Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Fine-grained Prompt Screening: Defending Against Backdoor Attack on
Text-to-Image Diffusion Models

Yiran Xu', Nan Zhong', Guobiao Li', Anda Cheng®, Yinggui Wang?, Zhenxing
Qian'* and Xinpeng Zhang'
1School of Computer Science, Fudan University
2 Ant Group
yrxu23@m.fudan.edu.cn, {nzhong20,20210240200} @fudan.edu.cn,
{andacheng.cad,wyinggui} @gmail.com,{zxqian,zhangxinpeng } @fudan.edu.cn

Abstract

Text-to-image (T2I) diffusion models exhibit im-
pressive generation capabilities in recently studies.
However, they are vulnerable to backdoor attacks,
where model outputs are manipulated by malicious
triggers. In this paper, we propose a novel input-
level defense method, called Fine-grained Prompt
Screening (GrainPS). Our method is motivated by
the phenomenon, i.e., Semantics Misalignment,
where the backdoor trigger causes the inconsis-
tency between the cross-attention projections of ob-
ject words (the key words to determine the main
content of the generated image) and their true se-
mantics. In particular, we divide each prompt into
pieces and conduct fine-grained analysis by exam-
ining the impact of the trigger on object words in
the cross-attention layers rather than their global in-
fluence on the entire generated image. To assess
the impact of each word on object words, we for-
mulate “semantics alignment score” as the metric
with a carefully crafted detection strategy to iden-
tify the trigger. Therefore, our implementation can
detect backdoor input prompts and localize of trig-
gers simultaneously. Evaluations across four ad-
vanced backdoor attack scenarios demonstrate the
effectiveness of our proposed defense method.

1 Introduction

Recent advanced Text-to-Image (T2I) diffusion models
demonstrate powerful controllable image synthesis capabil-
ities [Dhariwal and Nichol, 2021; Rombach et al., 2022]
and have been widely applied in various fields such as ad-
vertising design and artistic creation. Despite their success,
training an effective T2I diffusion model is a challenging
task, often requiring large-scale high-quality data and sub-
stantial computational resources. To mitigate this problem,
practitioners with limited resources commonly (a) download
pre-trained T2I diffusion models from open-source platforms
(e.g., GitHub and Hugging Face), or (b) fully outsource the
model training to third-party providers (e.g., cloud service
platforms).
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Figure 1: Target images generated by T2I diffusion models with (a) a
Universal Backdoor and (b) a Class-Specific Backdoor, respectively.
Note that the triggers are colored red.

Unfortunately, the approach outlined above may expose
T2I diffusion models to backdoor attacks [Struppek et al.,
2023; Chou et al., 2024; Huang et al., 2024; Zhai et al.,
2023], where a malicious model provider manipulates the
training dataset or process to control the behavior of pre-
trained models. A poisoned T2I diffusion model (i.e., one
with a backdoor) performs well on benign inputs but gen-
erates specific target content when prompted with poisoned
inputs containing a predefined trigger. Once deployed in real-
world systems, such a poisoned model could pose significant
risks. For instance, the generated target images might contain
offensive content, such as pornography, violence, or racial
stereotypes, thereby causing harm to both users and society.
Additionally, it could produce mismatched training samples
during data augmentation, potentially compromising down-
stream deep learning models that are fine-tuned on those sam-
ples [Trabucco et al., 2024].

Based on the influence scope of the trigger, existing back-
door attacks on T2I diffusion models can be broadly classi-
fied into two categories: universal backdoor attack and class-
specific backdoor attack. In universal backdoor attacks, the
trigger suppresses and dominates the representation of all
other benign words in the prompt, compelling the poisoned
model to generate content-specific or semantically defined
outputs, as illustrated in Figure 1 (a). In contrast, in class-
specific attacks, the trigger selectively alters the semantics
of a target object (e.g., “cat”) in the prompt, yielding semi-



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

specified images with a predefined object (e.g., “dog”) and
diverse backgrounds described by the remaining words, as
depicted in Figure 1 (b).

Despite the growing diversity of backdoor attacks in T2I
diffusion models, comprehensive research on effective back-
door defense strategies remains scarce. Existing defenses
detect backdoor inputs based on the restrictive assumption
of strong binding between the trigger and the target image.
UFID [Guan et al., 2024] posited that trigger plays a domi-
nant role and the generated images will not be affected even
when random phrases are added. Building on similar insights,
T2IShield [Wang er al., 2024c] detects backdoors based on
the assimilation phenomenon of cross-attention maps caused
by the trigger. Although these methods show effective-
ness against universal backdoors, they are weak in defending
class-specific backdoor attacks because the assumptions they
are based on do not hold in this type of backdoor attack.

In this paper, we focus on detecting backdoor prompts
during inference time. Inspired by the fact that the output
of a T2I diffusion model is guided by the projections (i.e.,
keys K and values V ) of text embeddings in the cross-
attention layers, we identify that the trigger activates a back-
door by disrupting the projections of object words. This dis-
ruption causes a misalignment with the true semantics of ob-
ject words, which can be quantified by measuring the simi-
larity of their projections in the cross-attention layer. Based
on this observation, we propose a training-free input-level
backdoor detection (IBD) method called Fine-grained Prompt
Screening (GrainPS), which aims to identify and filter mali-
cious input prompts. Specifically, we first decompose an in-
put prompt into segments and construct a series of “Modifier-
Core Phrase Combination”, each consisting of a core word
(i.e. object word which is the key term determining the main
content of the generated image) and a modifier word (i.e. non-
object word). Then, we measure the similarity between the
projections of the combination and the core word in the cross-
attention layer with a similarity calibration mechanism. If the
similarity falls below a predefined threshold for a significant
number of cases, the modifier word is likely to be the trigger.
In conclusion, our main contributions are summarized below:

* We reveal that existing backdoor defense methods as-
sume a strong binding between the trigger word and a
specific target image. This assumption is overly restric-
tive, leading to a lack of generalization.

e We propose an effective IBD method, Fine-grained
Prompt Screening (GrainPS), to filter out poisoned test
prompts and locate the trigger.

» Experiments show that our GrainPS outperforms exist-
ing methods on both the universal backdoors and class-
specific backdoors.

2 Related works

2.1 Backdoor Attacks on Text-to-image Diffusion
Models
Backdoor attack is an emerging topic in the machine learning

security community [Gu et al., 2019; Nguyen and Tran, 2020;
Li et al., 2021; Zhong et al., 2022; Guo et al., 2023b].

The traditional backdoor attack aims to compromise deep
models, making them return normal results for clean in-
puts, but return attacker-desired results when the trigger ap-
pears. Recently, some researchers have found that back-
door attacks also pose a threat to the Large Language Model
[Xiang et al., 2024; Li et al., 2024; Zhang et al., 2024],
Diffusion Model [Chou et al., 2023; Chen et al., 2023;
Zhai et al., 2023; Struppek et al., 2023; Chou et al., 2024;
Huang er al., 2024] and other advanced models. In the sce-
nario of diffusion model, the goal of the attacker is to ma-
nipulate the diffusion model to generate an image containing
specific content when the prompt includes the trigger. Wang
et al. [2024c] categorize the backdoor attacks on diffusion
models into two types which leverage the vulnerability of the
text encoder and U-Net, respectively. In this paper, we cate-
gorize backdoor attacks on diffusion models into two types:
Universal backdoor attacks and Class-Specific backdoor
attacks, based on the influence scope of the trigger.

For Universal backdoor attacks, the trigger causes the gen-
erated image to consistently align with a pre-defined target
image, independent of the other words in the prompt. Strup-
pek et al. [2023] propose Rickrolling the artist, utilizing ho-
moglyphs as the trigger. By minimizing the text embedding
distance between the poisoned (with trigger homoglyph in it)
and target prompts, the attacker can control the model to cre-
ate the target concept. Chou et al. [2024] modify the objective
function and fine-tune the model with Low-Rank Adaptation
(LoRA) [Hu er al., 2022] to inject backdoors called Villan-
Diffusion.

For Class-Specific backdoor attacks, the trigger causes the
model to generate an image with the content specified by
the attacker (e.g., “dog”), but only for the specified class
(e.g., cat). Huang et al. [2024] utilize existing personaliza-
tion algorithms, e.g., Textual Inversion [Gal et al., 2022],
as a shortcut to inject backdoors into T2I diffusion models.
Wang er al. [2024a] capitalize on the capability of model
editing and come up with a training-free and data-free back-
door attack, named EvilEdit. Other methods inject backdoors
by constructing poisoned training data [Zhai et al., 2023;
Wang et al., 2024b; Shan et al., 2024].

2.2 Backdoor Defense

There have been numerous studies on backdoor defense
[Wang et al., 2019; Gao et al., 2019] and focus on several
key areas. These include (1) data sanitization techniques
[Tran er al., 2018] to detect and remove backdoor triggers
from training data, (2) trigger inversion-based [Wang et al.,
2019; Wang et al., 2023] backdoor defense aiming to iden-
tify and remove the trigger patterns used in backdoor at-
tacks, and (3) anomaly detection systems [Gao et al., 2019;
Guo et al., 2023a; Hou et al., 2024] that identify suspi-
cious behavior during model inference. However, traditional
defenses on classifiers capitalize on the phenomenon that
the trigger will control the output predicted label. Thus,
these defending methods cannot be applied directly to diffu-
sion models. There are also some backdoor defense meth-
ods on unconditional diffusion models [An et al., 2024;
Sui et al., 2024] and Multi-Modal models [Sur et al., 2023;
Zhu et al., 2024]. However, backdoor attacks on T2I diffusion
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Figure 2: Cross-attention maps of benign prompt and triggered
prompts in different backdoor attacks. On the left side of each row
is the name of the attack. The first image represents the target im-
age generated under that attack, while the subsequent images show
the cross-attention maps for each word in the prompt. Note that the
triggers are colored red.

models do not affect the noise input and only inject triggers
in text prompts, which makes these methods unsuitable.

In order to resist the backdoor attack in the T2I diffusion
models, Wang ef al. [2024c] introduced a defensive approach
known as T2IShield, to detect, localize, and mitigate back-
door attacks targeting Text-to-Image diffusion models. The
detection of backdoor input is facilitated by analyzing the
“Assimilation Phenomenon” observable in the cross-attention
maps activated by the backdoor trigger. Guan er al. [2024]
propose UFID, leveraging discrepancies in output diversity
to differentiate between benign and triggered prompts effec-
tively.

3 Motivation

In this section, we first analyze the drawbacks of existing
backdoor defense methods on T2I diffusion models. We then
introduce the motivation of our method.

3.1 The weakness of prior work

The “Assimilation Phenomenon” proposed in T2IShield
[Wang et al., 2024c] occurs during the inference time of poi-
soned T2I diffusion models and refers to the trigger domi-
nating and assimilating the attention maps (i.e., intermedi-
ate features) of all other benign words. As shown in the 2nd
and 3rd rows of Figure 2, the cross-attention maps for each
word in the prompt are highly consistent when the backdoors
Rickrolling or VillanDiffusion are active. However, this phe-
nomenon is NOT observed in EvilEdit and Personalization.
The cross-attention maps of the prompt behave similarly to
the clean prompt (first row of Figure 2), except that the trig-
ger “beautiful cat” is related to the target object “zebra” in
EvilEdit and “backpack” in Personalization.

The underlying cause of the “Assimilation Phenomenon’ is
that in universal backdoor attacks (e.g., Rickrolling and Vil-
lanDiffusion), the trigger strongly binds with a specific tar-
get image and dominates the influence of other words in the
prompt, leading to the generation of a nearly identical tar-
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Figure 3: Correlation between text embedding projections (the val-
ues V in the first cross-attention layer), generated images, prompts,
and the mean similarity of the text embedding projections across
all cross-attention layers. 3): Rickrolling, @®: VillanDiffusion, Q):
Personalization, 6): EvilEdit. Note that the trigger is colored red.

get image, regardless of the specific content of the remain-
ing prompt. In contrast, the class-specific backdoor attacks
only change the content of the specified class (i.e., the victim
class). Meanwhile, the rest of the prompt still affects the gen-
erated image. For example, the generated image in EvilEdit
(fourth row of Figure 2) still contains the words “walking
among people”, which is not affected by the trigger. Sim-
ilarly, adding random phrases to poisoned prompts will still
influence the generated images in class-specific attack scenar-
ios, which causes UFID to fail.

In conclusion, state-of-the-art (SOTA) defense methods,
such as T2IShield and UFID, show effectiveness against uni-
versal backdoors but are weak in defending class-specific
backdoor attacks. So in this paper, we propose GrainPS,
which is based on a weaker but more generalizable assump-
tion that the trigger may only impact some object words in-
stead of the entire image. Therefore, GrainPS can detect both
universal attacks and class-specific attacks, and localize the
trigger at the same time.

3.2 Misalignment in cross-attention layers

In T2I diffusion models, the cross-attention mechanism
serves as a bridge between texts and images. During the
image generation process, the U-Net employs the cross-
attention component to ensure that the generated image aligns
with the given text prompt. The output of the cross-attention
layer is:

QK™

e
where the query () represents the latent representation of the
noisy image at the current time step, the keys X = Wj,c and
values V' = W, are projections of the text embedding c
using learned projection matrices W, and W, respectively.
And dj, is the dimension of queries and keys.

Wang et al. [2024a] highlighted that the essence of back-
door attacks in T2I diffusion models lies in aligning the pro-
jection of the trigger with that of the backdoor target. Build-
ing upon this insight, we argue that the trigger disrupts the
projection of object words, causing a misalignment with their

CrossAttention(Q, K, V) = softmax(

v, (@
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Figure 4: The pipeline of our method. Pink words or words in pink blocks are object words. (a) Word Split: Starting from computing
POS tags and pairing N x K pairs of “Modifier-Core Phrase Combinations”. The trigger in this example is “beautiful”. (b) Semantics
Alignment Score Calculation: For each combination, calculate the average similarity of their projection matrices in all cross-attention
layers and calibrate this score with a BERT model. (c) Backdoor Detection: The histogram shows the count of Semantics Alignment Scores
below the threshold for each word. If this count exceeds the limit, the word is considered to trigger the backdoor.

true semantics which will not appear for benign words. As
illustrated in Figure 3, in a clean pre-trained stable diffusion
model, the projection of “beautiful cat” (2nd line) and “cat”
(1st line) are highly similar. However, when the trigger (red
words) is introduced (6th line), the projection of “cat” under-
goes a dramatic shift, deviating significantly from its original
projection. We term this anomaly “Semantics Misalignment”,
reflecting the ability of the trigger to distort the alignment
between the projection of the object word in cross-attention
layers and its true semantics. “Semantic Misalignment” is
not exclusive to EvilEdit [Wang er al., 2024al. Instead, it is
a common characteristic observed in many backdoor attacks,
as shown in lines 3 to 5.

4 Methodology

In this section, we provide a detailed introduction to our
proposed novel backdoor detection framework Fine-grained
Prompt Screening (GrainPS) based on the “Semantics Mis-
alignment” phenomenon. As Figure 4 shows, our method
contains 3 major steps: (1) Word Split, (2) Semantics Align-
ment Score Calculation, and (3) Backdoor Detection.

4.1 Word Split

Since a prompt may contain various objects with descrip-
tive words and phrases, which makes it hard to analyze what
causes the backdoor to activate, our approach first divides a
prompt into pieces and designs a split method that is carried
out in the detection process, as shown in Figure 4 (a).

Specifically, we first compute part-of-speech (POS) tags
for each word in a prompt, a linguistic category that refers
to the syntactic role of a word in a sentence, and extract all
object words. Given an input prompt {wy, ws, ..., wx }, We
perform POS tagging with spaCy, and extract object words
Wobj = {Woy , Woy, -, Wor }, Where K < N.

We then examine the interactions between each word and
all object words to assess whether a word dominates all cat-
egories. For each word w; in the prompt, we pair it with ev-
ery word in w,p; forming combinations com;; j = {w;, wo, },
resulting in N x K pairs. These pairs are referred to as
“Modifier-Core Phrase Combinations”, where the core word,
such as “cat”, determines the main content of the generated
image, while other words, such as “beautiful”, serve to mod-
ify the core word.

4.2 Semantics Alignment Score Calculation

Once we obtain N x K pairs of “Modifier-Core Phrase Com-
binations”, for each combination, our method examines it
based on the “semantics misalignment” phenomenon by cal-
culating “Semantics Alignment Score”, short as SA score.

Specifically, given a pair of “Modifier-Core Phrase Com-
bination” com; ; = {w;,w,,}, we define semantics align-
ment score as the average similarity between the projections
of the combination and the object word in all cross-attention
layers. com; ; and the object word w,; are sent into the
diffusion model respectively. Firstly, the text encoder 7
projects the tokenized com; ; and w,, into the text embed-
dings ccom,; ; = To(com; ;) and c,; = To(w,; ).

Then, we calculate the similarity of their projection matri-
ces in each cross-attention layer, formulated as follows:

I/Vlccomi,j . choj
| Wiccom,.; [Ill Wico, II”

2

Simea, (com; ;) =

where W, represents the projection matrices for keys and
values in the [-th cross-attention layer. Take the average of
the projection similarities in each cross-attention layer as the
evaluation metric:
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Since the defender is unware of the trigger type, GrainPS
requires scanning all words in a prompt. However, we ob-
serve that some words naturally exert a significant impact on
certain words, which is consistent with semantic understand-
ing. As illustrated in Figure 5, the Simc 4 falls below the
threshold obtained with clean prompts in both cases, leading
to a higher false positive rate. To mitigate the risk of misjudg-
ment, we introduce an NLP model as a baseline for seman-
tic comprehension to conduct similarity calibration, as shown
in Figure 4 (b). The NLP model projects each “Modifier-
Core Phrase Combination” com; ; into the text embeddings
f(com; ;). For implementation, we utilize a pre-trained lan-
guage model, BERT [Kenton and Toutanova, 2019]. The final
output of BERT includes 768-dimensional vectors, with the
[CLS] token representing the entire sentence. Subsequently,
the similarity between the combination and the core word is
calculated:

__ [fleomiy) - f(w,,)
| f(comij) I f(wo,) |l

Then, use Simyq,; to calibrate the semantics alignment score
for each combination and core word:

“

Simyeqt(com; ;)

SA(com; ;) = Simca(com; j) — Simyezt(com; ;) (5)

With the similarity calibration mechanism, the S'A scores
in the cases shown in Figure 5 exceed the threshold, thus im-
proving the detection performance.

4.3 Backdoor Detection

After obtaining SA score of a combination com;; =
{wi, w,, }, our method assesses whether it is malicious by
comparing its SA score to a predefined threshold ¢. When
SA(com; ;) < t, w; is marked as suspicious. More-
over, we found that the relative position between the core
word and the modifier word significantly influences the im-
pact of the modifier word. To account for this, we assign
greater weight to neighboring words. Specifically, if the core
word and modifier word are adjacent and SA(com; ;) <
t, it is counted with a weight of 2. After scanning w;
across all object words, we count the number of instances
where w; causes a semantic misalignment, represented as
[{com; ; = {wi, wo, }|SA(com; ;) < t}|. If this count ex-
ceeds m, the prompt is identified as a poisoned prompt, and

w; 1s flagged as the potential trigger. As shown in Figure 4(c),
set m = 2 to detect backdoor prompt.

The selection of the threshold ¢ plays a crucial role in the
effectiveness of the backdoor detection process. It is essential
to find a balance that minimizes false positives (i.e., misclas-
sifying clean prompts as backdoor) while still ensuring the
detection of true backdoor prompts. To determine the ap-
propriate threshold, we followed the procedure outlined be-
low. First, we utilized a pre-trained T2I diffusion model and
randomly selected 1,000 clean prompts from the MSCOCO
dataset [Lin er al., 2014]. For each prompt, we split it into
individual words and paired each word with the object words
in the prompt to form “Modifier-Core Phrase Combinations”.
Then, we calculated the SA score for each of these combina-
tions. From all prompts, we collected the SA scores and com-
puted the average of the lowest 5% of these scores. This av-
erage value was used as the threshold ¢, ensuring that we can
effectively distinguish between clean and backdoor prompts
based on their semantic alignment.

5 Experiments

5.1 Experimental Settings

Attack Baselines. We consider two types of attack meth-
ods in our experimental, where Rickrolling [Struppek et al.,
2023] and VillanDiffusion [Chou et al., 2024] are universal
backdoor attacks, and Personalization [Huang er al., 2024]
and EvilEdit [Wang et al., 2024a] are class-specific backdoor
attacks.

Defense Baselines. To the best of our knowledge, there are
two methods for detecting backdoor samples in T2I diffu-
sion models, namely UFID [Guan er al., 2024] and T2IShield
[Wang er al., 2024c]. Both of them are input-level backdoor
detection (IBD). 1) UFID posited that trigger plays a domi-
nant role, and the generated image of poisoned prompts will
not be affected even when appending the input text with a
random phrase. 2) T2IShield modeled the structural corre-
lation of the attention maps to detect the “Assimilation Phe-
nomenon” caused by the trigger. Moreover, T2IShield de-
veloped a binary-search-based method to localize the trigger
within a backdoor sample.

Models and Datasets. Following the settings in T2IShield
[Wang et al., 2024c], we use stable diffusion v1.4 [Ramesh
et al., 2022] as the victim T2I diffusion model. For the
training datasets, we choose CelebA-HQ-Dialog[Jiang er al.,
2021] for VillanDiffusion, Pokemon [Pinkney, 2022] for
Rickrolling and EvilEdit, and Dreambooth [Ruiz et al., 2023]
for Personalization. All the models are well-trained with the
default hyper-parameters and trigger types reported in the
original papers so that they show a good performance in gen-
erating both clean images and backdoor images. For each
method, we train 6 backdoor models with different triggers
and targets. For evaluations, we randomly select 300 clean
prompts from MS COCO 2017 validation dataset[Lin et al.,
2014] and construct 300 triggered prompts for each backdoor
model.

Defense Settings. The defender has access to a subset of
benign samples. We adopt fixed hyperparameters across all
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attacks and datasets: ¢ = —0.29 (estimated from 1000 benign
prompts) and m = 2.

Metrics. Following the prior works on backdoor detection
[Guan et al., 2024; Wang et al., 2024c], we adopt three pop-
ular metrics for evaluating the effectiveness of our detection
method: Precision, Recall, and F1 Score. We also report the
inference time for each method. For trigger localization, we
use the same prompts used in backdoor detection and employ
F1 score as the evaluation metric. We mainly compare our
localization effectiveness to T2IShield.

5.2 Detection Results

For each backdoor attack method, we train six backdoor mod-
els with different triggers and targets. We then evaluate the
performance of our detection method on each model. The
final detection result for each method is calculated as the av-
erage performance across all backdoor models.

As shown in Table 1, our method, GrainPS, consistently
performs well across all scenarios, achieving over 90% pre-
cision and recall. GrainPS significantly outperforms baseline
defenses in detection accuracy. In contrast, existing defenses
fail against class-specific backdoor attacks like Personaliza-
tion and EvilEdit (highlighted in red), mainly due to their re-
liance on restrictive assumptions such as the “Assimilation
Phenomenon”.

Attack Methods| | metric (%) | UFID T2IShield Ours
precision 67.66 81.47 99.07

Rickrolling recall 83.44 95.00 94.50
F1 score 74.09 87.71 96.73

precision 96.77 64.81 94.20

VillanDiffusion recall 100.00 85.33  92.00
F1 score 98.36 73.67 93.09

precision 26.70 3434  91.03

Personalization recall 7.11 14.67 86.89
F1 score 11.10 20.36  88.40

precision 48.96 47.15 83.99

EvilEdit recall 322 33.00 90.61

F1 score 5.90 36.02  86.93

precision 60.02 56.94  92.07

Avg recall 48.44 57.00 91.00

’ F1 score 47.36 5444 91.29
inference time (s) 18.7 13.1 11.8

Table 1: The detection performance (Precision, Recall and F1 score)
on four backdoor attacks. We bold the best result.

Figure 6 illustrates the distribution of semantics alignment
scores for “Modifier-Core Phrase Combinations” formed by
clean words and triggers across 300 clean prompts and 300
backdoor prompts for each attack method. For each method,
the clean words generally maintain high alignment scores,
indicating consistent semantic understanding. In contrast,
the triggers show a distinct pattern where the triggers cause
much lower alignment, highlighting their disruptive influence
on the model’s semantic understanding. The clear separa-
tion between the distributions of clean prompts and backdoor
prompts demonstrates the effectiveness of semantics align-
ment as a metric for identifying and distinguishing backdoor
triggers. This distinction is consistently observed across all
attack methods, further validating the robustness of this ap-
proach in detecting backdoor behaviors.
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Figure 6: The distribution visualization of semantics alignment
scores for “Modifier-Core Phrase Combinations” formed by clean
words and triggers across 300 clean prompts and 300 backdoor
prompts for each attack method.

We also evaluated the inference time of all methods under
ideal conditions to assess their efficiency. Specifically, we
assumed that defenders would load all required models and
images simultaneously. As shown in Table 1, the efficiency of
our GrainPS is comparable to, or even better than, all baseline
defenses.

5.3 Localization Results

Our method detects backdoor input prompts by identifying
words that cause semantic misalignment, which allows for
direct localization of the triggers within the input prompts
during detection. In T2IShield, Wang et al. [2024c] employ
binary search to locate the trigger in backdoor samples. At
each step, they retain only the portions that continue to gen-
erate the target content, narrowing down until only the trigger
remains. We conducted experiments to compare the localiza-
tion accuracy between the two methods. The trigger localiza-
tion method in T2IShield is implemented as outlined in the
original paper. In this experiment, we use the same prompts
and backdoored models as in the detection experiment. As
shown in table 2, our method achieves higher localization F1
score than the existing method for locating triggers on each
attack, especially for Personalization and EvilEdit.

Backdoor Attack T2IShield Ours
Rickrolling 79.09 96.73
VillanDiffusion 91.05 93.09
Personalization 940 87.47
EvilEdit 0.00 83.62

Table 2: F1 Score performance of our method compared to baseline
models in trigger localization.

5.4 Ablation Study

Impact of Scaling Threshold ¢
In this section, we study the effect of different thresholds on
the detection. Figure 7 presents the average precision, re-
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call, and F1 score of the detector at different threshold values.
As the threshold decreases, we observe a clear trade-off be-
tween precision and recall. Specifically, precision increases
steadily as the threshold becomes smaller, indicating that the
detector is more confident in identifying backdoor prompts.
However, this comes at the cost of recall, which decreases,
as fewer backdoor cases are identified at lower thresholds.
Meanwhile, the F1 score, which balances precision and re-
call, also declines as the threshold decreases. This suggests
that while the detector becomes more precise, it sacrifices its
ability to capture a comprehensive set of backdoor cases. The
optimal threshold is approximately 0.3, where the F1 score
reaches its peak, representing the best balance between preci-
sion and recall. This value is closely aligned with the thresh-
old ¢ = —0.29 obtained using the strategy outlined in Section
4.3, demonstrating the effectiveness of our method.

1.00 e —
0.50 — R
0.00
-0.15 -0.20 -0.25 -0.30 -0.35 -0.40
Threshold
—e—mean_precision mean_recall

Figure 7: Impact of Scaling Threshold ¢.

We also examine the impact of the number of clean
prompts used to determine the threshold ¢ during detection.
As shown in Table 3, ¢ consistently hovers around -0.28,
which is close to the optimal threshold of -0.3. This further
demonstrates the effectiveness of our strategy.

Number 10 100
t -0.291 -0.285

1000
-0.275

10000
-0.276

Table 3: Threshold determined by varying clean prompts.

Impact of Detection Strategy

GrainPS involves analyzing the number of Semantics Align-
ment Scores below the threshold caused by it. We hereby
explore the effects of this detection strategy on our method.
Specifically, we continue to divide the prompt into words and
extract the object words. Unlike the proposed GrainPS, we
classify the prompt as backdoored if any single word causes
an object word to misalign with its semantics. This alternative
approach is referred to as “w/o Strategy”. Table 4 illustrates
that without our detection strategy, the performance of our de-
tector slightly drops. The reason is that benign prompts may
naturally contain individual words that slightly misalign with
the semantics of object word due to linguistic nuances or am-
biguity. In such cases, the “w/o Strategy” approach may in-
correctly flag these prompts as backdoored, even though they
are clean. By focusing solely on individual word-object inter-
actions, this method fails to account for the modifying role of

other words in the prompt, leading to an over-sensitive detec-
tion mechanism and a higher rate of false alarms. Our method
not only considers the semantic misalignment caused by in-
dividual words but also takes into account the positional rela-
tionships between words and multiple instances of misalign-
ment. This comprehensive approach enables more accurate
detection, as it reduces false positives by analyzing the con-
textual impact of words in the prompt and identifying pat-
terns of misalignment rather than relying on isolated cases.
While w/o Strategy is slightly less effective than our pro-
posed method, it remains comparable to existing approaches,
demonstrating the validity of using “Semantic Misalignment”
phenomenon as a detection criterion.

Impact of Similarity Calibration

GrainPS utilizes a pre-trained BERT model to calibrate the
semantics alignment score. Table 4 shows the evaluation re-
sults of GrainPS without similarity calibration. In this case,
named w/o SC, the performance on class-specific backdoor
attacks drops. It is because although triggers can cause shifts
in the mapping of cause words within the cross-attention lay-
ers, other words can also lead to similar shifts, as shown in
Figure 5. For instance, the distance between ‘“store” and “mo-
torcycle store” is quite large (low similarity in cross-attention
layer), which is consistent with normal semantic understand-
ing. In contrast, triggers may have little semantic impact on
the core words themselves, but can cause significant shifts in
the mapping of those core words within the cross-attention
layers. In w/o SC, the threshold is obtained based on the dis-
tribution of clean prompt samples which ensures that clean
samples will not be misjudged as backdoor samples. How-
ever, this leads to the fact that the effect of triggers cannot be
distinguished from some special clean words, resulting in a
low F1 Score.

backdoor attack ~ w/o Strategy w/o SC Ours
Rickrolling 96.06 (-0.67) 95.63 (-1.10) 96.73
VillanDiffusion 86.13 (-6.96) 93.23 (0.14) 93.09
Personalization  79.47 (-8.00) 85.38 (-2.09) 87.47
EvilEdit 73.71 (-991) 79.43 (-4.19) 83.62

Table 4: F1 Score performance of our method without Detection
Strategy (w/o Strategy) and without Similarity Calibration (w/o SC).

6 Conclusion

In this paper, we propose a novel defense method against
backdoor attacks on text-to-image diffusion models. Our ap-
proach not only detects backdoor prompts but also identifies
suspicious triggers. The core of our method lies in analyz-
ing the projection misalignment between the “Modifier-Core
Phrase Combination” and the core word within the cross-
attention layers. Additionally, we introduce a word-splitting
mechanism to enhance the detection of backdoor triggers by
mitigating interference from other words. Experiments across
four advanced backdoor attack scenarios demonstrate the ef-
fectiveness of our proposed method.
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