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Abstract

Most edge-cloud collaboration frameworks rely on
the substantial computational and storage capa-
bilities of cloud-based artificial neural networks
(ANNs). However, this reliance results in sig-
nificant communication overhead between edge
devices and the cloud and high computational
energy consumption, especially when applied to
resource-constrained edge devices. To address
these challenges, we propose ECC-SNN, a novel
edge-cloud collaboration framework incorporating
energy-efficient spiking neural networks (SNNs)
to offload more computational workload from
the cloud to the edge, thereby improving cost-
effectiveness and reducing reliance on the cloud.
ECC-SNN employs a joint training approach that
integrates ANN and SNN models, enabling edge
devices to leverage knowledge from cloud mod-
els for enhanced performance while reducing en-
ergy consumption and processing latency. Further-
more, ECC-SNN features an on-device incremen-
tal learning algorithm that enables edge models to
continuously adapt to dynamic environments, re-
ducing the communication overhead and resource
consumption associated with frequent cloud up-
date requests. Extensive experimental results on
four datasets demonstrate that ECC-SNN improves
accuracy by 4.15%, reduces average energy con-
sumption by 79.4%, and lowers average processing
latency by 39.1%.

1 Introduction
Collaborative edge-cloud computing [Wang et al., 2024]
leverages the extensive computational power of the cloud
alongside the low-latency benefits of edge computing, en-
hancing data processing efficiency and real-time performance
in Internet of Things (IoT) scenarios. As Spiking Neural Net-
works (SNNs) have emerged as a promising alternative to
Artificial Neural Networks (ANNs), offering greater energy
efficiency and responsiveness for on-device intelligence [Yu

∗Corresponding Authors: Xin Du and Shuiguang Deng.

et al., 2024; Lv et al., 2024], there is a growing trend to-
ward replacing edge-side models in conventional edge-cloud
frameworks with SNNs. However, this substitution, while ad-
vantageous, introduces several significant challenges.

First, SNNs often underperform compared to ANNs of
similar scale in ANN-optimized tasks, such as conventional
RGB image classification [Deng et al., 2020]. This perfor-
mance gap is primarily attributed to accumulating gradient er-
rors [Deng et al., 2023] during the back-propagation through
time (BPTT) training process with surrogate functions [Wu et
al., 2019]. While SNNs effectively handle most inputs, they
struggle with corner cases in the long tail of data distribu-
tions—scenarios where fine-tuned ANNs typically excel.

Second, IoT devices continuously collect vast amounts of
heterogeneous data from dynamic environments. Uploading
all new data to the cloud for updates and retrieving revised
models introduces significant communication overhead, in-
creased latency, and excessive energy consumption [Long et
al., 2021]. When numerous devices request updates simul-
taneously, the cloud server’s responsiveness and efficiency
are further compromised. These limitations underscore the
urgent need for efficient on-device incremental learning al-
gorithms explicitly tailored for SNNs to enable adaptive and
scalable edge-cloud collaboration frameworks.

To tackle these challenges, we propose a novel and adap-
tive edge-cloud collaboration framework, termed ECC-SNN1,
which integrates the high inference accuracy of cloud-based
ANN models with the responsiveness and energy efficiency
of edge-based SNN models. In ECC-SNN, we first estab-
lish a robust edge SNN backbone model, enhanced through a
joint ANN-SNN training approach [Xu et al., 2023]. Unlike
previous approaches [Jiang et al., 2023; Wang et al., 2023]
that improve SNN image classification accuracy by integrat-
ing ANN-inspired structures, often requiring similar archi-
tectures for both ANN and SNN models, our approach uses
knowledge distillation to transfer rich information from pre-
trained cloud-based ANNs to edge SNNs with arbitrary ar-
chitectures, bypassing structural constraints. This method ac-
celerates the training process while minimizing memory con-
sumption during the Setup stage of ECC-SNN.

The inference Execution process of ECC-SNN also in-
volves both the edge and the cloud with an ambiguity-aware

1https://github.com/AmazingDD/ECC-SNN
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strategy [Huang et al., 2021]. During inference, inputs with
low inference confidence—often representing corner cases or
unlearned samples [Li et al., 2021]—are regarded as ambigu-
ous or ‘difficult’ cases and are offloaded to the robust cloud-
based ANN model for reevaluation. In contrast, those with
high confidence, identified as ‘simple’ samples, are directly
processed [Bolukbasi et al., 2017] by the edge SNN model.
Hence, ECC-SNN can achieve a superior cost-accuracy trade-
off when performing conventional image classification infer-
ence tasks compared to edge- or cloud-only solutions.

Once the edge device completes its allocated tasks, it tran-
sitions to the offline Update stage (e.g., during charging at
the base station), where it performs adaptive on-device incre-
mental learning (IL). During this Execution stage, the edge
SNN learns from previously ambiguous data and correspond-
ing logits provided by the cloud-based ANN. Given the re-
source constraints of edge devices, implementing complex IL
methods [Xiao et al., 2024; Zhou et al., 2022] that demand
significant memory and computational resources may not be
feasible. Therefore, ECC-SNN adopts a simple yet effective
self-distillation IL approach [Li and Hoiem, 2017], specif-
ically designed to mitigate catastrophic forgetting. Through
local updates, the edge SNN improves its performance on dif-
ficult inputs, enabling it to continuously adapt to dynamic en-
vironmental changes without additional computational over-
head from the cloud.

To assess the effectiveness of ECC-SNN, we conduct ex-
tensive experiments across four image classification datasets.
Results demonstrate that ECC-SNN can adaptively develop a
more robust edge-based SNN model in dynamic IoT environ-
ments that performs with greater confidence while effectively
offloading computational and communication costs from the
cloud server. To conclude, our main contributions are sum-
marized as follows:

• We propose ECC-SNN, the first edge-cloud collabo-
ration framework to integrate cloud-based ANNs with
edge-based SNNs. This novel integration leverages the
complementary strengths of ANNs (high inference ac-
curacy) and SNNs (energy efficiency and low latency),
marking the first exploration of such a collaboration
strategy.

• To address the dynamic IoT environmental changes, we
propose an on-device incremental learning method that
enhances the adaptability of edge SNN models in ECC-
SNN. Furthermore, we incorporate an ambiguity filter-
ing strategy in edge-cloud co-inference, ensuring stable
accuracy performance while significantly reducing en-
ergy consumption.

• Extensive experiments on four diverse datasets demon-
strate that ECC-SNN significantly outperforms stan-
dalone edge-based SNNs and cloud-based ANNs,
achieving an average accuracy improvement of 4.15%,
a 79.4% reduction in energy consumption, and a 39.1%
decrease in processing latency.

2 Related Work
Collaborative Edge-Cloud Computing. Most edge-cloud
collaboration frameworks heavily rely on computationally

powerful servers for execution, with edge devices deploying
only small models to handle basic tasks [Zhang et al., 2024].
For example, ECSeg [Zhou et al., 2024b] conducts an edge-
cloud switched image segmentation system in autonomous
vehicles with different delay tolerances. [Li et al., 2024;
Long et al., 2021] investigate distributed inference through
fine-grained model partitioning, enabling collaborative com-
putation between servers and IoT devices. In GKT [Yao et al.,
2024b], edge models generate final responses with guidance
prompts from larger language models in the cloud. In these
works, the functionality of edge models remains highly lim-
ited due to resource constraints, motivating the exploration of
more efficient alternatives to enhance edge capabilities.

Spiking Neural Networks on the Edge. The low power
cost and rapid response capabilities of SNNs [Maass, 1997]
align with resource-constrained edge scenarios, enabling the
implementation of more extensive functionalities at the edge.
EC-SNN [Yu et al., 2024] employs a device collaboration
method to distribute deep SNNs at the edge. Tr-Spiking-
YOLO [Yuan et al., 2024] is conducted on Jetson devices
to implement low-latency objective detection tasks. [Zhu et
al., 2024] proposes to apply an end-to-end training strategy
for SNNs on autonomous driving scenarios. However, ex-
isting SNN applications on edge devices primarily focus on
efficient deployment. As devices operate and continuously
collect new data, shifts in data distribution can lead to per-
formance degradation, driving the introduction of on-device
incremental learning methods tailored for SNNs.

On-Device Incremental Learning. Several studies have
been conducted to enhance IL on edge devices, alleviating the
catastrophic forgetting problem caused by dynamic environ-
mental changes. Rehearsal-based IL methods [Zhou et al.,
2022] achieve favorable performance-cost trade-offs for on-
device scenarios [Kwon et al., 2021]. [Paissan et al., 2024]
introduces latent replay with sparse weight updates to reduce
the learning cost. [Ma et al., 2023; Lee et al., 2022] employ
systematic optimization methods to enhance the efficiency of
limited exemplar buffers. However, these studies are primar-
ily ANN-oriented. For on-device incremental training with
SNNs, the training cost of BPTT scales with the number of
time steps, making allocating additional memory for exem-
plars impractical. Hence, we focus on devising exemplar-free
incremental learning methods tailored for SNNs.

3 Preliminary
3.1 Spiking Neural Networks
Due to the energy efficiency, SNNs are suitable for deploy-
ment on resource-constrained edge devices to implement in-
ference tasks [Yu et al., 2024]. In this study, we build the edge
SNN architecture with a promising neuron model termed
Leaky Integrate-and-Fire (LIF) [Maass, 1997], described by
a series of discrete-time expressions:

U(t) = (1− τ) ·H(t− 1) + τ · I(t) (1)

O(t) = Θ(U(t)− V ) (2)
H(t) = U(t) · (1−O(t)) + Vr ·O(t) (3)
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where τ, V , and Vr denote the decay factor, threshold, and
reset potential. I(t) is the spatial input at time step t, U(t) and
H(t) are the corresponding membrane potential before and
after firing. Additionally, Θ(·) is the Heaviside step function
determining whether a spike is generated. In this study, we
adopt BPTT [Dampfhoffer et al., 2023] to train SNNs with
surrogate gradients [Wu et al., 2019].

3.2 Prior Probability Distribution Drift
The rapid influx of data (e.g., a sequence of data stream
D = {D1, ...,DN}) in real-world applications frequently
leads to distribution drifts driven by evolving environments
[Souza et al., 2020]. Let the features and labels of Dn be
denoted as Xn and Yn, respectively, where n ∈ {1, ..., N}.
Prior probability drift arises specifically in problems where
the features depend on the labels (i.e., Y → X ), charac-
terized by P (Yi|Xi) = P (Yj |Xj) while P (Yi) ̸= P (Yj).
This drift encapsulates critical challenges in adapting mod-
els to dynamic data distributions and is prevalent across var-
ious domains [Zhou et al., 2024a; Su et al., 2023; Wang and
Sun, 2022], among which class-incremental learning repre-
sents a typical scenario for this shift [Masana et al., 2022]. In
this study, we primarily investigate the foundational capabil-
ity of ECC-SNN to tackle prior probability drifts, laying the
groundwork for extending its application to more complex
drift scenarios.

4 Methodology
4.1 Problem Statement
Image classification is one of the conventional cognitive ser-
vices provided by SNNs [Yao et al., 2024a; Shi et al., 2024;
Qiu et al., 2024b]. Although the performance of SNNs on
RGB-based image classification tasks still lags behind that of
ANNs [Xu et al., 2023], their unique energy efficiency makes
them more suitable for deployment on resource-constrained
edge devices in practical applications tackling these tasks.

Considering a robot vacuum cleaner equipped with an
SNN-based image classifier as the edge device for obstacle
avoidance, the input image x ∈ X is the data collected from
the cleaner’s camera, and its corresponding label y ∈ Y (e.g.,
table, sofa, or pets) might be a random variable drawn with a
joint data distribution P (x, y), in which Y = {1, ...,K} and
K is the number of labels. Due to the dynamic and non-ideal
conditions in which inputs are collected, objects in the images
may not always behave predictably (e.g., corner cases like a
black cat might hide in a dark area, and new incoming images
with distribution drifts). Such scenarios could lead to incor-
rect predictions and decisions by the locally equipped SNN
model in the cleaner. In this context, relying solely on edge
devices to perform all inferences locally may lead to unsatis-
factory accuracy and potentially adverse outcomes.

4.2 Edge-Cloud Collaboration Framework
An edge-cloud collaborative framework [Li et al., 2021] can
tackle the problem mentioned in section 4.1. We first as-
sume two discriminative models, i.e., one is a computation-
ally intensive, high-performance large ANN-based model f0
operating in the cloud with considerable resource utilization,

and the other is a smaller, energy-efficient SNN-based model
f1 with limited capacity deployed at the edge. Both are
trained on a dataset drawn i.i.d. from P (x, y), denoted by
f0 : X → Y and f1 : X → Y , respectively.

During the inference stage, a soft scoring function (a.k.a.
Filter) s(z|x) ∈ [0, 1] with z ∈ {0, 1} is applied to deter-
mine whether the small SNN f1 is qualified to classify cur-
rent input x or the input x should be off-loaded to the robust
cloud-based ANN for processing f0. Specifically, we assign
label 1 to z if s(z|x) is below some threshold δ and label it 0
otherwise, with the expectation that the filter can effectively
upload hard inputs with low-confidence inferences from edge
SNN to the cloud. Hence, the final output of an edge-cloud
collaboration framework (f0, f1, s) w.r.t a specific input x is:

(f0, f1, s)(x) =

{
f1(x), if s(1|x) ≤ δ

f0(x), o.w.
(4)

and the performance of each model fz can be evaluated by
L(fz(x), y), where L could be a cross-entropy loss for image
classification tasks. Hence, the overall expected loss of the
edge-cloud collaboration framework can be calculated :

min
f0,f1,s

EP (x,y)Es(z|x)[L(fz(x), y)]

s.t. EP (x,y)Es(z|x)[C(fz, s,x)] ≤ b
(5)

C(fz, s,x) refers to the total cost of using a specific model for
inference, e.g., energy consumption, inference latency, etc.
Equation (5) seeks to minimize the expected loss of models
in the edge-cloud collaborative system within a specified cost
budget, and its objective can be further extended as follows:

EP (x,y)[s(1|x)L(f1(x), y) + (1− s(1|x))L(f0(x), y)] (6)

In most resource-constrained edge applications, a particular
budget constraint b should be established within the frame-
work to ensure the feasibility of system operation.

However, the cloud-based ANN f0 might be highly com-
plex in achieving state-of-the-art (SOTA) performance, and
collaboratively optimizing f0 and f1 could lead to slow con-
vergence. To reduce complexity, we assume a machine learn-
ing service vendor at a remote data center might provide a
fixed, pre-trained complex ANN f0 with high accuracy per-
formance and f0 serves as an oracle functionO(·) to the small
SNN f1 during the optimization phase, i.e., it can correctly
classify each input from P (x, y). Therefore, the loss term
L(f0(x), y) = L(O(x), y) in Equation (6) turns zero, as the
outputs of the oracle function consistently correspond to the
ground-truth values. Equation (5) can then be simplified as:

EP (x,y)[s(1|x)L(f1(x), y)]
s.t. EP (x,y)Es(z|x)[C(fz, s,x)] ≤ b

(7)

4.3 System Design
Figure 1 outlines the entire workflow of the proposed
Edge-Cloud Collaboration framework for on-device Spiking
Neural Network applications (ECC-SNN for brevity). The
ECC-SNN framework comprises three primary stages. The
first Setup stage is executed on the cloud, during which a well-
trained cloud-based ANN is utilized as a teacher model for
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(a) Setup Stage (Cloud) (c) Update Stage (Edge)(b) Execution Stage (Edge-Cloud)

Local
Buffer

Edge
SNN
(old)

Edge
SNN
(new)Local Buffer

Cloud
ANN

Edge SNN

Inputs

Logits

Filter

Edge Cloud

SensorsTraining
Data

D
istribute

Edge SNNCloud ANN

EdgeCloud

Figure 1: Overview of the proposed ECC-SNN. In all three stages, the cloud-based ANN model directly or indirectly supports the edge SNN
model in preparation, inference, and adaptive updates.

Optional Distillation Feature Transform Backpropagation

Figure 2: Optional feature distillation in the joint training approach.
T is the number of time steps of the features out of the last SNN
layer overlapping with the corresponding ANN layer.

jointly optimizing the initial, small-scale SNN, which will be
deployed on edge devices to conduct inference tasks. In the
Execution stage, the edge SNN will request assistance from
the cloud-based ANN to classify ambiguous inputs collected
from sensor data, which it cannot confidently infer. These
inputs, which are hard for the current SNN to classify, will
subsequently be labeled by the cloud-based ANN and stored
in the local device buffer. These labeled ‘hard’ samples will
be utilized for on-device updates in the Update stage to im-
prove the SNN’s performance in the next Execution stage.

Joint Training Approach
Although surrogate gradient methods enable directly train-
ing non-differentiable SNN, converging the training process
is still complicated due to the self-accumulating gradient er-
rors [Deng et al., 2023]. To alleviate this problem, we adopt a
joint training approach (process T in Figure 1), which dis-
tills the logit information2 from the fine-tuned cloud-based
ANN to the rough SNN model when prepared at Setup stage.
Hence, the loss term in Equation (7) is extended as:

L(f1(x), y) = Lce + λ1Llogit (8)

where Lce is the cross-entropy loss to help the SNN learn
from the samples in task-specific training datasets, and Llogit

refers to the KL-divergence that lets the rough SNN learn the
prediction distribution of the cloud-based ANN with λ1 con-
trols the corresponding weight.

This overlap motivates the transfer of feature knowledge
between the corresponding parts of the cloud-based ANN
and the edge SNN. However, these overlapping intermedi-
ate features differ in data format between ANNs and SNNs:
in ANNs, features are represented in floating-point format,

2Logit refers to the output of the model’s final classification layer

whereas in SNNs, they are conveyed as time-varying spike
trains. To solve the disparity, we introduce external linear
modules [Qiu et al., 2024a] for aligning features, mapping
them to the same feature space, as depicted in Figure 2.
Hence, for the last overlapping layer i in edge SNN, we de-
fine the feature alignment loss as Li

align = ||Fa,i−F′
s,i||2 to

measure the similarity between feature-pair, in which:

F′
s,i = BatchNorm(Linear(

∑
t

Ft
s,i)) (9)

and Fa,i ∈ RN×D and Ft
s,i ∈ RN×D at time step t repre-

sent the corresponding decimal and binary feature matrix for
the last overlapping ANN and SNN layer i, respectively. In
summary, the loss term in Equation (7) for overlapping cases
turns to:

L(f1(x), y) = Lce + λ1Llogit + λ2Li
align (10)

where λ2 controls the weight of feature alignment loss. For
non-overlapping cases, we remain the loss as Equation (8).

Collaborative Inference Strategy
The core of edge-cloud co-inference lies in when to filter in-
puts that are ambiguous to the current edge model and seek
assistance from the cloud. Existing filtering strategies include
rule-based [Huang et al., 2020] and learning-based [Li et al.,
2021]. Unlike rule-based approaches, learning-based strate-
gies incur additional computational costs and demand incre-
mental updates as task complexity increases, posing chal-
lenges for execution on resource-constrained edge devices.
Therefore, normalized entropy [Huang et al., 2021] is em-
ployed in ECC-SNN as the filtering criterion s(1|x) to de-
termine the cloud upload rate for ambiguous inputs during
Execution stage. As demonstrated in Figure 3, this metric
provides a practical and interpretable measure of inference
confidence for the edge SNN model and is defined as follows:

s(1|x) = −
K∑

k=1

σ(f1,k(x))log(σ(f1,k(x)))

log(K)
(11)

where σ(·) denotes the soft-max function converting the out-
put of each edge SNN’s classification head f1,k(·) into a prob-
ability distribution. To be more specific, the filter in ECC-
SNN will compute the corresponding entropy values for each
input with the edge SNN (process D in Figure 1). Inputs
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Figure 3: Case Study: a spiking VGG-9 model learned with CIFAR-
10 limited to samples labeled 1 and 6. The entropy distributions and
corresponding cloud upload rates for each label are derived from
each test sample’s model output predictive distribution.

Algorithm 1 Collaborative Inference in ECC-SNN
Input: collected input feature x; filter threshold δ.
Parameter: cloud ANN model f0; edge SNN model f1.
Output: the inference result ŷ.

1: z← f1(x), p← σ(z);
2: Compute s(1|x) for p with Equation (11);
3: if s(1|x) ≤ δ then
4: ŷ ← argmaxk(p), k ∈ {1, ...,K};
5: else
6: # line 7-9: process A in Figure 1
7: Upload x to the cloud, z← f0(x);
8: ŷ ← argmaxk(z), k ∈ {1, ...,K};
9: Broadcast ŷ back to the edge device;

10: # line 11: process S in Figure 1
11: Store sample (x, ŷ) in local buffer of the edge device;
12: end if
13: return ŷ

with normalized entropy greater than the pre-set threshold δ
are determined ambiguous samples that require uploading to
the cloud for further assistance.

Algorithm 1 describes how ECC-SNN performs collabora-
tive inference during the Execution stage. Each newly col-
lected image from the sensor will first undergo inference us-
ing the edge SNN, and the resulting filtering score s(1|x) will
be computed to assess the inference confidence. Images with
low confidence will be uploaded to the cloud, where the pow-
erful ANN will perform re-inference and return the results.
These samples requiring assistance will subsequently use the
predicted logits from the cloud-based ANN as their label ref-
erences, forming local training samples stored in the edge de-
vice’s local buffer for on-device updates of the SNN model.

On-device Incremental Learning Method
Although the co-inference mechanism in ECC-SNN substan-
tially enhances accuracy by refining the results produced by
the edge SNN, it may also introduce additional communica-
tion latency and energy overheads. This is particularly true
when the edge SNN faces challenges related to environmental
mobility, such as data distribution drift [Shao et al., 2024], in-
ducing numerous ambiguous inferences with low confidence.
For instance, a robot may be delivered to a user’s home with
default object recognition capabilities. However, it may fail
to recognize new, site-specific objects reliably (a.k.a. suffer-

ing from prior probability distribution drift).
Therefore, IL methods are employed to progressively im-

prove the performance of the edge SNN in handling these am-
biguities. (process U in Figure 1). Meanwhile, this learn-
ing process should be conducted on edge devices rather than
on a centralized cloud server during the offline stage (e.g.,
recharging at the base station). In-situ processing helps avoid
transmitting high-volume information over networks, thereby
reducing the bandwidth requirements [Kukreja et al., 2019].

Unlike humans who continually learn evolving tasks
throughout their lifetime, the edge SNN model suffers from
catastrophic forgetting problems [Li and Hoiem, 2017] when
conducting IL. Although many IL methods can mitigate this
issue [Xiao et al., 2024; Zhou et al., 2022], they often re-
quire additional memory and computational resources, mak-
ing them unsuitable for deployment on resource-constrained
edge devices. Therefore, our proposed framework will pro-
vide a bio-plausible explanation for this method) for conduct-
ing on-device IL for the edge SNN, which continually train-
ing the edge SNN model with a new loss function during Up-
date stage:

L(f1(x), y) = Lnew + λ3Lold (12)

where Lnew is analogous to Equation (8) but is specifi-
cally computed using samples stored in the local buffer, sup-
plemented by logits obtained from the cloud-based ANNs.
Lold, evaluated by KL-divergence with the probabilities from
the old SNN model σ(fold

1 (x)) and the new SNN model
σ(fnew

1 (x)), prevents forgetting the knowledge of previous
tasks by forcing the model to predict similar outputs as the
previous SNN model for old task data. The importance of
Lold is controlled by a hyper-parameter λ3. The local buffer
will be flushed after each incremental update is completed.

5 Experiments
5.1 Experimental Settings
Following [Zhou et al., 2024a], we evaluate the effective-
ness of our proposed ECC-SNN using the standard class-
incremental learning setting, as it represents a typical form
of prior probability distribution drift commonly encountered
in real-world applications [Diao et al., 2024]. We denote the
data split setting as ’w/ B-u, Inc-v,’ i.e., the first dataset con-
tains u classes, and each following dataset contains v classes.
u = 0 means the total classes are equally divided into each
task. By default, we adopt the spiking VGG-9 model as the
SNN deployed on the edge device featuring a neuromorphic
chip [Ma et al., 2024] while utilizing a widely recognized pre-
trained ViT model vit-base-patch16 as the cloud-based ANN.

5.2 Performance Evaluation
Test Accuracy. Denote the average Top-1 accuracy (Ān)
after the n-th task as Ān = 1

n

∑n
m=1 an,m, where an,m ∈

[0, 1] is the accuracy of task m after learning task n (m ≤ n).
We first evaluate the effectiveness of the proposed joint train-
ing approach for accuracy improvement at Setup stage. As
listed in Table 1, we compare the performance of this ap-
proach with that of standalone training approaches for edge
SNN and cloud-based ANN models, which demonstrate that
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Dataset ANN Arch. Ā1,E (%) Ā1,C (%) Ā1,EC (%)

CIFAR-10
VGG-16† 86.75 93.41 (↑ 3.82) 90.57
ResNet-34 86.75 95.23 (↑ 3.79) 90.54
ViT-12 86.75 98.05 (↑ 3.88 ) 90.63

CIFAR-100
VGG-16† 83.20 89.10 (↑ 2.25) 85.45
ResNet-34 83.20 91.50 (↑ 2.15) 85.35
ViT-12 83.20 94.75 (↑ 2.30) 85.50

Caltech
VGG-16† 94.23 98.04 (↑ 0.76) 95.04
ResNet-34 94.23 98.39 (↑ 0.61) 94.84
ViT-12 94.23 99.19 (↑ 0.76) 95.04

Tiny-ImageNet
VGG-16† 62.05 69.50 (↑ 2.75) 64.80
ResNet-34 62.05 75.50 (↑ 4.85) 66.90
ViT-12 62.05 89.50 (↑ 6.55) 68.60

Table 1: Average accuracy performance at Task 1 (Ā1) of edge-side
spiking VGG-9 w.r.t. various pre-trained cloud-based ANN architec-
ture (Arch.) pairs across different RGB-based image datasets. Foot-
notes ‘E’/‘C’/‘EC’ represent the edge SNN, cloud-based ANN, and
ECC-SNN. ANN Arch. with ‘†’ indicates the overlapping case in
which the dimensions of their early layers are identical to those of
the paired SNN. All results are averaged across three random seeds.

Li
align Llogit CIFAR-100 Tiny-ImageNet

✗ ✗ 83.20 62.05
✓ ✗ (↑ 0.75) 83.95 (↑ 1.35) 63.40
✗ ✓ (↑ 0.95) 84.15 (↑ 2.10) 64.15

✓ ✓ (↑ 2.25) 85.45 (↑ 2.75) 64.80

Table 2: Ablation results of the proposed regularization terms for
the overlapping VGG cases.

the joint training design in ECC-SNN can achieve an average
accuracy improvement of 2.87% for edge SNNs compared to
the standalone direct training approach.

The enhancement of SNN performance varies depending
on the choice of the pre-trained ANN model. Although
VGG16 is less complex than other pre-trained ANN models
like ResNet and ViT, it can still serve as an effective teacher
model to assist SNN convergence on simpler tasks such as CI-
FAR and Caltech, and the final performance gap is even less
than 0.1%. However, we must acknowledge that in complex
tasks like ImageNet, the performance limitations of VGG-
16 itself constrain its ability to provide substantial guidance
to Spiking VGG-9. As a result, the final accuracy improve-
ment falls short of the improvement achieved with those com-
plex ANNs. Observations in Table 2 elaborate on the contri-
bution of each proposed regularization term in those VGG-
structured overlapping cases, from which we conclude that
both terms demonstrate effectiveness for the final accuracy,
with Llogit being the dominant factor. In addition, their com-
bination can further enhance the learning performance across
different datasets.

The adaptive update strategy in ECC-SNN is designed to
continuously enhance the predictive capabilities of the edge
SNN model, thereby offloading as much computational bur-
den and communication cost from the cloud-based ANN
model as possible. We define the cloud upload rate (CUR) [Li
et al., 2021] to represent the proportion of ambiguous inputs
uploaded to the cloud for assistance, representing the com-
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Figure 4: Changing patterns of accuracy performance and CUR as
more classes learned, with a fixed filtering threshold δ=0.3.

10 20 30 40 50 60 70 80 90 100
Number of Classes

20

40

60

80

A
ve

ra
ge

 A
cc

ur
ac

y 
(%

) (a) CIFAR-100 w/ B-0, Inc-10
ECC-SNN
DS-AL
ACIL

FeTrIL
HLOP
FineTune

20 40 60 80 100 120 140 160 180 200
Number of Classes

20

40

60
(b) Tiny-ImageNet w/ B-0, Inc-20

ECC-SNN
DS-AL
ACIL

FeTrIL
HLOP
FineTune

Figure 5: Average accuracy of edge SNN w.r.t. different IL methods.
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Figure 6: Average theoretical energy cost (mJ) per input for infer-
ence as more classes learned in ECC-SNN, with a fixed filtering
threshold δ=0.3. The communication cost Cu is negligible compared
to the computation cost Cf .

munication overhead of co-inference and denoted as:

CUR = EP (x,y) [I(s(1|x) > δ)] (13)

where I(·) is the indicator function. When using the full test
dataset as a simulation of a real-world environment to evalu-
ate the proposed system, tendencies in Figure 4 depict that
the model’s accuracy consistently improves with incremen-
tal updates. As the edge SNN model gains higher inference
confidence in classifying, it will reduce the reliance on the
complicated cloud-based ANN model to recognize ambigu-
ous ‘difficult’ inputs, thereby diminishing CUR.

Figure 5 compares various SOTA IL methods proposed re-
cently with the adaptive update approach in our ECC-SNN.
Note that all methods experience a degradation in Ā due to
catastrophic forgetting as the number of classes increases.
In ANN-oriented IL tasks, freezing the backbone weights
effectively preserves the existing knowledge. However, in
SNNs, the weights represent synaptic connections, and freez-
ing them completely restricts the SNN’s ability to continue
learning. Therefore, ECC-SNN is more effective at miti-
gating this impact than other methods across various scenar-
ios, achieving an improvement of 5.32% over the second-best
method on CIFAR-100 and 2.98% on ImageNet, respectively.
Energy Cost. The energy cost of ECC-SNN during the Ex-
ecution stage contains two main components: communication
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Figure 7: Average inference latency (ms) per input in ECC-SNN as
more classes learned, with a fixed filtering threshold δ=0.3.

overheads Cu and selected computational cost Cf . Figure 6
introduces changing cost patterns as tasks evolve, indicat-
ing that (1) The computational cost of the cloud-based ANN
model constitutes the majority of the total energy consump-
tion. (2) As the edge model is continuously updated, its in-
ference capability gradually improves, reducing the reliance
on the cloud-based model. This enhancement leverages the
energy efficiency of SNNs, reducing the average energy con-
sumption for inference. (3) The communication overhead be-
comes non-negligible as the input size increases. For exam-
ple, it contributes 2.2% of the total cost at the first task in the
ImageNet scenario.

Latency. The inference latency of ECC-SNN also consists
of communication latency Tu and model computation latency
Tf . Figure 7 introduces the latency patterns of ECC-SNN
when inferring one sample for different datasets as tasks
evolve. It can be intuitively concluded that (1) As the ca-
pability of the edge SNN improves, reliance on the power-
ful ANN model on the cloud diminishes, reducing the fre-
quency of request transmissions and the latency associated
with waiting for inference results. (2) Simple CIFAR-100
inputs are more likely to be processed directly on the edge
rather than uploaded to the cloud. Hence, the average com-
putational latency acceleration per input is 9.07% lower than
that in ImageNet. (3) When the input size is large, running
spiking VGG-9 on a neuromorphic chip is only 21.9% faster
than running ViT-12 on a server GPU. Therefore, reducing
the frequency of requesting assistance from the cloud can-
not diminish the total computation latency but can acceler-
ate the communication latency by around 79.7%. Therefore,
when evaluating the effectiveness of the ECC-SNN system,
communication latency and model inference latency should
be considered equally important metrics.

5.3 Sensitive Analysis
Following [Li et al., 2021], we define the relative accuracy
improvement (AccI) to measure the accuracy improvement of
ECC-SNN A(f0,f1,s) compared to the standalone SNN Af1
deployed at the edge, normalized by the accuracy gap be-
tween the cloud-based ANN Af0 and the edge SNN Af1 . As
shown in Figure 8, the normalized entropy (NE) strategy in
ECC-SNN demonstrates its effectiveness by accurately iden-
tifying ambiguous inputs and improving the utility of request-
ing assistance from the cloud model, compared to random up-
loading. Meanwhile, it is evident that as the edge model’s pre-
dictive capabilities improve, the marginal benefit of request-
ing assistance from the cloud gradually diminishes. A sur-
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Figure 8: Accuracy improvement (AccI) w.r.t CUR (%) with differ-
ent learned classes at current task.

prising observation is that ECC-SNN can improve accuracy
in simple classification tasks. For example, the overall accu-
racy of ECC-SNN can exceed that of the standalone cloud-
based ANN model (red dashed line) by up to approximately
13.3% in task 5 of CIFAR-100 when the CUR is in the range
of [40, 100]. This is because, although the edge SNN initially
exhibits lower accuracy across the entire dataset, it is con-
tinuously optimized with incoming data from different tasks
to minimize overall expected loss. As a result, it is likely to
correctly predict a subset of inputs that the cloud-based ANN
model fails to classify correctly. However, for the complex
ImageNet dataset, the accuracy gap between the cloud and
edge models is too large to enable accuracy boosting. Under
such circumstances, the edge model can continuously benefit
from the cloud, allowing a better trade-off between accuracy
and cost within ECC-SNN.

6 Conclusion
In this study, we propose ECC-SNN, a cost-effective and effi-
cient edge-cloud collaborative framework designed for SNN-
based classifiers. By employing the joint training approach
and adaptive on-device incremental learning with the assis-
tance of a powerful ANN model on the cloud server, the
SNN model in ECC-SNN gains enhanced predictive capabil-
ity compared to the standalone edge SNN, significantly re-
ducing both energy costs and inference latency as the system
operates in different dynamic IoT scenarios.
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