take
a clean input graph and, through the designed backdoor at-
tack model, enable any target item in the attacked graph to
significantly improve its ranking in the target user’s candi-
date item list after the trigger is inserted. At the same time,
it is necessary to ensure that, prior to the attack, the contam-
inated model remains stealthy. Furthermore, after inserting

the trigger, the model’s recommendation performance for ir-
relevant users and items should remain stable. To achieve this
goal, we divide the backdoor attack model into two modules:
the trigger generation training module and the recommenda-
tion system training module. The trigger generation mod-
ule creates specific triggers for the target items according to
their features, ensuring that the insertion of these triggers will
boost the ranking of the target item in the candidate set. The
recommendation training module is responsible for ensuring
that the attacked graph representation, when used for recom-
mendations, maintains the accuracy of the model.

3.2 Trigger Generation
Fake User Generation: The objective of the backdoor at-
tack is to recommend the target item to the target class of
users t ∈ T after injecting the trigger. To ensure the stealth-
iness of the trigger node, we only inject a single fake user
node u∗ into the recommendation system. To ensure that the
fake user node only influences the target item, for all target
items s ∈ S, we average their representations ft ∈ R|S|×d

to find the centroid node feature fs∗ ∈ R1×d, where d is the
dimension of the node features. For the fake user node’s fea-
ture fu∗ , we generate its feature representation based on fs∗
using a two-layer neural network, as follows:

fu∗ = σ(fs∗W1 + b1)W2 + b2. (3)

To ensure that the target item is preferentially recommended
to the target class of users Ut, it is necessary to guarantee
that, after injecting the trigger, the similarity between the tar-
get item S and the users of the target class T is higher than
that of other items in the same class. Therefore, we select a
number of negative sample items from the non-target items
in the target class, equal in quantity to the target items. We
design the loss function Ltrigger to ensure that the target user
should be more similar to the target item in this round of rec-
ommendations. The loss function is designed as follows:

Ltrigger(D|Θ) =
∑

t∈T,s∈S,p∈P

− lnσ(r̂ts − r̂tp) + λΘ∥Θ∥2,

(4)
where D represents all recommendation data, Θ represents
the parameters of the recommendation model, P is the set of
candidate target items (S ∈ P ), and p ∈ P refers to the can-
didate item selected as a negative sample in the current itera-
tion. r̂ts represents the rating of the target item by the target
user, r̂tp represents the rating of candidate negative items by
the target user, and λΘ∥Θ∥2 is the regularization coefficient
used to control the complexity of the parameters.
Constraints on Attacked Nodes: Since our task involves
reserving a backdoor during the training process, and each
round of trigger injection simultaneously affects both the tar-
get user T and the target item S, this will lead to a shift
in the position of candidate items and the target user in the
original feature space after multiple training rounds. Specifi-
cally, because items of the same type are competing, the can-
didate items will first be pushed away from the target user,
and only after the injection of triggers will the representa-
tions of the target items and the target user be pulled closer
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Figure 3: The framework of SNT-BA consists of two modules: the Trigger Generator and the Recommendation System Training Module. By
designing triggers, the target items can significantly improve their rankings after the insertion of the trigger. At the same time, the optimization
of the constraint loss function ensures the stability of recommendation performance for unrelated users and items.

together. Since the target user will also interact with noncan-
didate items N , this will reduce the exposure of the intended
target items, which could be detected by the recommendation
system.

Therefore, we need to design a constraint loss to control
the relative positions of users and items in the original feature
space. In each round, we randomly sample the same num-
ber of interactions between the target user T and other non-
candidate items N as negative samples for interactions with
the candidate item P , thereby ensuring the relative stability
of the distributions of different types of nodes. The specific
constraint loss is as follows:

Llimit(D|Θ) =
∑

(t,p,n)∈D

− lnσ(r̂tp − r̂tn) + λΘ∥Θ∥2. (5)

3.3 GNN-based Recommendation
Since backdoor attacks do not alter the original model’s train-
ing procedure, we directly use LightGCN [He et al., 2020] as
the surrogate model for the attack. The core idea of Light-
GCN is to learn node representations through neighborhood-
based information propagation on the graph structure. Un-
like traditional GCNs, LightGCN simplifies the convolution
operation by disregarding the node feature matrix and in-
stead propagating information solely using the graph adja-
cency matrix. Specifically, this can be expressed as follows.

h(k)
v =

∑
u∈N (v)

1√
dvdu

h(k−1)
u . (6)

In this context, h(k)
v represents the embedding of node v at

the k-th layer, N (v) denotes the set of neighbors of node v,
dv is the degree of node v, and du is the degree of node u.

In LightGCN, the convolution operation at each layer in-
volves a simple weighted summation, so the multi-layer
graph convolution operation is essentially multiple weighted

averages of different neighbor information. The final node
representation h

(k)
v is the result after k layers of convolu-

tion. Specifically, the final representation of node v can be
expressed as:

hv =

K−1∑
k=0

h(k)
v , (7)

where K is the number of graph convolution layers, repre-
senting the node’s embedding after multiple rounds of neigh-
bor information propagation.

During training, the BPR loss function is typically used
to optimize the model parameters. The BPR loss function
optimizes by maximizing the user’s preference for positive
items relative to negative items. The BPR loss function is
defined as:

Lrec(D|Θ) =
∑
u,i,j

− lnσ(r̂ui − r̂uj) + λΘ∥Θ∥2, (8)

where (u, i, j) represents a triplet, with i being the positive
item interacted with by user u, j being the negative item, and
σ denoting the sigmoid function.

3.4 Joint Optimization Function
The trigger generator model and the recommendation model
are trained simultaneously, ensuring that the recommendation
performance for other types of nodes remains intact after trig-
ger injection. Considering all the aforementioned loss condi-
tions, we adopt a joint optimization loss function, which is
defined as follows:

L = αLtrigger + βLlimit + γLrec, (9)

where α, β and γ are hyper-parameters that control the impact
of each optimization objective on the final attack effects.
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Datasets #Users #Items #Interactions
Gowalla 29,858 40,981 1,027,370
Amazon 52,643 91,599 2,984,108
Yelp 31,831 40,841 1,666,869
MovieLens 20,982 16,482 454,011

Table 1: The statistics of datasets.

4 Experiments
In this section, we will evaluate our method on several real-
world recommendation datasets to address the following re-
search questions:

• RQ1: Can the proposed method effectively perform back-
door attacks on graph-based recommendation systems, and
can it increase the appearance of target items in the recom-
mendation lists of more target users?

• RQ2: How does the constraint loss function enhance the
stealthiness of the attack, and how can it ensure the attack
remains undetected as much as possible before execution?

• RQ3: Why is the use of multiple triggers not preferred for
backdoor attacks in graph-based recommendation systems?
What are the advantages of using a single trigger compared
to multiple structural triggers?

4.1 Experimental Settings
Datasets: We conduct experiments on four real-world
datasets, namely Gowalla, Amazon, Yelp and MovieLens.
When constructing the user-item interaction graph, we hy-
pothesize that if a user’s rating for an item exceeds the aver-
age rating, it can be determined that the user has an affinity
for the item, and an interaction edge between the user and the
item is established.The dataset statistics are shown in Table 1.

• Gowalla1: is a popular check-in dataset that contains data
on users’ check-in times, locations and social relationships.

• Amazon2: is a collection of user-item interactions from
Amazon, specifically focusing on books. It includes data
such as user reviews, ratings, and metadata about books.

• Yelp3: is a publicly available collection of data from Yelp,
a popular platform for user reviews of local businesses such
as restaurants, cafes, shops, and service providers.

• MovieLens4: is a widely used dataset for recommendation
system research and experiments, containing user ratings
for movies and metadata information about the movies.

Baselines: We compare our method with several traditional
attack and injection attack methods.

• Random Attack [Lam and Riedl, 2004]: The attacker ran-
domly generates a large number of fake users connected to
the target items, thereby increasing the degree of the target

1http://snap.stanford.edu/data/loc-gowalla.html
2https://snap.stanford.edu/data/amazon/
3https://www.kaggle.com/yelp-dataset/yelp-dataset
4https://www.kaggle.com/datasets/movielens-100k-dataset

items and enhancing their exposure. In this paper, we in-
troduce an attack by injecting false users constituting 20%
of the original user base.

• Popular Attack [O’Mahony et al., 2004]: The attacker
generates fake users connected to the target items based on
the central representation of each user category. In this pa-
per, 5% of the users from each category are added as fake
users for the attack.

• Vote Attack: The attacker generates representations for
the most active target users and connects them to the tar-
get items. In this paper, 10% of the target class users are
added as fake users for the attack.

• GSPAttack [Nguyen et al., 2023]: The attacker uses a
GAN network to learn and generate fake user representa-
tions and their connection relationships, thereby achieving
the attack effect.

• AutoAttack [Guo et al., 2023]: The attacker generates fake
user representations based on the target user representations
and learns the connection relationships. In this paper, 10%
of fake users are generated for the attack.

Evaluation Metrics: To quantitatively evaluate the impact
of the backdoor attack, we design three metrics to assess both
the attack performance and recommendation performance.
The success rate and coverage rate are used to evaluate the
impact of the backdoor attack, while the hit rate is used to
assess the recommendation performance.

• Access Rate: The access rate (ACC) measures the propor-
tion of target users successfully attacked, defined as the ra-
tio of the number of target users successfully attacked to
the total number of target users:

ACC =
|TS |
|TU |

, (10)

where TS is the set of target users successfully attacked,
and TU is the set of all target users.

• Coverage Rate: The coverage rate (CVR) measures the
proportion of target items in the recommendation list of
target users. For each target user, the coverage rate is the
proportion of target items appearing in the top K recom-
mended items. The overall coverage rate is the average of
these individual coverage rates:

CVR =
1

|TU |
∑
u∈TU

|TP (u) ∩R(K)
u |

K
, (11)

where TU is the set of target users, TP (u) is the set of target
items for user u, and R(K)

u is the top K recommended item
list for user u.In this paper, the value of K is set to 10.

• HR@N: This metric represents the number of items in the
top N items of the recommendation list that have been ac-
tually interacted with by the user. It is used to calculate
the accuracy of the recommendation system in real-world
applications. Specifically, it is expressed as:

HR@N =
|{i ∈ R

(N)
u | i ∈ Iu}|
N

, (12)

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

http://snap.stanford.edu/data/loc-gowalla.html
https://snap.stanford.edu/data/amazon/
https://www.kaggle.com/yelp-dataset/yelp-dataset
https://www.kaggle.com/datasets/movielens-100k-dataset


Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Attacks
Yelp Gowalla Amazon Movielens

ACC CVR HR@20 ACC CVR HR@20 ACC CVR HR@20 ACC CVR HR@20

Random 0.22 0.15 0.2238 0.27 0.21 0.3587 0.24 0.17 0.1248 0.19 0.14 0.4715

Popular 0.30 0.25 0.2137 0.35 0.30 0.3373 0.32 0.28 0.1065 0.26 0.22 0.4454

Vote 0.37 0.32 0.2251 0.42 0.53 0.3497 0.49 0.45 0.1249 0.43 0.38 0.4787

GSPAttack 0.68 0.53 0.2354 0.75 0.62 0.3412 0.63 0.55 0.1218 0.68 0.51 0.4962

AutoAttack 0.81 0.56 0.2525 0.87 0.77 0.3715 0.82 0.64 0.1384 0.85 0.65 0.5223

Ours 1 0.71 0.3245 0.99 0.92 0.4997 0.99 0.87 0.1709 1 0.89 0.7324

Table 2: Comparison of methods on Yelp, Gowalla, Amazon, and Movielens datasets.

where R
(N)
u is the set of the top N recommended items

for user u, Iu is the set of items that user u has actually
interacted with, and |{i ∈ R

(N)
u | i ∈ Iu}| represents the

number of items in the top N recommended list that the
user has actually interacted with. In this paper, the value of
N is set to 20.

Parameter Settings: To evaluate the recommendation per-
formance, we split each dataset into two parts: 80% for train-
ing and 20% for testing. The number of target items is set to
20. The training epoch, node embedding size, and learning
rate are set to 1000, 64, and 0.001, respectively.

4.2 Main Result
To answer RQ1, we evaluate our method from two aspects:
the effectiveness of the backdoor attack and its impact on the
original recommendation system. For the backdoor attack ef-
fectiveness, we assess the success rate for target users and
the coverage of target items appearing in the recommenda-
tion lists of target users. To evaluate the impact on recom-
mendation performance, we use the HR@20 metric. The ex-
perimental results are shown in Table 2. We will analyze the
performance of each metric in detail to verify the effective-
ness of our method.
• Access Rate: We demonstrate the occurrence of target

items in the top 10 recommendation lists of target users.
The results show that for each dataset, the proposed frame-
work successfully includes the target items in the top
10 recommendations for no less than 99% of the target
users, demonstrating a significant performance improve-
ment. Compared to traditional shilling attack methods, our
approach performs more favorably in both attack success
rate and recommendation quality, effectively boosting the
ranking of target items, thereby achieving a stronger back-
door attack effect.

• Coverage Rate: We evaluate the coverage of target items
in the top 10 recommended items for all target users using
this metric. The experimental results show that, with our
approach, the average coverage of target items in the top 10
recommended items for all target users exceeds 80%. This
result indicates that our framework ensures that most target
users see the target items in the recommendation list during

the attack process, further validating the effectiveness and
robustness of our method.

• Hit Rate: The experimental results show that, after apply-
ing our proposed framework, the hit rate of the original rec-
ommendation system for the top 20 recommended items
decreases by no more than 5%. This result indicates that
our attack method not only successfully introduces the tar-
get items into the recommendation lists of target users but
also keeps the impact on the overall recommendation qual-
ity and user experience at a low level, ensuring both the
stealthiness and effectiveness of the attack.

4.3 Experimental Analysis
In this section, we conduct an in-depth analysis of our ap-
proach to validate the stealthiness and low destructiveness of
the proposed attack method.
Stealthiness: To answer RQ2, We first examine the recom-
mendation performance of the model before launching the at-
tack and compare it with the recommendation performance
of an unaffected recommendation system, as shown in Table
3. Specifically, we compare the recommendation accuracy
of the model before the backdoor attack with the recommen-
dation accuracy of the original recommendation system, and
calculate the relative decline in recommendation performance
of our model compared to the attack-free system.

The results indicate that our recommendation model per-
forms nearly identically to the original recommendation
model, with no significant impact on the user’s recommenda-
tion experience. Additionally, since the model is end-to-end
trained, this effect remains undetected.

Additionally, we validate the effectiveness of the constraint
in Equation (5). The purpose of our constraint is to ensure

Datasets Yelp Gowalla Amazon Movielens

Raw 0.3412 0.5322 0.2013 0.7605

Attacked 0.3372 0.5157 0.1854 0.7484

Decline Rate 0.0394 0.0165 0.0789 0.0121

Table 3: Comparison of datasets: Raw, Attacked, and Decline Rate.
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Cluster Centers

10 2 3 4 5 6 7 8 9

Cluster Labels

(a) Feature distribution without
the use of constraint loss function

Cluster Centers

10 2 3 4 5 6 7 8 9

Cluster Labels

(b) Feature distribution with the
use of constraint loss function

Figure 4: Distribution of Item Attributes with and without Con-
straints.

Datasets Yelp Gowalla Amazon MovieLens

Raw 0.1179 0.0769 0.0425 0.1487

w/o Llimit 0.0625 0.0469 0.0217 0.1162

Ours 0.0995 0.0715 0.0403 0.1369

Table 4: Comparison of target item exposure in the clean graph,
without constrained loss functions, and after applying our attack
method.

that, after training with the backdoor attack, the distribution
of candidate items remains stable, preventing the system from
detecting the attack due to the inability to recommend items
that should have been recommended to the target user before
the attack. Figure 4 (a) shows the distribution of candidate
items after training without the constraint loss term, while
(b) illustrates the feature distribution after incorporating the
constraint. It can be observed that with the inclusion of the
constraint loss, the item representations transition from a dis-
crete state to one that aligns better with the distribution of
each item category. Furthermore, Table 4 provides a more
intuitive comparison of the fluctuation ratios of the candidate
items for the target user with and without the constraint loss.

We find that the model without the constraint term per-
forms significantly worse in recommending candidate items
even before the attack is launched, compared to the model
with the constraint. This observation highlights that the con-
straint not only contributes to the effectiveness of the attack
but also plays a crucial role in preserving the model’s recom-
mendation quality under normal conditions. The performance
drop in the unconstrained setting further validates the neces-
sity of this design, as it ensures that the introduced triggers
remain stealthy and do not degrade the overall user experi-
ence, thereby making the backdoor less detectable.
Low Destructiveness: To answer RQ3, we will investigate
the impact of multiple triggers on the experimental results.
Specifically, we generate a trigger exclusively for a single tar-
get item. To ensure the authenticity of the trigger, its struc-
ture consists of the target item being connected to a fake user,
which in turn is connected to a fake item. For each trigger,
we set different control groups with varying numbers of fake

(a) Yelp (b) Gowalla

Figure 5: We illustrate the effect of different trigger sizes through
comparative experiments on the Yelp and Gowalla datasets.

items: 0, 5, 11, 15, and 20. The attack results are shown in
Figure 5.

We found that, although increasing the size of the trig-
ger slightly improved the coverage of the target item, the
extent of this improvement is negligible in practical appli-
cations. Additionally, as the size of the trigger increases, a
large amount of fake information is propagated through the
message-passing mechanism into the graph. Since the recom-
mendation system is based on a bipartite graph structure and
the proxy model generally uses three layers of convolution,
the fake information can easily contaminate unrelated users
and items, leading to significant performance degradation in
the recommendation system. Even generating a trigger of size
1 for each target item individually can still cause a substantial
decrease in performance.

Regarding this issue, we believe that when multiple trig-
gers are present, they may overlap in their effects, especially
when each trigger affects different target items. This can lead
to redundant effects or conflicts, increasing the complexity of
the recommendation system. The single trigger method, by
uniformly linking all target items, avoids this redundancy and
simplifies the attack structure. A single trigger can influence
multiple target items, but its propagation path is controlled,
preventing the complexity and unnecessary conflicts that may
arise from the simultaneous use of multiple triggers.

5 Conclusion
In this paper, we propose a novel backdoor attack method
for graph-based recommendation systems. This method gen-
erates a single trigger based on the target item, significantly
increasing its exposure among the target users. Additionally,
we design a constrained loss function to address the stealth
issues inherent in traditional attack methods. By employing
the single-trigger attack strategy, we mitigate the high de-
structiveness of false information on irrelevant user and item
recommendations. Our work also demonstrates that current
mainstream graph recommendation methods lack robustness
and are highly susceptible to various attacks. In future work,
we will explore the detection of backdoor attacks in graph-
based recommendation systems and investigate more robust
recommendation models to fundamentally address the vul-
nerability to attacks.
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Sirin, Daniel Zügner, Aleksandar Bojchevski, and Stephan
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