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Abstract

In recent years, neural networks have achieved re-
markable progress in various fields and have also
drawn much attention in applying them on scien-
tific problems. A line of methods involving neural
networks for solving partial differential equations
(PDEs), such as Physics-Informed Neural Net-
works (PINNs) and the Deep Ritz Method (DRM),
has emerged. Although these methods outperform
classical numerical methods in certain cases, the
optimization problems involving neural networks
are typically non-convex and non-smooth, which
can result in unsatisfactory solutions for PDEs. In
contrast to deterministic neural networks, the hid-
den weights of random neural networks are sam-
pled from some prior distribution and only the out-
put weights participate in training. This makes
training much simpler, but it remains unclear how
to select the prior distribution. In this paper, we fo-
cus on Barron type functions and approximate them
under Sobolev norms by random neural networks
with clear prior distribution. In addition to the ap-
proximation error, we also derive bounds for the
optimization and generalization errors of random
neural networks for solving PDEs when the solu-
tions are Barron type functions.

1 Introduction

As the development of hardcore and algorithms, deep neu-
ral networks have made remarkable progress across various
fields, including computer vision [He et al., 2016], natural
language processing [Devlin, 2018], reinforcement learning
[Silver et al., 2016], and others. These successes have in-
spired researchers to explore the application of neural net-
works to scientific challenges, particularly in the model-
ing of physical systems. In the field of scientific comput-
ing, a long-standing problem is solving partial differential
equations (PDEs) numerically, which can be hindered by
the curse of dimensionality when using classical numerical
methods. To tackle PDE-related problems, several neural
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network-based approaches have been introduced. Among
these, Physics-Informed Neural Networks (PINNs) and the
Deep Ritz Method (DRM) stand out. PINN incorporates prior
information from PDEs into the training in solving forward
and inverse problems of PDEs. Specifically, it encodes the
PDE constraints into the design of the loss function, which re-
stricts the constructed neural network to follow physical law
characterized by the PDE. This framework’s flexibility stems
from its reliance solely on the PDE’s form, making it adapt-
able for a wide range of PDEs. The DRM, on the other hand,
incorporates the variational formulation that is an essential
tool in traditional methods, into training the neural networks.
This approach typically involves lower-order derivatives, po-
tentially offering greater computational efficiency compared
to PINNs. However, the DRM’s utility is somewhat limited
by the fact that not all PDEs possess a variational formulation.

The success of neural networks can be partly attributed
to their powerful approximation capabilities. The capacity
of neural networks with a variety of activation functions to
approximate different types of target functions has been ex-
tensively studied. This includes continuous functions [Shen
et al., 2022], smooth functions [Lu et al., 2021al], as well
as Sobolev functions [Belomestny er al., 2023; Yang et al.,
2023b; Yang et al., 2023a; Yarotsky, 2017] and Barron func-
tions [Barron, 1993; Lu et al., 2021b; Siegel and Xu, 2020al,
among others. In short, neural networks can approximate the
aforementioned function classes with arbitrary precision. De-
spite the widespread adoption and impressive approximation
capabilities of neural networks in scientific computing, their
practical application can encounter challenges. A fundamen-
tal issue arises in solving the optimization problems involving
neural networks, which are typically non-convex and non-
smooth. For example, [Krishnapriyan ef al., 2021] demon-
strates that even for simple problems of convection, reaction,
and reaction-diffusion, PINN approach only works for very
easy parameter regimes and fails in more challenging physi-
cal regimes. By analyzing the loss landscape of PINN, they
show that the failure is not due to the limited capacity of the
neural network, but rather due to the optimization difficulties
caused by the PINN’s soft PDE constraint.

Due to the limitations described before, there is a grow-
ing interest in the application of random neural networks,
whose hidden weights are randomly generated and only the
output weights are trainable. Compared to deterministic neu-
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ral networks, random neural networks can lead to optimiza-
tion problems that can be efficiently solved. For instance,
employing random neural networks in L? regression prob-
lems results in least squares problems, which possess closed-
form solutions or can be addressed by various optimization
algorithms. Because of the favorable properties, random neu-
ral networks have been successfully applied not only in tra-
ditional machine learning tasks but also in addressing PDE-
related problems. In this work, we focus on the utilization of
random neural networks in the framework of PINNs. First,
we establish the approximation error of neural networks for
Barron-type functions under the H? norm. Subsequently,
for applying random neural networks for solving a certain
class of second-order elliptic PDEs with Barron-type solu-
tions, we provide the optimization and generalization error
analysis, providing a comprehensive understanding of how
random neural networks perform when applied to PDEs.

1.1 Contributions
The contribution of this work can be summarized as follows.

* We provides two approximation results for two Barron-
type functions via random neural networks under the
Sobolev norms. Unlike previous works that only showed
the existence of the prior distributions, we give the con-
cise forms of these distributions.

* When applying random neural networks for solving
certain second-order elliptic PDEs whose solutions are
Barron-type, we design tailored optimization algorithms
for addressing these problems. Subsequently, we per-
form a full error analysis that rigorously bounds the ap-
proximation, optimization, and generalization errors. In
deriving the generalization bounds, we also show that
projected gradient descent can achieve the faster rate

O(1/n).

* We have conducted numerical experiments to validate
our conclusions.

1.2 Related Works

Random Neural Networks in Machine Learning. Ran-
dom neural networks, also known as Extreme Learning Ma-
chines (ELMs) in the field of machine learning, have drawn
significant attention due to their special training methodology
and efficiency. The concept of ELMs was first introduced in
[Huang ef al., 2006] as a two-layer random neural network
where the hidden weights are randomly assigned, and only
the output weights are trained. As shown in [Huang et al.,
20061, this algorithm can provide good generalization per-
formance at extremely fast learning speed and it outperforms
deterministic neural networks in regression, classification and
real-world complex problems. It is also possible to extend
ELM to kernel learning [Huang et al., 2011], which shows
that ELM can use a wide type of feature mappings, including
random hidden nodes and kernels.

Random Neural Networks in Scientific Computing. The
potential of random neural networks extends beyond tradi-
tional machine learning domains, they have also been effec-
tively utilized in scientific computing, particularly for solving

problems related to PDEs. For instance, [Dong and Li, 2021]
has developed an efficient method based on domain decom-
position and random neural networks to solve different types
of PDEs, showing the first time when the neural network-
based methods outperform the traditional numerical methods
in low dimensions. Later, this method has been extended to
high dimensions [Wang and Dong, 2024], producing accurate
solutions to high-dimensional PDEs.

[Gonon et al., 2023] has studied approximation based
on single-hidden-layer feedforward and recurrent neural net-
works with randomly generated hidden weights under the L?
norm. Similar to our work, they are also based on an in-
tegral representations of the target functions. However, the
prior distribution for the hidden weights remains unclear in
their study. In contrast, [Neufeld and Schmocker, 2023] de-
rived approximation rates and an explicit algorithm to learn
a deterministic function by a random neural network under
certain Sobolev norms, but the conditions for the target func-
tions to be approximated are challenging to verify. The work
most closely related to ours is [Gonon, 20231, which provided
a full analysis of random neural networks for learning suffi-
ciently non-degenerate Black-Scholes type models. However,
their approximation results are presented under the L°° norm,
and their generalization analysis is grounded in methods for
L? regression problems. Moreover, their methods cannot be
applied to our setting, which involves unsupervised learning
as opposed to the supervised problems they consider. To the
best of our knowledge, this is the first article that attempts
to provide theoretical support for solving PDEs within the
framework of PINNs using random neural networks.

1.3 Notations

For x € R, ||z||, denotes its p-norm (1 < p < oo). For the
activation functions, we write o, (z) for the ReLU* activation
function, i.e., o () := [max(0,z)]*. For given probability
measure P and a sequence of random variables {X;}7 dis-
tributed according to P, we denote the empirical measure of

Pby P, ie. P, =13 6x,.
i=1

2 Preliminaries

In this section, we provide some preliminaries about random
neural networks and Barron functions, which are pivotal to
our study. Throughout the paper, we only consider the two-
layer random neural networks, i.e., a feedforward neural net-
work with one hidden layer and randomly generated hidden
weights. For brevity, we still call them random neural net-
works.

To make it more precise, for m € N, let Wy,--- , W,
be i.i.d. R%valued random vectors and By, - - - , B, be i.i.d.
real-valued random variables, where W = (Wy,--- ,W,;,)
and B = (B, -, B,,) are independent. Then for any R™-
valued (random) vector A = (Ay,-- -, A.,), we have the ran-
dom neural network

HY P (z) = ZAiU(Wi ~x+ By), (1
i=1

where 0 : R — R is a fixed activation function.
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In addressing the L? regression with random neural net-
works, given training samples {(z;,y;)}",, where z; is the
input and y; is the output for 1 < ¢ < n, we have the follow-
ing objective function to be optimized.

n

Z <HKV’B(~T¢) - yi)2 . (2

=1

This results in a least squares problem that has a closed-form
solution. In contrast, deterministic neural networks also re-
quire optimizing the weights of the hidden layers, which leads
to a more complex optimization problem.

In this work, we mainly focus on the Barron-type func-
tions, leveraging their integral representations as highlighted
in [Siegel and Xu, 2022]. The Barron space with order s > 0
is defined as

B (Q)={f:Q—=C:

sy = int [0+ o)l (w)ldo < 00.)
3

where the infimum is over extensions f. € L'(R?) and f.
is the Fourier transform of f.. Barron introduced this class
for s = 1 and showed that two-layer neural networks with
sigmoidal activation function can achieve the approximation
rate O(1/4/n) in the L? norm. Although the convergence
rate does not suffer the curse of dimensionality, the related
optimization problems are non-convex and challenging to
address. Consequently, we shift our focus toward approxi-
mating Barron functions employing random neural networks.
Note that we choose 1-norm in the definition (3) just for sim-
plicitc}l/. In the following, we assume that {2 is a subset of
[0, 1],

3 Main Results

3.1 Approximation Results

Our approach to approximating Barron functions by random
two-layer neural networks leverages the integral represen-
tations of these functions, as presented in [Siegel and Xu,
2020b]. Specifically, for f € B*(Q2), without loss of general-
ity, assume that the infimum is attained at f.. Then for acti-
vation function o € L*(R) with 6(a) # 0 and some a # 0,
we have

f@) = [ e

= o Jozm

- L

where f, (w) = €*@)|f,(w)|

In the paper, we consider the activation function o(t) =
S o(—1)iChas(t + 2 — i), which is compactly supported
on [—2,2]. The conclusions can be naturally extended to
sigmoidal activation functions and tanh activation functions,
which are the commonly used smooth activation functions for

% -2+ b) fo(w)e " dbdw
% -2 + b)| fo(w)| cos(6(w) — ab)dbduw,
@

PINNs. Specific details can be found in Remark 2. The ap-
proximation results rely on the polynomial decay condition
of the activation function, i.e., |c(*) (¢)| < C,(1 + |t|)~? for
0 < k < 2 for some p > 1. This condition also appears in
[Siegel and Xu, 2020b] for deriving the approximation rate
for functions in B*(f2) using two-layer deterministic neural
networks.

Theorem 1. Let Py be the uniform distribution of the domain
{w e R : |jw|ly < M} and Py be the uniform distribution
of the domain {b € R : |b| < 2M} with a constant M >
2. Let Wy,--- W, ~ Py and By, ---,B,, ~ P», then
there exists a R™-valued, o(W, B)-measurable vector A =
(A1, -+, Ap,) such that for 3 < s < 6,

Elllf(z) = f

(@]
Md+7

~——if

2
BS(Q)> .

&)

R 1
Bs (@) I fell Lo ey + (W”f

and for s > 6,

E /@) = fn(@) ey S

d+1 ) 1 2 (6)
- Il £l 85 ()| fell Loe (may + <W||f68(ﬂ)> :
where 4
1
fm(z) = 7 ;AiU(Wi -x+ B;) (7)
and
|Ai| < Cllfell poo rayM T, ®)

< indicates that a universal multiplicative constant is omit-
ted.

Remark 1. By appropriately selecting the value of M, we
can obtain that
25—6

m~ a1, 3 < s <6,
E[I£() = fmnl@) I3y S { NS
m~ d+2s—5 s> 0.
©))

Remark 2. Extending our discussion beyond the specific ac-
tivation function we have chosen, we explore other common
activation functions, such as the Sigmoidal function Sig(x)
defined as (1 + e=*)~1 and the Hyperbolic tangent func-
tion Tanh(x), expressed as Z:L:::
new activation functions o(x) = Sig(xz + 1) — Sig(z) and
o(x) = Tanh(xz + 1) — Tanh(x), which satisfy that

oM (0)] < Ce "

for 0 < k < 2, where C'is a universal constant.
With this exponential decay condition, we can deduce from
the proof of Theorem 1 that for 3 < s < 6,

E /@) = fm@)lz] S

d+7—s

Then we can construct

1 2

A 1
I oollFollecuo + (7= + 7 ) WV
(10)

m
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for s > 6,

EI1f(x)
Md +1

— Fn@ 2| S

1 1\?
£l (Q)erHLoo(Rd) + (W + ew) 1/ 113 (-
(11)

Besides these activation functions, Theorem 3 in [Siegel
and Xu, 2020b] implies that, when o € W™ (R) is a non-
constant periodic function, f has a similar integral represen-
tation for o. Moreover, in this case, we do not need to trun-
cate b, which may yields a better approximation rate.

Proof Sketch: In the integral representations of functions
within B%(£2), the integral can be partitioned into two com-
ponents, corresponding to bounded and unbounded regions,
respectively. Specifically,

Fa —/R/ ;;H 17()] cos(6(w) — b)dbdw

w COS — W
_/A 275(1) |f(w)] cos(0(w) — b)dbd

b
+/C(;Jﬂ:(+))|f( )| cos(B(w) — b)dbdw
= fi(z) + fa(2),
(12)
where the domain A := {||w|y < M, |b] < 2M} and we

write f for fe for simplicity. For the first part f; (z), it can be
approximated by a random neural network. The second part,
f2(x), can be further decomposed into two terms: one cor-
responding to the integral over {||w||; > M,b € R} and an-
other to the integral over {||wl||1 < M, |b| > 2M }. We denote
these parts as fo1(x) and faa(x), respectively. Given that the
activation function o is compactly supported in [—2, 2], we
can deduce that o(w -z +b) = 0in {|lw||; < M, |b] > 2M},
since

w -z 4+ b = o] —|w- x| > [b] = flwlli]|z]lc > M =2,

which implies fa2(x) = 0.

Therefore, to ensure that f(x) can be well-approximated
well by the random neural network designed to approximate
f1(x), it suffices to guarantee that fo; (x) has a small enough
H? norm. It is for this reason that we impose the polynomial
decay condition on o. With this condition, we can establish
that

/ 108 (w24 B)[*db < 1+ w]s, (13)
R

which is crucial to achieve our goal. The full proof can be
found in the appendix of [Xu et al., 2024].

Remark 3. In [Gonon, 2023], the authors also considered
employing a random neural network to approximate the func-
tion f belonging to B*(S2), with W; having a strictly positive
Lebesgue-density m,, on R and B; having a strictly positive
Lebesgue-density m, on R. Despite achieving a dimension-
independent approximation rate of O(1/\/m), the densities
T and Ty are dependent on the unknown decay of the Fourier
transform of f, leaving the prior distributions for W; and B;
unclear. For general s, there may not be densities m,, and T,

that ensure the constants in the approximation rate are finite.
Nonetheless, the approximation results in [Gonon, 2023] re-
main valid, because the target function they consider pos-
sesses a Fourier transform that decays exponentially. More-
over, the method employed in [Gonon, 2023] is specifically
tailored for the ReLU activation function and the approxi-
mation results are given in the L° norm, which renders it
inapplicable to the context of PINNS.

For the L? regression problems, as shown in [Braun et
al, 2021], random neural networks can achieve a rate of
O(1/+/n) for the final prediction error, where n is the sam-
ple size. This study assumes that the regression function f
satisfies the condition

f(w)] <

!
log [|w][2)?’

for all w € R with ||wl||2 > 2 and some constant ¢; > 0. It
is evident that this condition implies that

(14)

d
el (

|0+ Il fwlds <o (15)

Thus, the assumption made in [Braun et al., 2021] is stronger
than the one in our study and may be more challenging to

verify.

Clearly, the approximation rates presented in Theorem 1
are affected by the curse of dimensionality, which is attributed
to the unknown decay of the Fourier transform of the target
function. When the smoothness parameter s is sufficiently
large, we can choose not to truncate w and b, which may lead
to better results. Specifically, assume that s > o+ 3+ 5 with
« > d, 8 > 1, then we can derive the following representa-
tion for f € B*(Q).

(w- 1:+b
§* _/]R/ 26 (1 F(w)] cos(8(w) — b)dbdw

(w- a:-i—b
/]Rd/ 25 (l f(w)] cos(B(w) —b)
O [wll2)” +\b|) CaCp

CuCs (7 ol (L o7

_E 1 o(w-z+b)|f(w)|cos(A(w) — b)
TR0 9r6(1) p1(w)p2(b) ’
(16)

where Pj(w) = p1(w)dw, Ps(b) = pa(b)db are probability
measures with density functions p; (w) and po(b) in R? and
R, respectively, defined as p; (w) := and po(b) :=
Cg
(1t[o])e
Building upon our previous discussion, we now consider
a scenario where the target function f belongs to a smaller
function space. Specifically, we assume that f satisfies the
following condition.

COL
(I+{[wll2)™

Condition 1. Given function f, there is a function f. €
LY(RY) such that f.|q = f and

LAty lf@ba <o a7

withs >a+ S +banda>d+4,1 <[ <5.
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Given the integral representation of the function f that sat-
isfies Condition 1, i.e., (17), we can derive the following ap-
proximation results for f.

Theorem 2. Let W1, -+ ,W,, ~ Prand By,--- ,B,, ~ P>,
then there exists a R™-valued, o(W, B)-measurable vector

A= (A, , Ay) such that
1 48+t
<

EI7@) = fu@)lipo| £ -5 08)

where
1 m

fon(x) = E;Aio(Wiow—i-Bi) (19)

and

1 |f(Wi)| cos(0(W;) — B;)

A= 2ma (1) p1(Wi)p2(B;)

I Bi1<cd+|wil2)}

(20)
forl <i<m.
Remark 4. Note that 5~ ~ —H1(S97Y), ie., the hy-
pervolume of the (d — 1)-dimensional unit sphere. There-
fore, when d is sufficiently large, this term becomes small,
and 2 does too.

Remark 5. Here, we aim to discuss the relationship between
the class of functions we are considering and the Sobolev
class of functions. Lemma 2.1 in [Xu, 2020] shows that for
Sfunction u and any € > 0,

lullzre () S Mlullse@) Sl osgre g
This demonstrates that Sobolev spaces of sufficiently high or-
der can be embedded into Barron spaces. Furthermore, the
form of the definition for the functions considered in Condi-
tion I can be viewed as an equivalent definition of functions
in H*/2(QY). Therefore, overall, these two cases are not very
strict assumptions.

3.2 Optimization and Generalization Results

Within the framework of Physics-Informed Neural Networks
(PINNSs), we begin with the following elliptic partial differ-
ential equation, endowed with Dirichlet boundary conditions.

{—Au(m) +V(z)u(z) = f(x), inQ,
u(y) = g(y), ondQ,

2y

where V, f, g € L>=°(1Q).

Let u* be the solution of the given equation (21), we con-
sider two scenarios:

(1) u* belongs to the Barron space 5°(€2);

(2) u* satisfies Condition 1.

In the first scenario, for brevity and readability, we focus
on the situation where s is sufﬁmently large. J)emﬁcally, we
take s such that 2(s — 3) > d + 1, i.e., s > For other
values of s, as can be seen from the proof in the appendix
of [Xu er al., 2024], the process does not undergo significant
changes; the only adjustment required is in the final step con-
cerning the selection of values for m and .

According to Theorem 1, we can formulate a random neu-
ral network u given by the expression:

x) = Z aio(w; -+ b;), (22)

where wy, - ,wy, ~ P, by, ,by ~ Py (as defined in
Theorem 1) and a = (aq,- -+ , ay,) € R™ is to be determined.
For 1 <7 <'m, we denote the k-th component of w; by w; .

Given the form of the random neural network wu, the loss
function of PINNs can be written as

L(a) := /Q(fAquVuff) der/{m(ufg) dy

m d
= /Q(Z a;(— szkal/ (wix+b;)+V(x)o(w; -z + b))

k

— f(2)) dx+/ Zaz wi -y + b)) — g(y)?dy

- fa(y) + 92(y))?dy,

(23)
where g1 (z) = —f(z),92(y) = —g(y) and the i-th compo-
nents of R™-valued functions f;(z) and f2(y) are defined as

- [(@ n@ +a@)rdet [ @

o

d
fi@) ==Y wlo (wi-z+b)+V(@)o(w -z +b)
k=1
= |wi?0” (Wi -z + b)) + V(z)o(w; -z + b;)
(24)

and fi(y) = o(w; - y + b;), respectively.

To solve for a, we introduce a regularization term to the
loss function L(+), resulting in the following objective func-
tion:

F(a) = L(a) + Alal/3

N / (a- fu(@) + g1(2))%dz + / (a- o) + g2())2dy
Q onN

+ Alall3,

(25)
where A is a hyperparameter that controls the regularization
strength and is to be determined later.

For simplicity, assuming an equal number of samples from
the interior and the boundary, the empirical version of F'(a)
can be expressed as

n

1
ﬁzl(a§$i»yi)+>\||a||§» (26)
=1

F,(a) =

where
l(a7 T, yz) =
90 (a- fi(z:) + g1(2:))? + 090 (a - f2(y:) + g2 ().
27
In the first case, according to Theorem 1, there exists a

m
random neural network u,, = > @;0(w; - © + b;) such that

1
E (@)~ un(@)lie)] S 7m0 @9
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where
a=(ay, -, am), la:| $1/vm (29)
forl <i<m.
Note that ||afs = \/>_;~, a7 = O(1), thus we can employ

the projected gradient descent method for
ac€A:={aeR":|al|s <C}, (30)

where C is a constant ensuring that a € A. Specifically, the
method of projected gradient descent consists of iteration of
the following update rule fort =1,--- |7

where g € OF,(a:)

{ Yt = a¢ — ViGe, 31)

ar+1 = Pa(ys),

where T is the total number of iterations, a; is an initial ap-
proximation and P4 is the projection operator onto the con-
vex closed set .A. The step size v; is a positive scalar chosen
according to a specific schedule or rule.

From the specific form of F,,(-), we can see that it is
strongly convex and smooth on A. In convex optimization,
it is well-known that for a function f that is a-strongly con-
vex and 3-smooth on A, the projected gradient descent with
vy = 1/3 ensures that for all non-negative integers ¢, the fol-
lowing inequality holds for the sequence {y;} generated by
31):

* t *
loess =718 < exo (=2 )l -1, G2

where k = 8/ a.

The strong convexity of F),(+) is crucial for the optimiza-
tion process, ensuring that the algorithm converges to the op-
timal solution efficiently. Moreover, this property contributes
to the generalization performance of the random neural net-
works, which can achieve the fast rate O(1/n).

Theorem 3. Assume that u* € B*(Q) with s > %£T by

applying the projected gradient descent in (31) with vy =
d+3

O(m~ g ) to the empirical loss function F,,(-), we have that

Ew,sEx y[L(ar; f1, f2, 91, 92)]

6 4
m3tama 2+

AT
e mit2/@+n 4

1
< —— 42
STRTM TR

where

L(ar; f1, f2,91,92) :=

/ (ar - fu(x) + g1(2)2da + / (ar - Fo(u) + () ?dy

loglog(mn),
(33)

and ar is obtained from (31) after T iterations.
d+1
Taking A = \/%, m = n3a7 and T = O(yv/nlog(n)), we
have

Ew,sEx y[L(ar; f1, f2. 91, 92)] = O(n”(g‘ﬁ’) loglog(n)).
(35)

The first term represents the approximation error. The
second term arises from the addition of the regularization
term, which imposes strong convexity to the empirical loss
function. This modification allows for the application of the

projected gradient descent algorithm, ensuring rapid conver-
gence. The third term corresponds to the optimization error,
while the fourth term is the generalization error. The regular-
ization term also contributes to the generalization error, lead-
ing to the fast rate O(1/n), which is attributed to the strong
convexity of the empirical loss function and the utilization of
the localization technique.

Remark 6. In Theorem 3, we have not show the dependency
on the dimension, which is an important factor. In fact, from
the proof, the final bound provided in Theorem 1 depends
quadratically on || and |0S2|. Furthermore, the bound is lin-
ear with respect to the constant involved in the Sobolev trace
theorem, which is utilized for estimating the approximation
error. The generalization error can also be quantified by an
appropriate Sobolev norm. Specifically, as demonstrated in
[Agmon et al., 1959], we have

2

lu—u™° 4
HZ(Q)

S=AutVu—fl72) + lu=9gl7200):

(36)
where u* is the solution of equation (21).

Remark 7. In [Klochkov and Zhivotovskiy, 2021], algorithm
stability has been utilized to derive the excess risk for the pro-
Jjected gradient descent method applied to a loss function that
is A\-strongly convex and L-Lipschitz continuous. It has been
demonstrated that T = O(n?) iterations are required to at-

tain the excess risk (9(%) It is important to note that our ap-
proach to deriving the generalization bound relies solely on
the strong convexity and Lipschitz continuity of the loss func-
tion. Under the same conditions as in [Klochkov and Zhiv-
otovskiy, 2021], by employing the projected gradient descent
method with v, = ﬁ ﬁ Zle tas, our
method can achieve the same excess risk within T = O(n)
steps. Additionally, because the loss function in our setting
is also smooth, T = O(y/nlog(n)) is sufficient to reach the
same excess risk.

and ap =

In the second case, because the randomly sampled hidden
weights are no longer bounded, the loss function can become
unbounded. Consequently, projected gradient descent is not
suitable for this optimization problem, as the output weights
of the random neural networks need to be bounded to achieve
the approximation results stated in Theorem 2. Moreover,
standard gradient descent is also unsuitable. Although the
empirical loss function is convex, it lacks Lipschitz continu-
ity, which means there is no guarantee of convergence for
gradient descent. Instead, we can directly apply the closed
form of ridge regression. According to the following theo-
rem, we can choose m = nt/ 4 which provides an acceptable
level of computational complexity for employing closed-form
solutions.

Theorem 4. Assume that u* satisfies Condition 1, and let
a, = arg min,cpm Fy,(a), then we can deduce that

m

E E L TL; b b b <
w,BEx v[L(an; f1, f2,91,92)] S Wi

1 A
—+ —+ , 37)
m  m
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where
L(an; f1, f2,91, g2) ==

/ (an - f1(2) + g1 (2))2de + / (an - F2(y) + 02(9))?dy.
Q o0

(38)
By taking A = O(1),m = n'/%, we have

Ew,sEx v [L(an; f1, f2, 91, 92)] = O(Tf%)- (39)

Moreover, a,, can be solved by using the closed form of the
ridge regression and the complexity is O(m?n) = O(n% ).

Remark 8. The error components are distinctly categorized:
the first represents the approximation error, the second is at-
tributed to regularization, and the third captures the general-
ization error. In Theorem 4, an optimization error is notably
absent, contrasting with Theorem 3, due to the implementa-
tion of the closed-form solution from ridge regression. Fur-
thermore, the unbounded nature of the loss function makes it
impossible to to obtain a fast rate for generalization error.

4 Experimental Results

4.1 Verification of Theorem

Theorem 4 shows if m = ni, where m is the hidden width
and n is the collocation points number, then the testing loss
is expected to be O(%) We demonstrate this result from a
simple 1D Poisson equation.

The hidden layer’s width ranges from 50 to 500, with
tanh activations. In Figure 1, we can see that the estimated
physics-informed loss decays as the width m increases. The
decay trend is consistent with the theoretical decay (’)(%),
and the fluctuations may come from the different random ini-
tialization of the first layer.

== estimated error
10 —— theoretical decay
0.8
w
oy
2 6
=
=
W
Z 04
0.z
0.0
100 200 300 400 500
width m

Figure 1: Testing loss for the Poisson equation. A random neural
network with m hidden nodes (m ranges from 50 to 500) is used
to solve 1D Poisson equation with PINN method. The dots show
the estimated loss L(m), the line shows the decay implied by the

theoretical results %(50).

4.2 Application

We apply the random neural network to solve the Reaction-
Diffusion (RD) equation, which is significant to nonlinear
physics, chemistry, and developmental biology. We con-
sider the spatial-temporal Reaction-Diffusion equation with
the following form:

up = ditg, +dou?, t€0,1],2 € [-1,1],
(0, 2) = sin(27x)(1 + cos(2mx)),
u(t,—1) = u(t, 1) =0,

where d; = dy = 0.01.

We choose N, = 300 randomly sampled points on the ini-
tial domain and the boundary domain, and Ny = 5, 000 ran-
domly sampled points within the domain Q2 = [0, 1] x [-1, 1].
A random neural network with 4 hidden layers, each contain-
ing 128 units with tanh activation functions, is used for all
computations. The training process runs for 10, 000 epochs
with a learning rate of [r = le — 3. The relative Ly error
is 0.13%. As shown in Figure 2, the random neural network
method achieves high accuracy. The training time for con-
ventional PINN method is 1397s in [Li et al., 2024], while
the training time for random neural network is 3.2s. This
highlights the high efficiency and precision of our approach.

~ Exactu(x) ~ Predicted u(x) Absolute error

. ; ll 1 I ! 0.008
| I | | 0.006
, [* | 0 0.004
| | | 0.002

-1 | -1
0l i = | I I | I 0
-1 i 0-.l 1 ~1 1

Figure 2: Comparison between the reference and predicted solutions
for the Reaction-Diffusion equation.

5 Conclusion and Discussion

In this paper, we have established approximation results for
Barron-type functions using random neural networks. Our
approach diverges from prior studies by providing precise
forms for the sampling distributions of hidden weights, rather
than relying on empirical selection. Within the PINNs frame-
work, applying random neural networks to solve PDEs trans-
lates into formulating regularized least square problems. We
address these problems by employing projected gradient de-
scent for one case and leveraging the closed-form solutions
for regularized least squares in the other. Combining with
the approximation results, we present a comprehensive er-
ror analysis. Nevertheless, this work has its limitations. For
example, the approximation rate presented in Theorem 1 for
functions in B°(2) suffers the curse of dimensionality. More-
over, both approximation results in Theorem 1 and Theorem
2 are only valid for relatively small function spaces. Expand-
ing the approximation capabilities of random neural networks
to more general functions presents an interesting direction for
future research. Furthermore, the methods we employed for
deriving the optimization and generalization errors could be
extended to other methods involving random neural networks
for solving PDEs, such as the Deep Ritz Method.
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