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Abstract
Accurately capturing social interaction in complex
scenarios is essential for pedestrian trajectory pre-
diction task. The uncertainty in pedestrian interac-
tions and the physical constraints imposed by the
environment make this task challenging. To solve
this problem, existing methods adopt dimensional-
ity reduction algorithms to capture explainable hu-
man motions and behaviors. However, these ap-
proaches not only suffer from weak social aware-
ness due to the inadequate feature extraction, but
also overlook physical constraints, leading to pre-
dicted trajectories often cross unwalkable areas. To
overcome these problems, we build an attention-
based motion pattern representation, named So-
cialMP, which can effectively enhance the social
awareness and environmental perception of motion
patterns. Specifically, our method first character-
izes the motion patterns through singular value de-
composition and defines a visual field-based rule to
model environmental social interaction. Then, an
attention-based additive fusion mechanism is de-
signed to enhance social awareness and environ-
ment perception of motion patterns. Therein, we
integrate social interactions into motion patterns
through cross-attention mechanism to generate la-
tent motion patterns, and feed them into our devised
additive fusion structure with backward connection
for multiple iterations. Lastly, we design a map loss
function by applying an additional penalty into av-
erage displacement error to prevent the pedestrians
from passing through the unwalkable area. Exten-
sive experiments on ETH-UCY and SDD datasets
demonstrate that our SocialMP can not only im-
prove prediction accuracy but also generate plau-
sible trajectories.

1 Introduction
Perceiving, analyzing, and predicting future motion patterns
of pedestrians are crucial for applications such as autonomous
driving, intelligent transportation systems, robot navigation,
and surveillance systems [Wang et al., 2022; Huang et al.,
2023; Chen et al., 2018; Quan et al., 2021]. Given the 2D

(b) Environmental  Social 
Interaction

Observed 2D Coordinate

Q

K V

Latent SocialMP

Scores

SVD

VFR

SVD

VFR
Observed Motion Pattern

Predicted 2D Coordinate
Predicted Motion Pattern

(c) SocialMP(c) SocialMP(a) Motion Patterns

 Singular Value Decompose Visual Field Rules

Figure 1: The process of pedestrians decreasing the uncertainty of
their future trajectories from divergent (left top) to convergent (right
top). (a) Avoiding neighbor pedestrian by intepretable motion pat-
terns. (b) Perceiving the states of neighbor pedestrians and trees
through unexplainable environmental social interaction. (c) Our ap-
proach integrate environmental social interaction into motion pat-
terns via additive fusing mechanism to obtain SocialMP, which cap-
ture complex social interactions and explainable motion patterns.

temporal coordinates of pedestrians within a scene, the task of
trajectory prediction involves forecasting multiple plausible
future trajectories that apply with social norms [Alahi et al.,
2016]. Traditional methods [Gupta et al., 2018; Sadeghian et
al., 2019] directly infer the pedestrian’s 2D coordinates based
on past motion states which not only introduces uncertainty
in the social interactions between pedestrians but also lacks
interpretability.

To enhance the explainability of models, recent studies
adopt dimensionality reduction algorithms to extract low-
dimensional motion patterns [Hug et al., 2020; Jazayeri and
Jahangiri, 2022]. The key advantage of dimensionality re-
duction is its ability to capture interpretable motion patterns
from available trajectories. For instance, considering some
motion patterns of human, such as gradually slowing down to
turn right or making a sharp turn while moving straight, some
researchers introduce parametric curve functions [Huang et
al., 2019; Hug et al., 2022] to capture explainable motion
patterns. These approaches effectively reduce the dimension-
ality of trajectories by transforming sequential coordinates in
the spatial domain into a condensed set of key points. Specif-
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ically for the trajectory prediction task, Bae et al. [Bae et
al., 2023] employs a low-rank descriptor to approximate mo-
tion patterns from real-world trajectories. Nevertheless, this
approach adopts singular value decompose algorithm which
fails to model the complexity of interactions between pedes-
trians. Additionally, it overlooks the constraints imposed by
the environment on pedestrian movement.

In this paper, departing from the current approaches that
directly take dimensionality reduction approaches to repre-
sent interpretable motion patterns, we propose a novel frame-
work to enhance the social awareness and environmental per-
ception of motion patterns. The corresponding process of
how pedestrians decrease the uncertainty of future trajectories
from divergent to convergent is illustrated in Figure 1. The
motion patterns of target pedestrian (blue clothes) are rep-
resented using dimensionality reduction approaches, which
converges the predicted motion patterns in Figure 1 (a) to
avoid the neighbor pedestrian. In contrary, Figure 1 (b) il-
lustrates that the target pedestrian adopts visual field rules
to model environmental social interaction which converges
the predicted trajectory by perceiving the states of neigh-
bor pedestrians and neighbor trees. Our model employs an
attention-based additive fusion module integrating environ-
mental social interaction into motion patterns to obtain social-
aware motion patterns in Figure 1 (c) and we call that So-
cialMP. SocialMP can not only improve the prediction ac-
curacy but also prevent the generation of future trajectory lo-
cated in an unwalkable area. The main contributions are sum-
marized as follows:

• We propose SocialMP representation for pedestrian tra-
jectory prediction task which can effectively enhance the
social awareness and environmental perception of mo-
tion patterns.

• We devise an attention-based additive fusion mechanism
to capture the social awareness of motion patterns by
integrating environmental social interaction into motion
patterns.

• A map loss function is introduced to generate plausible
trajectories by applying additional penalty to the average
displacement error.

• Comprehensive experiments on two trajectory predic-
tion datasets demonstrate that our approach achieves
competitive results compared to the current state-of-the-
art methods.

2 Related Work
Pedestrian trajectory prediction methods can be broadly cate-
gorized into model-based and model-free approaches [Jiang-
bei et al., 2022].

Model-based Methods. These approaches use mathe-
matical rules to model pedestrian behavior, often based
on assumptions about human motion. The Social Force
model [Helbing and Molnar, 1998] applies Newtonian laws
to describe pedestrian movement. Other variations [Luber et
al., 2010; Pellegrini et al., 2009b] enhance this model to bet-
ter capture pedestrian interactions. Some models incorporate
additional techniques, such as context-aware transfers [Xia et

al., 2022] or Neural Differential Equations [Jiangbei et al.,
2022], to explain pedestrian behavior. However, these meth-
ods struggle to capture the full complexity of real-world sce-
narios and require additional rules as system scale increases.

Model-free Methods. These methods focus on learning
from data to model temporal and spatial relationships be-
tween pedestrians. Techniques such as social pooling [Alahi
et al., 2016] and generative models like CVAE [Ivanovic
et al., 2020; Xu et al., 2024], GAN [Gupta et al., 2018;
Sadeghian et al., 2019; Shilun et al., 2021], Attention-based
models [Saadatnejad et al., 2024; Cheng et al., 2023; Mes-
saoud et al., 2021; Zhang et al., 2023] and diffusion-based
models [Bae et al., 2024; Mao et al., 2023; Gu et al., 2022]
have been widely applied to capture spatio-temporal depen-
dencies and pedestrian-environment interactions. While these
models excel in data fitting, they often require specialized
networks for multi-task prediction. Model-free approaches
primarily emphasize fitting data through training deep neural
networks, which usually lack the mathematical guidance that
model-based methods inherently provide. To solve the above
problem, Wong et al. [Wong et al., 2024a] adopt an angle-
based rule to model neighbor pedestrians’ velocity, distance
and direction. In this year, they also take the occupancy map
into consideration to avoid the obstacles [Wong et al., 2024b]
. However, such methods consider all surrounding pedestri-
ans and environmental information of the target pedestrian,
which may lead to overfitting due to the limited field of view
of humans. Unlike angle-based rules, to model environmen-
tal social interaction, we define visual field rules to simulate
the real perspective of humans.

3 Methodology
Our method aims to enhance the social awareness of pedes-
trian motion patterns and reduce the uncertainty in pedestrian
intentions. The corresponding pipeline is shown in Figure 2.

3.1 Problem Definition
The task of trajectory prediction is to forecast the future
trajectories in a scene based on pedestrians’ past trajecto-
ries. In this work, we denote the 2D trajectory coordi-
nate as (x, y) and the scene map as M . Formally, we
define N as the number of pedestrians in the scene and
denote each pedestrian’s history trajectory during Th ob-
served timesteps as Hi = ((x1

i , y
1
i ), · · · , (x

Th
i , yTh

i )). Cor-
respondingly, the future ground truth trajectories are ex-
pressed as Fi = ((xTh+1

i , yTh+1
i ), · · · , (xTh+Tf

i , y
Th+Tf

i ))
during the future timesteps Tf . The trajectory prediction
task can be formulated as follows: given the target pedes-
trian’s past trajectories Hi and neighbor’s past trajectories
{H1, · · · , Hj , · · · , HN} where j ̸= i in the scene map M ,
the objective is to predict s plausible future trajectories of the
target pedestrian, denoted as F̂i.

3.2 Environmental Social Interaction
The extraction process of environmental social interaction is
mainly divided into three steps. Firstly, we convert the scene
segmentation map into a 100×100 pixel-level map. By deter-
mining the infeasible regions based on the pixel values of the
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(a) Feature Extraction (b) Additive Fusion (c) Trajectory Prediction
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Figure 2: The overall framework of SocialMP representation. (a) Feature Extraction module extracts different dimensional features using
corresponding methods. The Visual Field Rules are used to extract social interactions among humans (H-H) and environmental perception
between human and environment (H-E). The Singular Value Decompose approach is used to capture explainable motion patterns. (b) The
Additive Fusion module integrates environmental social interactions into motion patterns through an iterative cross-attention mechanism. (c)
The Trajectory Prediction module incorporates the SocialMP representation into the backbone prediction models to generate accurate and
socially-aware multi-modal predicted trajectories.

segmentation map (0 or 255), we extract the coordinates of
the infeasible areas. These coordinates are then transformed
into real-world coordinates using a homography matrix, and
these coordinates are treated as stationary pedestrians.

Next, we define visual field rules to model environmental
social interaction. Treue [Treue, 2003] proposes the concept
of visual attention and points out that humans exhibit vary-
ing degrees of attention from different perspectives. Inspired
by these, we consider the limited field of view and attention
span of humans and divide the surrounding area of the tar-
get pedestrian into three zones: (1) None Attention. This
indicates that the pedestrian or obstacle is behind the target
pedestrian and cannot be noticed. (2) Weak Attention. This
indicates that the pedestrian or obstacle is in the side-front of
the target pedestrian, which can be noticed through peripheral
vision, but it has minimal impact on the pedestrian. (3) Strong
Attention. This refers to direct attention that the pedestrian
can consciously perceive, and it exerts a strong interactive
influence. Based on these, We set the interaction impact co-
efficients α, β, and γ to constrain the influence. Specifically,
we calculate the relative angle rel(i, j) between the direction
of travel of the target pedestrian i and the surrounding pedes-
trian j. If the value is within the range from 2

3π to 4
3π, the

target pedestrian is defined as None Attention, with a value
of α; if the value is within the range from 1

3π to 2
3π or range

from 4
3π to 5

3π, the pedestrian is defined as Weak Attention,
with a value of β; if the value is between 0 and 1

3π or between
5
3π and 2π, the pedestrian is defined as Strong Attention, with
a value of γ. The values of α, β, and γ are hyperparameters
that can be adjusted to adapt to different scenarios. In this
case, we set α = 0, β = 0.5, and γ = 1.

Lastly, we use visual field rules to model environmental so-
cial interaction. Given the trajectories of N pedestrians (in-
cluding stationary pedestrians), the interactions between the
target pedestrian and its neighbors are extracted by predefined

rules. We use an angle-based approach to capture the relative
motion of each pedestrian. The angle θij between pedestrian
j and target i is computed as:

θij = arctan

(
yTh
j − yTh

i

xTh
j − xTh

i

)
, (1)

where θij represents the relative direction of pedestrian j to
pedestrian i. The representations of velocity f i

vlc, direction
f i
drt, and distance f i

dst are defined as:

f i
vlc =

1

N

N∑
j=1

∥∥∥(xTh
j , yTh

j )− (x1
j , y

1
j )
∥∥∥
2
,

f i
drt =

1

N

N∑
j=1

θij ,

f i
dst =

1

N

N∑
j=1

∥∥∥(xTh
j , yTh

j )− (xTh
i , yTh

i )
∥∥∥
2
.

(2)

Since the target pedestrian can not simultaneously focus on
every surrounding pedestrian in all directions, we divide the
vicinity of the target pedestrian into p angular partitions, and
calculate the social interaction representations fp,i

nei relative to
the target pedestrian i in the direction of p. It is important to
note that if no pedestrians are present within a specific direc-
tional area, the corresponding factors will be set to zero. Each
partition’s representation fp,i

nei is computed using the follow-
ing formula:

fp,i
nei = Concat(fp,i

vlc, f
p,i
drt, f

p,i
dst). (3)

The social interaction features f i
si for the target pedestrian i

are computed by concatenating the representations from mul-
tiple angular partitions:

f i
si = Concat(f1,i

nei, f
2,i
nei, . . . , f

p,i
nei). (4)
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3.3 Motion Pattern Descriptor
We extract interpretable motion patterns by following Eigen-
trajectory [Bae et al., 2023], which uses singular value de-
composition to represent motion patterns. The extraction pro-
cess aligns with that described in the original work.

3.4 Additive Fusion
In the additive fusion module, we first embed the temporal
observed trajectories into the original environmental social
interaction fsi and motion patterns fm, enabling the fuser
to extract spatio-temporal dependencies. Then an additive
cross-attention mechanism is adopted to compute attention
scores between environmental social interaction and motion
patterns and result in social-awared motion patterns.

Temporal Embedding. Environmental social interaction
capture the spatial interactive features at time step th, but do
not inherently account for the sequence of observed trajecto-
ries. To address this, we embed the temporal observed trajec-
tories into the social representation fsr to capture temporal
dependencies. Motion patterns consist of r singular vectors
obtained from the spatio-temporal data decomposition of a
scene, encapsulating spatio-temporal information. We also
embed the initial positions of pedestrians into the motion pat-
terns to retain information about their initial positions. For-
mally:

Xi
s = MLP(tanh(Concat(MLP(f i

si),MLP(Hi)))),

Xi
m = MLP(tanh(Concat(f i

m, Hi[0]))),
(5)

where Xi
s represents the temporal environmental social inter-

action with a shape of (N,T, ds) and Xi
m denotes the tempo-

ral motion patterns with a shape of (N,T, dm). Hi and Hi[0]
represent the observed trajectories and the original position
of pedestrian i, respectively.

Cross Attention Mechanism. An attention-based mecha-
nism is employed to integrate high-dimensional environmen-
tal social interaction f i

si into low-dimensional motion pat-
terns f i

m. We utilize cross attention to compute attention
scores between environmental social interaction and motion
patterns. The formula for calculating the attention scores of
Xm on Xs is as follows:

CA(Xm, Xs) = Softmax
(
QKT

√
ds

)
V, (6)

where Q = XmWQ and K = V = XsWK . Through the
multi-head cross-attention mechanism, a fused representation
SF i is obtained and concatenated with the original represen-
tation. Mathematically,

Xi,k
m = MLP

(
Concat(CA(Xi,k−1

m , Xi,k−1
s ), Xi,k−1

m )
)
,

Xi,k
s = MLP

(
Concat(CA(Xi,k−1

m , Xi,k−1
s ), Xi,k−1

s )
)
,
(7)

where k is a hyperparameter and we empirically set k to 6.

3.5 Loss Function
SocialMP uses additional loss functions Lsmp and Lmap to
train the baseline models. Specifically, to enhance the plausi-
bility of the predicted endpoint, we first convert the predicted

real-world coordinates of pedestrians into pixel-level coordi-
nates on the segmentation map using the homography matrix
provided by the dataset. Then we determine whether the pre-
dicted coordinate points lie within unwalkable areas by ex-
amining the pixel values of the scene segmentation map. This
process is expressed as:

Map(x, y) =

{
1, if (x,y) in the obstacle area,
0, otherwise, (8)

while the final predicted endpoint falls within unwalkable
area, a penalty is applied to the model’s loss function. The
map loss function is defined as follows:

Lmap = Map(xTw
n , yTw

n )

· 1

N

N∑
n=1

∥∥(x̂Tw
n , ŷTw

n )− (xTw
n , yTw

n )
∥∥
2
,

(9)

here, we use final displacement error for Lmap to provide an
additional penalty when the model predicts an unreasonable
endpoint.

For the loss function of motion patterns, we use its coeffi-
cient c to measure the degree of deviation, which is calculated
as shown in the following equation:

Lsmp =
1

N

N∑
n=1

∥ĉf,n − cf,n∥. (10)

The final loss is a combination of two loss functions. For-
mally,

Loss = λ1Lsmp + λ2Lmap, (11)

where we empirically set λ1 and λ2 to 1.

4 Experiments
4.1 Experimental Setup
Datasets. The ETH [Pellegrini et al., 2009a] and
UCY [Lerner et al., 2007] (ETH-UCY) dataset covers
1523 pedestrians’ trajectories across five scenes: ETH,
Hotel, Univ, Zara1 and Zara2. These trajectories are based
on real-world coordinates captured by an aerial surveillance
camera. Similar to the method [Gupta et al., 2018], we
adopt the standard leave-one-out strategy for the training and
evaluation. Stanford Drone Dataset (SDD) [Robicquet et al.,
2016] has 60 drone videos, including 5243 pedestrians in
eight different university campus scenes. Following previous
work [Liang et al., 2020], we split 60% videos to train, 20%
to validate, and 20% to test in pixel coordinates.

Metrics. We use minADE20/minFDE20 [Alahi et al., 2016;
Gupta et al., 2018] metrics that the best Average/Final Dis-
placement Error (ADE/FDE) over 20 generated trajectories
to measure the prediction accuracy and endpoint accuracy
respectively. Simultaneously, we also introduce the metric
TCC/COL [Tao et al., 2020; Liu et al., 2021], therein The
Temporal Correlation Coefficient measures the Pearson cor-
relation coefficient of motion patterns, and the Collision Rate
calculates the percentage of collision cases between pedestri-
ans on the predicted trajectories.
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Dataset SGCN/SMP-SGCN STGCNN/SMP-STGCNN Implicit/SMP-Implicit
ADE↓ FDE↓ TCC↑ COL↓ ADE↓ FDE↓ TCC↑ COL↓ ADE↓ FDE↓ TCC↑ COL↓

ETH 0.57/0.35 1.00/0.55 0.55/0.51 1.69/1.16 0.65/0.34 1.10/0.57 0.51/0.47 1.80/1.38 0.66/0.34 1.44/0.55 0.53/0.45 1.93/1.22
HOTEL 0.31/0.12 0.53/0.19 0.30/0.27 2.52/1.49 0.50/0.14 0.86/0.23 0.27/0.28 3.94/1.58 0.20/0.13 0.36/0.20 0.29/0.28 3.67/1.43
UNIV 0.37/0.24 0.67/0.39 0.69/0.64 6.85/7.33 0.44/0.23 0.80/0.39 0.64/0.74 9.69/8.71 0.31/0.22 0.60/0.39 0.66/0.83 7.74/8.58

ZARA1 0.29/0.21 0.51/0.33 0.75/0.83 0.79/1.24 0.34/0.22 0.53/0.39 0.71/0.82 2.53/1.29 0.25/0.21 0.50/0.39 0.71/0.82 2.38/1.27
ZARA2 0.23/0.14 0.42/0.25 0.49/0.72 2.23/6.09 0.31/0.16 0.48/0.28 0.39/0.68 7.15/5.99 0.22/0.15 0.43/0.26 0.47/0.75 5.48/5.58

AVG 0.35/0.21 0.63/0.34 0.55/0.59 2.82/3.46 0.45/0.22 0.75/0.37 0.50/0.60 5.02/3.79 0.33/0.21 0.67/0.36 0.53/0.63 4.17/3.62
SDD 11.42/7.83 18.89/13.26 0.57/0.66 4.45/1.26 20.76/8.54 33.18/13.74 0.47/0.59 0.68/0.46 15.74/9.26 23.15/13.47 0.55/1.75 1.64/2.33

Table 1: Comparisons between baseline models and the corresponding models with the designed SocialMP (SMP-based) through Th = 8
frames of observations to predict future Tf = 12 frames of trajectories. Bold: Best.

Method SocialGAN SOPHIE Pecnet BCDiff Graph-TERN MRL SMEMO SMP-SGCN(Ours)
ADE↓ 27.23 16.27 9.96 9.05 8.43 8.22 8.11 7.83
FDE↓ 41.44 29.38 15.88 14.86 14.26 13.39 13.06 13.26

Table 2: Comparisons with current state-of-the-art methods on SDD. Bold: Best. Underline: Second Best.

Method Metrics
ADE↓ FDE↓ TCC↑ COL↓

Social-LSTM 0.72 1.54 0.21 6.74
Social-GAN 0.61 1.21 0.37 5.43
PECNet 0.54 0.87 0.43 6.42
Trajectron++ 0.31 0.52 0.36 5.42
STGAT 0.31 0.62 0.44 2.43
AgentFormer 0.23 0.39 0.41 4.34
GroupNet 0.25 0.44 0.58 2.12
GP-Graph 0.23 0.39 0.51 3.24
Graph-TERN 0.24 0.38 0.45 3.23
SMEMO 0.22 0.35 0.46 4.32
SGCN 0.35 0.63 0.55 2.82
STGCNN 0.45 0.75 0.50 5.02
Implicit 0.33 0.67 0.53 4.17
SMP-SGCN (Ours) 0.21 0.34 0.59 3.73
SMP-STGCNN (Ours) 0.22 0.37 0.60 3.79
SMP-Implicit (Ours) 0.21 0.36 0.63 3.62

Table 3: Comparisons with the current state-of-the-art methods on
ETH-UCY dataset. Bold: Best. Underline: Second Best.

Baseline models. We evaluate our approach against com-
mon baselines such as SGCN [Shi et al., 2021], STGCNN
[Mohamed et al., 2020], and Implicit [Mohamed et al.,
2022]. Other baseline methods are used to compare with the
state-of-the-art (SOTA) performance.

4.2 Quantitative Analyses
Performance Evaluation of Representations. We evaluate
some original models and the corresponding models (SMP-
based) with the SocialMP on ETH-UCY and SDD. As illus-
trated in Table 1, SMP-based models decrease the values of
ADE, FDE, COL and increase the value of TCC in most cases
which demonstrates that the SocialMP representations exhibit
superior performance compared to the baseline models. In
particular, the results of ADE and FDE decrease by at least
36.2% and 45.2% compared to the model without representa-
tions. In terms of reliability measures, except for a slight per-
formance degradation in COL, all other metrics’ results are
improved on the ETH-UCY and SDD datasets. The experi-

mental results demonstrate that our SocialMP can effectively
integrate social awareness into motion patterns to handle dif-
ferent scenarios.

Comparisons with State-of-the-Art Models. We com-
pare some models inserting SocialMP with the state-of-the-
art methods on SDD and ETH-UCY respectively. Table 2
illustrates that SGCN with SoicalMP (SMP-SGCN) obtains
competitive performance on SDD. In detail, SMP-SGCN
achieves impressive predictive performance with 3.5% bet-
ter ADE compared with SMEMO and has a performance de-
crease of only 1.5% in the FDE compared to the SMEMO
model. In Table 3, compared with SMEMO, SMP-SGCN
achieves better performance with 4.5% better ADE, 2.9% bet-
ter FDE, 22.0% better TCC and 13.7% better COL. Specifi-
cally, SMP-SGCN achieves state-of-the-art performance on
the ADE and FDE metrics and SMP-Implicit reached state-
of-the-art results on the TCC metric. The performance on the
COL of SMP-based models has slightly declined compared to
these later methods, and the reason is that SocialMP empha-
sizes collision avoidance between pedestrians and obstacles,
overlooking potential collisions between pedestrians. These
results demonstrate that SocialMP-based models can achieve
competitive results, and further reflect that the SocialMP can
extract more effective representation of motion patterns.

4.3 Qualitative Analyses
Unimodal trajectories of all pedestrians on the scene of
UNIV. In Figure 3, we visualize the effect of predicting all
pedestrians simultaneously. Visual Field SMP-SGCN utilizes
the hyperparameters α, β, and γ to adjust the intensity of at-
tention to social interactions, controlling the degree of influ-
ence through three types of attention: none, weak, and strong.
Pedestrians with none attention (gray lines) do not affect the
motion patterns of the target pedestrian. Weak attention (or-
ange lines) slightly influences the motion patterns of the tar-
get pedestrian, enabling the model to better simulate pedes-
trian movement without disrupting the target pedestrian’s tra-
jectory. Strong attention (red lines) places greater empha-
sis on social interactions, effectively preventing conflicts be-
tween the target pedestrian and neighboring pedestrians, re-
sulting in more coordinated trajectories. By flexibly adjusting
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Ground-Truth
Observed

Visual Field SMP-SGCN 
Angle-based SMP-SGCN

Target Pedestrian

Neighbor Pedestrians

Ground-Truth
Observed

Visual Field SMP-SGCN 
Angle-based SMP-SGCN

Target Pedestrian

Neighbor Pedestrians

None Attention
Weak Attention
Strong Attention

Figure 3: The visualization of predicted trajectories of visual field SMP-SGCN (Ours) and angle-based SMP-SGCN (original) in the crowed
UNIV scene.

ETH HOTEL UNIV ZARA1 ZARA2

   

LITTLE0 COUPA0 HYANG0BOOKSTORE0DEATHCIRCLE0

Observed Ground truth SF-ImplicitImplicit SF-Implicit(multi-modal)Observed Ground truth SF-ImplicitImplicit SF-Implicit(multi-modal) EndpointObserved Ground truth SF-ImplicitImplicit SF-Implicit(multi-modal) Endpoint

Figure 4: The visualization of predicted trajectories of SMP-Implicit (Ours) and Implicit (original) in ETH-UCY and SDD scenes. The first
row of five scenes represents the multi-modal visualization of five sub-scenes from ETH-UCY, while the second row of five scenes shows the
best of 20 trajectories visualization from SDD.

the weight of social interactions, Visual Field SMP-SGCN
effectively avoids overfitting, captures the dynamic nature of
social interactions, and produces predictions that are closer to
the ground truth trajectory.

Multi-modal trajectories on ETH-UCY. In the top row
of Figure 4, we visualize the predicted multi-modal trajecto-
ries from five sub-scenes on ETH-UCY dataset respectively,
which involves different scenes with sparse crowds or dense
crowds including turning right and going straight. The SMP-
Implicit predicts reasonable and accurate trajectories. Partic-
ularly, in the UNIV scene with high-density crowds, SMP-
Implicit learns the motion patterns of slowly turning right,
while the motion patterns with quickly turning right predicted
by Implicit deviate from the ground truth trajectory. In the
ZARA1 and ZARA2 scenes, the multi-modal trajectories of

target pedestrian do not pass through the building, cars and
other unwalkable area. The reason is that the surrounding
obstacle information is integrated into the SocialMP repre-
sentations. These results demonstrated that our SocialMP
representations can effectively handle complex scenarios and
prevent the pedestrians from passing through the unwalkable
area.

Unimodal trajectories on SDD. The unimodal trajectories
on SDD presented in Figure 4 intuitively reflects the accuracy
of SMP-Implicit. We can see that SMP-Implicit performs
better accuracy than the Implicit. Specifically, in the scene
of BOOKSTORE0, the predictions of SMP-Implicit initially
deviate from the ground truth trajectory in order to avoid the
trees. Then, the pedestrian adjusts the motion pattern to walk
toward the final position and achieve better accuracy com-
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Features SGCN STGCNN Implicit
ADE↓ FDE↓ TCC↑ COL↓ ADE↓ FDE↓ TCC↑ COL↓ ADE↓ FDE↓ TCC↑ COL↓

MP 0.218 0.362 0.590 3.663 0.229 0.383 0.589 6.212 0.224 0.372 0.619 5.432
SI 0.242 0.476 0.453 4.474 0.263 0.394 0.637 6.531 0.325 0.379 0.554 6.430

SI+MP 0.227 0.353 0.539 3.213 0.232 0.386 0.573 4.683 0.227 0.363 0.563 5.437
SI+SO 0.236 0.349 0.572 3.769 0.236 0.381 0.627 5.898 0.232 0.371 0.674 3.865

MP+SO 0.238 0.357 0.563 3.652 0.246 0.379 0.512 4.336 0.219 0.368 0.474 5.476
SI+SO+MP(Ours) 0.213 0.343 0.593 3.733 0.218 0.373 0.597 3.790 0.210 0.359 0.625 3.621

Gain(%) +2.3% +1.4% +0.5% -16.2% +4.8% +1.8% -6.3% +12.6% +4.1% +1.1% -7.3% +3.7%

Table 4: Ablation studies on the components of SocialMP on the ETH-UCY dataset. “SI”, “SO” and “MP” indicate whether social interac-
tions, surrounding obstacles and motion patterns are included in SocialMP. Bold: Best.

I I  + I I  + I  + LO M M MO O

Unwalkable areaPredicted pixel trajectoriesGround truth pixel trajectoriesObserved pixel trajectories Unwalkable areaPredicted pixel trajectoriesGround truth pixel trajectoriesObserved pixel trajectories

Figure 5: The visualization of the impact of map loss function on generated trajectories with SMP-SGCN in BOOKSTORE.

pared to the Implicit method.

4.4 Ablation Studies
Effectiveness of each component on SocialMP. We vali-
date the effectiveness of each component of SocialMP and
the quantification results on ETH-UCY are listed in Table 4.
Therein, we compare “SI+SO+MP” (SocialMP) with its in-
dividual (“MP”,“SI”) and combined components (“SI+MP”,
“SI+SO”, “MP+SO”) features on ETH-UCY datasets, where
“Gain” represents the performance improvement results be-
tween the “SI+SO+MP” and the best of other features. Com-
paring “MP” with “SI+SO”, we can see that using motion
patterns as trajectory features generally yields better perfor-
mance. This comparison also indicates that motion patterns
have a superior representational expression compared to envi-
ronmental social interaction. When comparing “SI+SO+MP”
to “MP”, SocialMP achieves an average improvement of
2.73% and 1.43% on ADE and FDE compared with MP-
based models. Though, such improvements come at the price
of a decline in part TCC and COL performances. The rea-
son is that the model’s training loss function is primarily de-
pended on ADE and FDE, without incorporating TCC or COL
metrics into the loss function. These results demonstrate that
although individual environmental social interaction yields
worse performance than solely relying on motion patterns for
predictions, integrating environmental social interaction into
motion patterns can still enhance the model’s performance.

Validation of map loss function. To validate the effec-
tiveness of map loss function, we visualized predicted trajec-
tories of SMP-SGCN in the BOOKSTORE scene. As shown
in Figure 5, in the first column, IO solely applies pedestrians’

coordinates without map and the predicted trajectories pass
through the unwalkable area. In the middle column, IO + IM
takes map IM into consideration based on IO model and the
predicted trajectory gradually moves away from the unwalk-
able area. There still has a small portion of the predicted tra-
jectory lies within the unwalkable area, and the reason is that
the loss function encourages the model to generate trajecto-
ries that are as close as possible to the ground truth trajectory.
In the last column, IO + IM +LM incorporates an extra map
loss function LM to impose a penalty when the predictions
of SMP-SGCN pass through the unwalkable area. The gen-
erated motion patterns of turning left are away from the un-
walkable area, which demonstrates that the effectiveness of
proposed map loss function.

5 Conclusion

In this work, we present SocialMP, an innovative represen-
tation for pedestrian trajectory prediction aiming to reduce
the uncertainty in pedestrian interactions and enhance envi-
ronmental perception ability. By incorporating environmen-
tal social interactions into motion patterns via an attention-
based additive fusion mechanism, SocialMP effectively mod-
els complex social behaviors and accounts for physical con-
straints. Additionally, the proposed map loss function en-
sures more plausible predictions by penalizing those trajec-
tories that pass through unwalkable areas. Future research
will explore to leverage multi-modal data, such as LiDAR or
point clouds, to further enhance prediction accuracy.
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Michael Arens. Introducing probabilistic bézier curves for
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