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Abstract
Incomplete Multi-View Clustering (IMVC) aims to
explore comprehensive representations from mul-
tiple views with missing samples. Recent stud-
ies have revealed that IMVC methods benefit from
Graph Convolutional Network (GCN) in achiev-
ing robust feature imputation and effective repre-
sentation learning. Despite these notable improve-
ments, GCN imputation methods often cause a
distribution shift between the imputed and origi-
nal representations, particularly when the neigh-
bors of the imputed nodes are assigned to dif-
ferent groups. Moreover, GCN learning methods
tend to produce homogeneous imputed representa-
tions, which blur cluster boundaries and hinder ef-
fective discriminative clustering. To remedy these
challenges, the Local Refinement and Global Re-
alignment (LRGR) Self-supervised model is pro-
posed for incomplete multi-view clustering, which
includes two stages. In the first stage, a local im-
puted refinement module is designed to enhance
the versatility of imputed representations through
cross-view contrastive learning guided by view-
specific prototypes. In the second stage, a global
realignment module is introduced to achieve se-
mantic consistency across views, alleviating distri-
bution shifts by leveraging pseudo-labels and their
corresponding confidence scores as guidance. Ex-
periments on five widely used multi-view datasets
demonstrate the competitiveness and superiority
of our method compared to state-of-the-art ap-
proaches.

1 Introduction
Deep Multi-view Learning methods have demonstrated un-
precedented success in domains such as pattern recogni-
tion, computer vision [He et al., 2023], and bioinformatics

∗Corresponding author.

Figure 1: (a) The distribution shift arises when neighbors from
different clusters are involved. In this example, Node 0 represents
the missing sample, while Nodes 1–5 are its neighboring nodes se-
lected from the constructed adjacency matrix. It can be observed
that some of these neighbors belong to different clusters, which con-
tributes to the distribution shift issue. (b) The homogeneous repre-
sentation inherent in GCNs. Specifically, the embedded representa-
tion learned by ICMVC shows similarity between the imputed node
and its neighbor nodes, even when they belong to different clus-
ters. Different from the ICMVC, we observe the similarity matrix
obtained by our LRGR achieves better discriminative ability and ex-
plores more accurate cluster structure. The imputed representation
shows similarity with neighbors in the same cluster and reflects dif-
ference with neighbors in the different clusters.

[He et al., 2024; Zhu et al., 2024], owing to their supe-
rior feature extraction capabilities and multi-task adaptabil-
ity. Among the downstream tasks, Incomplete Multi-View
Clustering (IMVC) has emerged as a critical challenge, as it
aims to uncover cluster structures in scenarios where data is
partially missing across multiple views.

Existing deep IMVC methods can be broadly catego-
rized into imputation-based and imputation-free approaches.
Imputation-free methods mainly focus on learning comple-
mentary fused representations or aligning different compo-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

nents of representations across views, such as DIMVC [Xu
et al., 2022] and APADC [Xu et al., 2023]. On the other
hand, imputation-based methods concentrate on completing
missing multi-view data by utilizing cross-view similarity
relationships or prior knowledge. A critical challenge for
these methods is to achieve accurate imputation, which is es-
sential for restoring the underlying data distribution. Exist-
ing approaches, such as Completer [Lin et al., 2021], DCP
[Lin et al., 2022], SURE [Yang et al., 2022], RPCIC [Yuan
et al., 2024], CPSPAN [Jin et al., 2023] and ProImp [Li
et al., 2023a], focus on exploring the relationships between
views, samples, or prototypes to achieve accurate imputation.
However, these methods often face challenges due to insuf-
ficient exploration of prior information, resulting in impre-
cise imputations and blurred cluster boundaries. To address
this challenge, several GCN-based IMVC [Feng et al., 2024;
Pu et al., 2024] methods have been developed. Due to the in-
herent message passing mechanisms of GCNs, these methods
provide an automatic and efficient approach to handle miss-
ing data by aggregating the representations of neighborhood
nodes, using the structure information. As a representative
GCN-based method, ICMVC [Chao et al., 2024] constructs
the adjacency graph based on the multi-view consistency as-
sumption and addresses missing values using GCN.

Although the aforementioned approaches have made sig-
nificant progress, their reliance on cross-view similarity leads
to distribution shifts, particularly when the identified similar
neighbors belong to different clusters. This issue becomes
challenging at high missing rates, as maintaining cross-view
consistency becomes increasingly difficult. Additionally, the
message passing mechanism of GCN aggregates neighbors of
each node through the constructed adjacency matrix. As the
number of propagation steps increases, the node embeddings
become progressively similar to those of their neighbors. To
better illustrate above two issues, we empirically analyze and
illustrate them on the CUB dataset under the 50% and 70%
missing rates. As shown in Fig. 1, the first column displays
a subgraph of CUB, highlighting the imputed sample and its
neighboring nodes selected from the adjacency matrix. Nodes
from the same cluster are annotated in the same color. We
visualize the similarity matrix of the imputed node and its
corresponding neighbors, which is obtained using different
GCN-based methods.

To address the distribution shift caused by inaccurate
neighbors and the homogeneous representation inherent in
the GCN, we propose a novel self-supervised local refinement
and global realignment (LRGR) model for incomplete multi-
view clustering. Specifically, we introduce the global seman-
tic realignment module to generate consistent pseudo-labels
and compute confidence scores, enabling semantic-level con-
trastive learning to mitigate the impact of incorrect neighbor
aggregation for missing samples. To tackle the second issue,
we design a local imputed refinement module that preserves
the view versatility of the imputed representations, guided by
view-specific prototypes. Overall, the contributions of this
paper can be summarized as follows:

• From the aspect of data imputation in GCN, we ob-
serve the potential distribution shift issue caused by the

inaccurate neighbors and propose a self-supervised re-
alignment module to alleviate this shift problem, named
global realignment;

• From the aspect of representation learning in GCN, we
observe the underlying similar imputed representations
and propose a local refined module to emphasize the ver-
satility, named local refinement;

• Extensive experimental results verify the effectiveness
of LRGR and show considerable improvement over ten
state-of-the-art methods on five multi-view datasets.

2 Related Work
IMVC is an important branch of the MVC field that has
attracted widespread research. Classic IMVC methods can
be roughly categorized into three types: kernel-learning-
based methods [Liu et al., 2019a; Liu et al., 2019b; Li
et al., 2023b], matrix-factorization-based methods [Hu and
Chen, 2018], and graph-based methods [Wang et al., 2022b;
Wen et al., 2023; Li et al., 2022]. However, their shal-
low architectures often struggle to effectively handle com-
plex datasets. In response, DL-based IMVC methods have
emerged, and can be further subdivided into Autoencoder-
based methods [Lin et al., 2021; Lin et al., 2022; Xu et al.,
2023], Graph Convolutional Network (GCN)-based methods
[Chao et al., 2024; Pu et al., 2024] and Generative Adver-
sarial Networks (GANs)-based methods [Wang et al., 2022a;
Zhang et al., 2020]. In addition, to address the semantic
alignment problem, several methods such as SPICE [Niu
et al., 2022] and PLP-L/G [Feng et al., 2024] have been
proposed. These approaches treat pseudo-labels as reli-
able supervision signals and align network predictions using
KL divergence or cross-entropy loss. In contrast, our pro-
posed LRGR framework focuses on resolving the distribu-
tion inconsistency of imputed samples across views. Among
existing GCN-based IMVC methods, ICMVC is the most
closely related to our work. While both approaches utilize
GCNs for view imputation, their focuses differ significantly.
ICMVC primarily exploits complementary information from
high-confidence samples, aiming to enhance representation
by aggregating reliable neighborhood information. In con-
trast, our proposed method focuses on mitigating the homo-
geneous representation issue inherent in GCN by leverag-
ing view-specific information and addressing the distribution
shift caused by pseudo-label guided.

3 Method
3.1 Notations and Overview
We define the incomplete multi-view data including N in-
stances with v views as X = {X(0), ...,X(v)}, where
X(v) ∈ RNv×dv . The latent representations obtained by GCN
are defined as Z(v) = {Z(v)

c ,Z(v)
p }, where Z(v)

c ∈ RNv
c ×d

and Z(v)
p ∈ RNv

p×d denote the complete and imputed fea-
ture matrix of the v-th view, Nv

c and Nv
p are the number of

complete, imputed samples of the v-th view, d is the latent
dimension. And then we construct the indicator vector P (v),
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Figure 2: Overview of the proposed LRGR method. We first construct the view-specific adjacency matrix A(v) by k-nearest neighbor. Then
we impute the view-specific adjacency matrix A(v) using the cross-view similarity transfer. After that, we send the feature matrix X(v) and
adjacency matrix A(v) to GCN, to get the imputed representation Z(v). i) The local imputed refinement module. To address the issue
of homogeneous imputed representations caused by the message-passing mechanism, we leverage view-specific prototypes and contrastive
learning to enhance the versatility of the representations. ii) The global semantic realignment module. To address the distribution shift
problem caused by inaccurate neighbors, we use pseudo-labels and compute their confidence scores to preserve consistency at the semantic
level.

where p
(v)
i = 1 if the i-th sample is missing in v-th view,

otherwise p
(v)
i = 0.

In this section, we propose a novel self-supervised local
refinement and global realignment (LRGR) model for IMVC.
As illustrated in Fig. 2, LRGR mainly consists of two compo-
nents, i.e. a local imputed refined module to prevent homoge-
neous representations and a global self-supervised represen-
tation module to alleviate the distribution shift issue. Next,
we will introduce the two modules and the final loss function
in detail.

3.2 Missing View Imputation
To fully leverage structural information for missing data im-
putation by GCN, we first construct the view-specific adja-
cency matrix based on the view consistency assumption.

Missing Adjacency Matrix Handling
To better capture the data structure, we compute the similar-
ity matrix of each view, denoted as {S(v)}Vv=1 by normalized
cosine function. For the missing samples, their correspond-
ing similarity relationships cannot be directly computed. To
address this, following [Chao et al., 2024], we transfer the
cross-view similarity relationships to the missing samples
based on the consistency assumption. As shown in Fig. 3,
the column corresponding to the missing sample in the sim-
ilarity matrix is set to zero, and the missing row is imputed
using the cross-view similarity. Mathematically, we first con-
structed the similarity matrix S(v) by cosine similarities.

S(v) =
X(v) · X(v)T

||X(v)|| · ||X(v)||
, (1)

where S(v) ∈ RN×N denotes the similarity matrix for each
view. Next, we use the indicator vector P (v) to select the ex-
isting cross-view similarity values for the similarity transfer

operation:

S(v)[P (v), :] =
1

m

∑
u̸=v

S(u)[P (v), :], (2)

where S(v)[P (v), :] selects the missing rows of the v-th simi-
larities matrix, S(u)[P (v), :] selects the existing rows of cross-
view similarities matrix. After the missing similarity trans-
fer, we construct the adjacency matrix A = {A(1), ...,A(v)},
where a

(v)
i,j = A(v)[i, j] = 1 if there is an edge between

x
(v)
i and x

(v)
j , otherwise a

(v)
i,j = 0, based on k-nearest neigh-

bor. Then, to stabilize the training of the GCN, the adjacency
matrix is normalized through calculating D̃− 1

2 ÃD̃− 1
2 , where

Ã = A+ I is the self-connection, D̃ =
∑

j ãij is the degree
matrix.

GCN-based Instance Imputation
The core idea of GCN imputation is to leverage local struc-
tural information to iteratively update the representation of
each node by aggregating features from its neighboring
nodes. Specifically, after obtaining the complete adjacency
matrix for each view, we feed both the adjacency matrix A(v)

and the feature matrix X(v) into a three-layer GCN encoder.
The node representations of each view Z(v) can be updated
by the graph convolution operation of the m-th layer, as de-
scribed below:

Z
(v)
(m) = ϕ(D̃− 1

2 Ã(v)D̃− 1
2Z

(v)
(m−1)W

(v)
(m)), Z

(v)
(0) = X(v),

(3)
where Z(v)

(m) is the output embeddings of the m-th layer, W (v)
(m)

indicates the trainable parameters in the m-th layer of v-th
graph encoder. After that, we adopt a shared MLP layer
H(v) = MLP (Z(v); θshared). to capture consistent patterns.
Then, we utilize following reconstruction loss:

Lrec =

∑v
i=1(X̃

(i) −X(i))

N
, (4)
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Figure 3: Similarity matrix imputation and adjacency matrix con-
struction. In this step, we perform similarity matrix imputation us-
ing cross-view transfer. Specifically, the column corresponding to
the missing sample in the similarity matrix is set to 0, and the corre-
sponding row is imputed using the cross-view similarity.

where N denotes the number of the sample, X̃(i) =

D(v)(H(v), θ(v)) is the reconstructed representation obtained
by view-specific decoders.

3.3 Local Imputed Refinement Module
Existing imputation methods rely on the view consistency as-
sumption, which is typically satisfied at the cost of view ver-
satility. Furthermore, the inherent message-passing mecha-
nism in GCNs often increases the similarity between neigh-
boring nodes [Xia et al., 2022]. For missing samples, this
exacerbates the issue of reduced versatility, resulting in a
decreased discriminability of the imputed samples. To pre-
serve the diversity of imputed samples, we leverage view-
specific prototypes C(v) ∈ Rk×d and contrastive learning
to promote greater dissimilarity between imputed samples.
Specifically, we select the imputed samples from each view
Z

(i)
p ∈ RNi

p×d and their corresponding counterparts in cross-
view Z

(j)
p ∈ RNi

p×d to form positive and negative sample
pairs. We then adopt the following contrastive loss, which
maximizes the similarity of assignment probabilities between
the same samples across views, while simultaneously max-
imizing the difference in assignment probabilities between
different instances.

Lloc = − 1

N

v∑
m

v∑
n=m+1

N∑
i

(log
e
s(p

(m)
i ,p

(n)
i )

/
τ∑N

j=1 e
s(p

(m)
i ,p

(n)
j )

/
τ
),

(5)

p
(v)
ik =

(1 + ||z(v)i − c
(v)
k ||2)

−1

∑
k (1 + ||z(v)i − c

(v)
k ||2)

−1 , (6)

where z
(v)
i denotes the representation of the i-th sample in

the v-th view, c(v)k represents the k-th prototypes in the v-th
view, p(v)ik denotes the probability of the i-th sample assigned

to k-th cluster in v-th view, N denotes the number of samples,
s(·, ·) is the cosine similarity, τ is the temperature parameter.

3.4 Global Semantic Realignment Module
Adaptive Fusion Block
To better extract the common pattern and evaluate the perfor-
mance, we adopt an adaptive fusion block consisting of two
convolutional layers. First, we concatenate the latent repre-
sentations H(v) from each view along the channel dimension:

Hcon = Concat(H(1), ...,H(v)), (7)

where Hcon ∈ R[N,view,d]. Then we pass the concatenated
feature matrix Hcon through a two-layer convolutional net-
work. The first convolutional layer applies a 1D convolution
operation with n kernels along the channel dimension, ex-
panding the number of channels from the number of views to
n. In this paper, n is set as 32.

H
′

con = Conv1d(0)(Hcon,W(0), b(0)). (8)

The second convolutional layer also uses a 1D convolution
operation, a single convolutional kernel is applied across the
feature channel dimension, which reduces the number of fea-
ture channels from n to 1.

H = Conv1d(1)(H
′

con,W(1), b(1)), (9)

where H ∈ R[N,1,d] means the fused common representation,
W(.) and b(.) are trainable parameters.

Semantic-wise Realignment
The local Refinement module enhances the diversity of im-
puted representations. However, this also means that it pushes
samples away without considering their semantic categories,
potentially causing a distribution shift. To alleviate this is-
sue, we achieve the global realignment by preserving seman-
tic consistency. Inspired by [Liu et al., 2024], we compute
the semantic pseudo-labels l ∈ RN and global prototypes
C ∈ R[k,d] by performing k-means clustering on the fused
representation H. To evaluate the confidence of the pseudo-
labels, we calculate the t-student distribution between the
view-specific embeddings H(v) and the global prototypes C,
using the result as the confidence score for the pseudo-labels.

q
(v)
ik =

(1 +
∥∥∥h(v)

i − ck

∥∥∥2)−1

∑
k(1 +

∥∥∥h(v)
i − ck

∥∥∥2)−1

, (10)

where q
(v)
ik denotes the probability of the i-th view assigned

to the k-th cluster in v-th view. Finally, the semantic align-
ment loss is computed using semantic pseudo-labels and cor-
responding confidence score. For samples with high confi-
dence, the loss is designed to reinforce the model’s certainty
in its pseudo-labels, encouraging samples with the same la-
bels to be grouped together while pushing those with different
labels apart.

Lglob = − 1

N
log

N∑
i=1

∑
j=1 I[li=lj=c] exp((q

(v)
ic , q

(v)
jc )/τ)∑N

k=1 I[li ̸=lk] exp(s(q
(v)
i , q

(v)
k )/τ)

,

(11)
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Missing rates Method COIL20 CUB YouTubeFace10 DHA UCI

ACC NMI F-score ACC NMI F-score ACC NMI F-score ACC NMI F-score ACC NMI F-score

Complete

DPML(2020) 68.40 77.92 68.40 76.00 74.38 74.96 73.57 77.78 74.23 72.88 77.69 73.47 72.15 68.33 72.25
UIMC(2021) 46.71 60.85 37.76 75.20 76.41 68.58 O/M O/M O/M 75.90 85.18 70.09 83.54 83.88 79.01

DSIMVC(2022) 62.78 68.75 61.89 66.17 58.97 65.86 72.10 71.58 72.38 63.33 58.83 63.18 81.80 78.80 81.68
DIMVC(2022) 63.82 79.20 61.99 67.83 67.90 65.48 72.33 76.10 69.88 61.08 73.42 61.48 92.80 86.40 92.82

IMVC-CBG(2022) 69.18 79.26 63.08 74.69 74.00 67.71 76.30 80.66 74.01 76.05 84.32 69.12 75.83 72.39 68.47
ProImp(2023) 72.22 79.49 71.76 79.00 76.10 78.46 52.58 58.41 52.85 66.46 80.00 64.10 80.40 77.55 80.17

DCP(2023) 68.61 77.75 63.86 71.67 74.72 70.00 67.24 70.57 69.48 NaN NaN NaN 78.60 78.66 76.20
DSIMVC++(2023) 63.19 74.97 63.31 71.93 66.36 71.68 73.94 75.50 74.15 63.77 74.89 62.31 81.70 80.33 81.54

RPCIC(2024) 72.78 81.82 71.34 75.50 72.54 74.32 74.06 79.15 72.85 71.22 77.43 70.43 92.15 85.88 92.20
ICMVC(2024) 72.36 82.83 72.37 84.33 76.16 84.24 71.03 72.06 69.61 72.46 79.46 71.45 82.20 79.62 82.18
LRGR(ours) 76.32 84.25 76.01 84.50 79.85 84.33 78.37 82.08 76.42 75.78 80.54 75.73 94.15 88.18 94.18

Incomplete

DPML(2020) 71.67 78.27 71.78 59.67 58.92 57.39 74.38 79.18 74.47 60.66 71.81 59.19 64.25 59.10 61.10
UIMC(2021) 47.92 59.78 35.78 55.98 52.01 41.20 O/M O/M O/M 48.22 55.19 24.71 68.61 56.54 52.61

DSIMVC(2022) 57.50 67.19 55.77 56.17 50.44 56.22 71.03 74.81 73.74 59.67 56.11 59.71 78.90 75.44 78.46
DIMVC(2022) 63.61 79.08 62.51 47.96 54.94 44.39 72.28 77.42 72.14 60.17 74.72 60.09 82.20 65.11 82.16

IMVC-CBG(2022) 65.30 75.52 59.73 61.24 57.36 49.92 70.44 72.31 61.69 60.71 71.21 47.80 68.10 61.03 50.74
ProImp(2023) 27.01 39.69 25.02 67.17 68.79 65.22 53.82 62.24 52.02 60.25 75.30 57.19 77.95 71.98 77.59

DCP(2023) 59.93 73.02 59.31 57.17 52.58 61.90 56.50 62.43 58.22 NaN NaN NaN 77.75 75.22 76.38
DSIMVC++(2023) 56.46 68.60 53.52 63.33 55.62 63.02 68.39 71.37 69.36 50.84 64.88 49.61 80.20 73.44 80.00

RPCIC(2024) 62.36 74.92 62.24 64.50 64.24 62.62 74.26 74.76 73.64 39.54 47.13 47.27 84.10 76.85 84.22
ICMVC(2024) 75.28 82.93 73.47 62.17 59.42 62.32 77.29 78.49 77.24 58.34 67.87 58.39 81.35 77.58 81.10
LRGR(ours) 73.89 76.72 73.64 67.67 65.26 66.47 84.68 84.79 84.38 62.73 71.26 62.22 87.70 77.66 87.74

Table 1: Experiments on Five Data Sets. The Best And Second-Best Results are Highlighted with Bold and Underline Respectively

Figure 4: Clustering result on the COIL20 dataset under 0.1, 0.3, 0.5, and 0.7 missing rates.

where q(v)ic is the probability of the i-th sample belongs to the
c-th cluster in v-th view, s(·, ·) denotes the cosine similarity
and li represents the pseudo-label of the i-th sample.

3.5 Loss Function
Finally, we combine the loss functions of the reconstruction
loss, local refinement loss and global realignment loss into an
overall loss function, which is expressed as follows:

L = Lrec + αLloc + βLglob, (12)

where Lrec, Lloc and Lglob are defined in Eq. (4), Eq. (5)
and Eq. (11), α and β are the trade-off parameters, which
balance the importance between the local imputed refinement
loss and the global semantic realignment loss.

4 Experiment
In this section, we evaluate the proposed LRGR method on
five widely-used multi-view datasets compared with 10 state-
of-the-art baselines. First, we present the basic information
of experimental settings, like dataset and evaluation metrics.

In Sec. 4.2, we give a detailed analysis between our LRGR
and comparison methods. Then in Sec. 4.3, we conduct com-
prehensive ablation studies to demonstrate the effectiveness
of LRGR. Finally, we give visualization results.

4.1 Experimental Settings
We evaluate our proposed model on five widely used datasets.
Specifically, CUB [Wah et al., 2011] with 600 samples, 2
views. DHA [Lin et al., 2012] with 383 samples, 2 views.
COIL20 [Wan et al., 2021] with 1440 samples, 3 views.
YTF10 [Wolf et al., 2011] with 38654 samples, 4 views, and
UCI [Asuncion et al., 2007] with 2000 samples, 3 views. To
assess performance in an incomplete data setting, we man-
ually mask data at various missing rates. Specifically, for a
dataset with v views, we randomly select m samples as miss-
ing and remove 1 ∼ v− 1 views from each. The missing rate
η is defined as η = m

n , where n is the number of samples. We
implement our method using PyTorch 1.12 and conduct ex-
periments on a standard Ubuntu 20.04.6 OS with an NVIDIA
GTX 1060 GPU. The activation function is the RELU [Glo-
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Loss CUB DHA COIL20 UCI
Lrec Lloc Lglb ACC NMI FS ACC NMI FS ACC NMI FS ACC NMI FS

✓ 65.33 62.27 64.65 61.70 71.68 60.96 71.67 75.86 71.60 70.80 70.06 70.43
✓ ✓ 65.67 64.28 64.93 63.34 71.30 63.77 71.39 76.61 70.97 74.20 71.53 73.78
✓ ✓ 66.17 65.05 64.51 62.73 71.48 62.06 72.22 76.44 72.05 86.90 76.53 86.90
✓ ✓ ✓ 67.67 65.26 66.47 62.73 71.26 62.22 73.26 76.24 72.79 87.45 77.21 87.50

Table 2: Ablation studies with three losses on four datasets under 50% missing rate, where ✓ denotes the loss is adopted.

(a) IMVC-CBG (2022) (b) RPCIC (2024) (c) ICMVC (2024) (d) LRGR (Ours)

Figure 5: The t-SNE visualization results on YouTubeFace10 dataset with missing rate 0.5.

rot et al., 2011]. Adam [Kingma, 2014] is chosen as the op-
timizer with the 0.0005 and 0.0001 learning rate in the pre
and align training process. In pretrain stage, we update the
network only with reconstruction loss in Eq.(4). And in the
second stage, we update the network with Eq.(12). For com-
parison methods, we use the recommended parameters and
network structures to ensure the best performance. For evalu-
ation metrics, we utilize three metrics including clustering ac-
curacy (ACC) [Cai et al., 2005], normalized mutual informa-
tion (NMI) [Knops et al., 2006] and F-score[Powers, 2008]
to evaluate performance.

4.2 Comparisons with State of the Arts
To verify the effectiveness of our model, we choose ten state-
of-the-art IMVC baselines, including DPML [Zhang et al.,
2020], UIMC [Fang et al., 2021], DSIMVC [Tang and Liu,
2022], DIMVC [Xu et al., 2022], IMVC CBG [Wang et al.,
2022b], ProImp [Lin et al., 2022], DCP [Lin et al., 2022],
DSIMVC++ [Yan et al., 2023], RPCIC [Sun et al., 2024] and
ICMVC [Chao et al., 2024].

We first evaluate LRGR and comparisons under the Com-
plete situation (with the missing rate of 0%) and Incom-
plete (with the missing rate of 50%). Table 1 demonstrates
the clustering performance on ACC, NMI and F-Score. It
can be observed that our LRGR significantly outperforms
the state-of-the-art methods on all datasets with the missing
rate of 0% and on CUB, YouTubeFace10, DHA and UCI
datasets with the missing rate of 50%. Specifically, LRGR
achieves a 1.42% (82.08% v.s. 80.66%) and 5.89%(84.38%
v.s. 78.49%) improvement on NMI under the Complete and
Incomplete scenarios on the YouTubeFace10 dataset, com-
pared with the second best result. This increasing perfor-
mance shows the effectiveness of the proposed local impu-
tation refinement module and global semantic realignment
module. To better prove the robustness of proposed LRGR,
we illustrate the clustering results by increasing the missing

rate from 10% to 70% with a gap of 20% on the COIL20
dataset. As shown in the Fig. 4, our LRGR substan-
tially achieves the comparable results on three metrics on the
COIL20 dataset. On the other hand, the robustness demon-
strate the effectiveness of our imputation mechanism and also
the global semantic realignment module.

(a) No Prototype (b) With Prototype

Figure 6: The ablation results on the CUB dataset under 50% miss-
ing rate. (a) The similarity heatmap without the view-specific pro-
totypes in local imputed refinement module. (b) The similarity
heatmap with the view-specific prototypes in local imputed refine-
ment module.

4.3 Ablation Studies
In this section, to better understand the LRGR, we conduct
a series of ablation studies. We first study and visualize the
effectiveness of local imputed refinement module. Then we
study the effectiveness of shared and adaptive fusion module.
Finally, we conduct experiments with different combination
of loss items in LRGR.

Effectiveness of Local Refinement
To demonstrate the model’s ability to capture versatile infor-
mation guided by view-specific prototypes, we visualize the
similarity between an imputed node and its selected neigh-
boring nodes on the CUB dataset, under a 50% missing rate,
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(a) (b)

Figure 7: Parameter sensitivity analysis. The clustering performance of LRGR under different trade-off coeficient α and β on (a) COIL20
datatset and (b) UCI dataset under 50% missing rate.

without the guidance of prototypes in the local refinement
module. As shown in Fig. 6 (a), we observe that the learned
imputed representation retains some discriminative power,
compared with Fig. 6 (b), but does not exhibit the same de-
gree of distinction as in Fig. 6 (b). Such results demonstrate
the effectiveness and superiority of the proposed local refine-
ment module, particularly its capability to capture versatile
information and avoid homogeneous representations.

Datasets CUB DHA UCI COIL20

ACC NMI ACC NMI ACC NMI ACC NMI

w/o AFB 63.67 59.83 59.83 72.55 75.10 73.89 73.33 79.05

w/o MLP 60.00 57.54 56.73 71.18 78.70 69.13 62.92 67.84

LRGR 67.17 61.77 61.49 70.71 86.70 77.16 75.07 82.53

Table 3: Ablation studies without MLP layer and AFB on CUB,
DHA, COIL20 and UCI datasets under 50% missing rate.

Effectiveness of Adaptive Fusion and MLP

To verify the effectiveness of the proposed adaptive fusion
module, we perform ablation studies on four datasets with a
50% missing rate, where the fusion module is removed and
the representations from all views are fused via an average
weighted sum. To verify the effectiveness of the shared MLP
layer, we conduct the ablation studies on four datasets with a
50% missing rate, where the MLP layer is removed.

Effectiveness of Loss Term

To further verify the effectiveness of each module in our pro-
posed model, we conduct ablation experiments with different
loss combinations on the UCI, COIL20 and CUB datasets un-
der the 50% missing rate. The result of ablation study is pre-
sented in Table 2. Concretely speaking, while the reconstruc-
tion loss term Lrec can achieve comparable results on several
datasets, it fails to learn discriminative representations and
cannot prevent the emergence of homogeneous representa-
tions. In contrast, the proposed local imputed refinement loss
effectively maintains view versatility, guided by view-specific
prototypes.

4.4 Hyperparameters Sensitivity Analysis
In this study, we investigate the trade-off coefficients α and
β in the loss function. We follow a common analysis strat-
egy between local imputed refinement loss and global re-
alignment loss. Specifically, we set the α and β varies from
[0.0001, 0.001, 0.01, 0.1, 1]. As shown in Fig. 7, when α
is too large, the global realignment loss becomes dominant,
leading to a homogeneous representation. Conversely, when
β is too large, the model tends to overly prioritize versatility
at the cost of learning meaningful representations, thus failing
to maintain semantic consistency. For proposed LRGR, the
trade-off coefficient α exhibits robustness in [0.0001 0.01],
the trade-off coefficient β exhibits robustness in [0.0001, 1].

4.5 Visualizations
To more effectively assess the performance of the proposed
LRGR, we visualize the clustering results using t-SNE. The
results for our method, along with four recent baseline meth-
ods, are presented on the YouTubeFace10 dataset at a 50%
missing rate, as shown in Fig. 5. From the figure, it is clear
that IMVC-CBG struggles to distinguish between clusters,
with blurred inter-cluster boundaries and undefined intra-
cluster structures. For ICMVC, and RPCIC, although they
show relatively clear inter-cluster boundaries, there is some
overlap between clusters. In contrast, LRGR demonstrates
clear cluster boundaries and compact intra-cluster structures,
indicating its ability to learn a well-defined clustering struc-
ture even in the presence of missing data.

5 Conclusion
In this paper, we propose a novel Local Imputed Refinement
and Global Semantic Realignment (LRGR) model to address
the challenges of similar imputed representations and distri-
bution shifts. Unlike existing methods that primarily focus on
shared patterns across views, our Local Imputed Refinement
module explicitly preserves the diversity information in the
imputed representations, guided by view-specific prototypes.
Furthermore, to alleviate the distribution shift caused by in-
accurate neighbors, we ensure semantic consistency through
the pseudo-labels and their corresponding confidence scores.
Extensive experiments demonstrate the effectiveness and su-
periority of the proposed LRGR model.
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