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Abstract

On-device sequential recommendation (SR) sys-
tems are designed to make local inferences us-
ing real-time features, thereby alleviating the com-
munication burden on server-based recommenders
when handling concurrent requests from millions
of users. However, the resource constraints of
edge devices, including limited memory and com-
putational capacity, pose significant challenges to
deploying efficient SR models. Inspired by the
energy-efficient and sparse computing properties of
deep Spiking Neural Networks (SNNs), we pro-
pose a cost-effective on-device SR model named
SSR, which encodes dense embedding representa-
tions into sparse spike-wise representations and in-
tegrates novel spiking filter modules to extract tem-
poral patterns and critical features from item se-
quences, optimizing computational and memory ef-
ficiency without sacrificing recommendation accu-
racy. Extensive experiments on real-world datasets
demonstrate the superiority of SSR. Compared to
other SR baselines, SSR achieves comparable rec-
ommendation performance while reducing energy
consumption by an average of 59.43%. In addi-
tion, SSR significantly lowers memory usage, mak-
ing it particularly well-suited for deployment on
resource-constrained edge devices.

1 Introduction

Sequential recommendation (SR) systems [Wang et al., 2019]
have become indispensable to ubiquitous web applications
such as Shopee and TikTok, owing to their exceptional abil-
ity to model users’ historical behaviors and uncover latent
preferences across a wide range of products and services, ul-
timately driving enhanced business revenue. Most conven-
tional SR systems are entirely server-side solutions [Kang and
McAuley, 2018; Lai er al., 2024], heavily dependent on the
cloud’s substantial storage, memory, and computational re-
sources [Steck, 2019]. However, this cloud-based paradigm
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faces critical challenges such as high reliance on network
conditions, transmission latency, and significant risks to user
privacy [Yao et al., 2022; Xia et al., 2024].

With the growing computational capabilities of intelligent
edge devices, deploying SR models on the edge becomes
a promising solution. By enabling local inference, edge-
based SR systems reduce communication overhead, improve
real-time responsiveness, and provide inherent privacy advan-
tages, as sensitive data remains local to the device [Xia et al.,
2022; Yin et al., 2024]. However, current on-device SR mod-
els face potential challenges like:

High Memory Overheads. In standard SR tasks, item to-
ken sequences are used as the sole modality, requiring high-
dimensional embeddings to capture generalized representa-
tions for each item [Zivic et al., 2024]. This results in sub-
stantial memory footprints, particularly for platforms with ex-
tensive item catalogs. For instance, Amazon must manage
over 350 million product embeddings for its recommendation
system [Chen et al., 2022], leading to inefficient resource uti-
lization and increased operational costs.

High Energy Costs. On-device SR models often operate on
battery-powered mobile devices, such as smartphones, where
sustainability is critical. Current SR models rely on artifi-
cial neural networks (ANNs) with large-scale architectures
and full-precision computations, resulting in significant en-
ergy consumption. For example, deploying ANN-based mod-
els on devices like Google Glass [Venkataramani et al., 2016]
consumes 0.15J per frame for video streams, which restricts
the battery life of 2.1WH capacity to just 25 minutes, thereby
degrading usability and user experience.

To address these challenges, we propose a Spike-wise
Sequential Recommendation (SSR) model', leveraging the
computational paradigm of spiking neural networks (SNNs).
This model is well-suited for deployment on intelligent edge
devices featuring neuromorphic chips [Yao et al., 2024],
which are specialized hardware designed to mimic the neu-
ral network architecture for efficient, low-energy computa-
tion. To overcome the limitations of dense embeddings in
memory and computation, we introduce a neural encoding
method that converts the original embedding table into spike-

'https://github.com/AmazingDD/serenRec



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

based representations, allowing SSR to process sequential
features more efficiently. This method can diminish the stor-
age limitations and accelerate computation compared to con-
ventional dense embedding vectors. In addition, recent break-
throughs of deep SNNs in sequential tasks [Lv ef al., 2024;
Xing er al., 2024] shed light on the feasibility of develop-
ing on-device SR models due to their advantages of energy
efficiency [Maass, 1997]. This study includes spiking fil-
ter modules that emulate the Fourier transform mechanism,
enabling SSR to effectively process spike-wise signals and
extract the dynamic user preferences from the asynchronous
discrete spike trains.

To demonstrate the effectiveness of SSR, we conduct ex-
tensive experiments across real-world datasets. The results
show that SSR achieves comparable or even better recom-
mendation performance with much less computational en-
ergy cost compared to multiple ANN-based state-of-the-art
(SOTA) baselines. SSR also generates sparse item represen-
tations to facilitate calculation, reduce memory footprint, and
speed up inference, which is essential for on-device SR de-
ployment [Yin er al., 2024]. To conclude, our contributions
can be summarized as follows:

e This study first proposes an on-device SR model
with deep SNNs, offering a cost-effective and energy-
efficient solution for enhancing user experience on intel-
ligent edge devices.

» SSR generates a binary item representation, significantly
reducing memory usage. It also incorporates spiking
filter modules, effectively extracting individual prefer-
ences from asynchronous and sparse inputs.

» Extensive experimental results on five datasets validate
that SSR can achieve recommendation performance on
par with or even superior to seven SOTA SR models with
much less energy consumption.

2 Related Work

On-Device Sequential Recommendation. Recently, on-
device SR systems have emerged to address users’ demands
for low-latency responses and heightened data privacy con-
cerns [Yin et al., 2024]. Aerorec [Xia et al., 2024] introduces
a self-supervised knowledge distillation method to mitigate
the accuracy loss in compressed on-device recommendation
models. OD-Rec [Xia er al., 2023] compresses the item em-
bedding table by discrete compositional code learning to im-
plement on-device recommendation efficiently. DIET [Fu
et al., 2024] tailors SR models for each device to minimize
bandwidth usage and storage consumption. Existing meth-
ods typically reduce inference latency and energy consump-
tion through techniques such as compression [Yuan et al.,
2020] and quantization [Li et al., 2023]. However, these ap-
proaches often degrade model performance by reducing fea-
ture expressiveness, particularly in scenarios with large-scale
recommendation systems [Hou et al., 2023]. This motivates
us to explore a novel on-device SR model that balances com-
putational energy cost and recommendation accuracy better.

Recommendation with Spiking Neural Networks. Sev-
eral researchers have investigated the feasibility of integrating

SNNs into conventional collaborative filtering (CF) recom-
mendation models. [Zhu et al., 2022] introduces spike-wise
graphs to reduce the memory cost in graph-based CF mod-
els. [Ma et al., 2023; Agarwal et al., 2024] utilize the sparse
encoding mechanism of SNNs to convert raw features into
spike signals, thereby improving the CF model performance.
These studies demonstrate the potential of SNNs to enhance
feature representation and improve recommendation perfor-
mance. However, most existing works focus on CF models
and neglect SR tasks. Furthermore, no SNN-related SR al-
gorithms have been designed specifically for neuromorphic
chips [Ma et al., 2024], leaving SNNs’ low-energy advan-
tages under-explored for energy-aware edge device deploy-
ment. To bridge this gap, we propose SSR, the first on-
device SR model utilizing spiking neural networks to achieve
energy-efficient sequential recommendation.

3 Preliminary

3.1 Spiking Neural Network

Leaky Integrate-and-Fire (LIF) [Maass, 1997] is one conven-
tional spiking neuron to build SNNs, whose calculations can
be described by a series of discrete-time equations:

Uty=0Q—7)-H(t—1)+7-1(t) (1)
o) =0(U(t)-V) 2)
H(t)=U(t)-(1=0(t)+V,-O(t) 3)

where 7,V and V, denote the decay factor, threshold, and
reset potential. ©(+) is the non-differentiable Heaviside step
function determining whether a spike is generated at time step
t according to the membrane potential U (t) updated by in-
put stimulus 7(¢). In this study, we use SA/(-) to one LIF
layer for brevity and introduce BPTT with surrogate func-
tions [Dampfhoffer et al., 2023] to train SNNs on GPUs.

3.2 Fourier Transform

Discrete Fourier transform (DFT) has demonstrated its effec-
tiveness in SR applications [Zhou et al., 2022; Shin et al.,
2024]. As the input data of SR is one-dimensional sequences
{x,}_, with the length of N, we only consider 1D-DFT
in our study, which converts the original sequence into a se-
quence of complex numbers in the frequency domain by:

N N
= ape A =N"p, W 1<E<N @)
n=1

n=1

where W = e % isa complex number as the twiddle fac-
tor, zj, represents the signal with frequency 27k /N. Through
Equation (4), values in the sequence are decomposed into
components of different frequencies. Since DFT is a one-to-
one mapping operation in the time and frequency domains,
the frequency representation {zj }2_; can be converted to the
original feature domain by inverse DFT (IDFT):

1 N
Ty = AW 5)
k=1
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Figure 1: Overview of SSR.

Since item sequences can be treated as users’ periodic behav-
ior mixed with some unexpected actions (noise), DFT offers
an efficient method to capture these time features [Du et al.,
2023]. This study uses the Fourier transform paradigm to pro-
cess and filter noisy spikes in SSR. We denote DFT and IDFT
by F(-) and F~1(-), respectively.

4 Methodology
4.1 Problem Statement

We first define I/ and V to represent the set of users and items,
respectively, where v € U denotes a user and v € V denotes
an item. The number of users and items are |/| and |V, re-
spectively. Sequential recommendation relies on the previ-
ous interactions in a short period to generate the next-item
recommendation. Let x = {vy,vq,...,un} € X, where N
is the number of interactions, and v,, is the n-th item that
the user u® has interacted with in the chronological order.
For convenience, we use X;.; to denote the subsequence, i.e.,
Xk = {Vj, ..., 5}, where 1 < j <k < N.

Based on the above notations, we define the task of the SR
as to predict the next item vy 41 that the user is most likely
to interact with at the (IV + 1)-th step, given the contextual
item sequences x = {v1,va,...,un} of a user u. We set y
as the ground truth of the following user action, i.e., y =
vn+1 € Y. Hence, the learning objective of implementing
SR on resource-constrained edge devices is to minimize the
ranking loss £ over data distribution D = (X, Y):

mein E )~ L(f(x:6),9)
st B y)~pC(f(x:0)) < b

(6)

where C(-) refers to the total cost of using a specific SR model
for inference, e.g., energy consumption, inference latency,
etc., and b is the specific limitations required by the devices.

4.2 SSR Model

As depicted in Figure 1, we introduce the architecture of SSR,
including five modules: embedding layer, stimulus encoder,
spiking filter layer, PSFFN layer, and prediction layer.

“When the user is anonymous, sequential recommendation tasks
degenerate into session-based recommendation tasks.
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Figure 2: Comparison between conventional and spike-wise token
representations. Instead of full-precision (32-bit) embeddings, spike
trains provide sparser and more compact /-bit binary representations
for resource-constrained edge devices to compute efficiently.

Embedding Layer. Similar to previous study [Yue et al.,
20241, an item embedding matrix Ey € R!VI*P is leveraged
to project each item token v,, in the sequence x to a high-
dimensional representation v,, € RP. Given one item se-
quence X, we can obtain a new sequence embedding matrix
X € RY*P with look-up operations:

X = EV (X) (7)

Although using non-spiking values like Equation (7) as inputs
of SNN-based models is pretty ordinary [Yao et al., 2023], it
is more logical to utilize spikes as the input of SNNs like
the brain trades in the global currency of the spike, bringing
potential computational efficiency and sparse storage.

As depicted in Figure 2, one dense embedding table can be
converted into 7" sparse binary tables by the temporal encod-
ing mechanism of spiking neurons (In this study, N should
always be ensured to be divisible by T'). Due to the high
sparsity and huge memory usage gap between floating-point
and binary values (e.g., 32-bit vs. 1-bit), encoding the origi-
nal embedding table with spiking neurons can enhance com-
putational efficiency and diminish redundant memory usage.
Therefore, we feed features from the embedding table, like
a gray-scale image, to a layer of spiking neurons repeatedly
over 7' time steps. Then, we get the spike-wise sequence em-
beddings X* € I7XN*P containing only binary values:

X* = SN(By (x)) ®)

where T, N, and D are the degree of time step, sequence
length, and hidden factor dimension.

Stimulus Encoder. The raw spike trains derived from
Equation (8) offer a sparse representation of each item token
but fail to capture sequential features. To address this limita-
tion, we propose an encoder module within SSR, designed to
aggregate spike-level signals and generate stimulus represen-
tations encompassing sequential features. This module com-
prises two components: (1) The serial presentation encoder
is implemented as a linear transformation moving block. It
captures cumulative spike information across temporal steps
in the sequence, effectively extracting long-term interests. (2)
The parallel presentation encoder acts as a global-level aggre-
gator, leveraging another weight matrix to perform weighted
summations over items in the sequence at each time step,
thereby capturing point-level preference patterns. The stim-
uli generated by these two encoders are aggregated to form
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a new dense stimulus that preserves the sequences’ tempo-
ral and contextual patterns, which will then be fed into a LIF
layer SA/(+) to construct the spike-wise encoded sequential
features H € I7*N*P for further model learning. Consid-
ering the primary focus of this study is designing a feasible
SNN-based model to complete on-device SR tasks, we have
proved that our stimulus encoding method fits well in most
scenarios.

Spiking Filter Layer. Inspired by [Zhou ez al., 2022], fil-
tering operation can be utilized to convert each dimension of
features into another learnable feature space and reconstruct
the sequence representations with less noisy signals.

Given the input H. € TV*P for the filter layer in the I-
th block at time step ¢t (I € [1,L], t € [1,T); when I=1,
H'=H), we apply 1D-DFT F(-) along the sequence dimen-
sion N of H' to convert it to frequency domain and then mul-
tiply a learnable matrix W', denoted as:

H, = F(H)) o W' ©9)

where © is the element-wise multiplication. I:IfE can be adap-
tively optimized using gradient descent to represent an arbi-
trary filter in the frequency domain. Finally, the 1D-IDFT
F~1(-) is adopted to transform the modulated spectrum Hy
back to the original domain, reconstructing new sequential
representations as the output of the entire filter layer:

F, = F\(H,) (10)

These operations allow useless spikes from H. to be ef-
fectively filtered as noise. Following [Kang and McAuley,
2018]. We add the skip connection [Wang et al., 2021] to
avoid gradient vanishing and unstable training issues.
However, the above operations are feasible for ANNs on
GPUs yet unsuitable for SNNs on neuromorphic chips since

I:Ii is a complex tensor that is an illegal representation in neu-
romorphic computing logistics. To tackle this problem, we
exploit the successive multiplication representation, emulat-
ing DFT in SNN layers due to DFT’s linear transformation
[Arsalan ef al., 2023]. We first rewrite Equation (4) accord-
ing to the Euler’s method as:

o= ixn ([cos(%nk)} - [Sin(i\jnk)} i> (11

where n and k take values ranging from 1 to N. When ex-
panding x,, to an input vector, Equation (11) can be written
in matrix form like:

Z = (WgX) + (W;X)i (12)
where W and W7 are the real and imaginary coefficient
matrices, whose individual coefficient values can be calcu-
lated using the following equations:

2
Wgn, k| = cos(%nk) (13)

Wiln, k] = —sin(%nk) (14)

Algorithm 1 Model Inference of SSR.
Input: Input sequences x, top value k
Output: Top-k recommendation list Py
1: Query spike-wise representation X* with x.
2: Encoding X* to H.
3: for all filter block [ € {1, ..., L} do
4:  Learnable ID-DFT: H; = F(H!) © W',
5. ID-IDFT: F; = F~'(H)).
! :
7
8

Convert F; to spikes with SA/(-).
: end for |
: Densify: HY < Linear(Fp).
9: Computing preference scores P with HZE and X*.
10: Sort P in a descending order.
11: Cut out top-k items from P to form Pj.
12: return P

We can then substitute 7 (HL.) in Equation (9) with a series
of spike-wise operations like:

F(H!) + SN (Conv(SN(WrHL; WHLY)))  (15)
where the convolution operation Conv simulates the integra-
tion of real and imaginary parts as the complex tensor. Simi-
larly, the IDFT operation in Equation (10) can also be modi-
fied to spike-wise form inversely, denoted as F -1 (+), and we
denote the binary output of the I-th filter layer after imple-
menting the spike-wise IDFT operation as F!.

PSFFN Layer. For the point-wise spiking feed-forward
network (a.k.a. PSFFN) layer in the /-th block at time step
t, we integrate LIF with a two-layer MLP to project the non-
linear features extracted from the spiking filter layer into a
higher-dimensional space to improve the modeling ability of
user actions in the hidden dimension. The computation of
PSFFN is defined as:

H' = SN(W,oSN(W FL)) + F (16)
where W1, W, are both learnable weight matrices. Skip con-

nection operations are also incorporated into this component
for training stability.

Prediction Layer. Given the spike-wise hidden features
HYE at time step t from the last L-th block at position n, it

will first be converted into a dense vector as ﬁﬁn € RP via
linear transformation in the prediction layer. Then, the pref-
erence score for the next item y over ) given sequence x can
be calculated by:

T
Py =valx1n1) = > _X;()h{, +b3,v0 €V (17)
t=1

where ° € RVl is an additional bias term indicating the de-
viation of items v € V from the global perspective. We adopt
point-wise cross-entropy loss to optimize the model parame-
ters # by minimizing the following objective:

E(Q) = —]E(xvy)wplog(P(y = ’Un|xl:n71)> (18)
We summarize the inference process of SSR in Algo-
rithm 1. In addition, we have elaborated on the time com-

plexity analysis of SSR and the effectiveness of the spiking
filter module .



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Dataset #Sequences  #ltems #Inter. Density ({)
Movielens 993,571 3,416 999,611 4.84 x 102
Steam 982,712 8,606 1,096,673 1.18 x 1073
Music 150,690 11,269 166,942 9.12 x 10~*
Video 441,760 17,286 496,904 5.21 x 10~
Arts 436,614 22,611 492,583 3.89 x 1074

Table 1: Statistics of the experimental datasets after preprocessing.
“#Inter.” represents the total user-item interactions. The maximum
sequence length is set to 20 as default in this study.

5 Experiments
5.1 Experimental Settings

Datasets. Five public datasets collected from various plat-
forms are selected to evaluate the efficacy of SSR. Their cor-
responding statistics are summarized in Table 1, sorted by
density. Following [Zhou et al., 2022], we group the records
by users or sessions, sort them by time in ascending order, and
adopt a 5-core strategy for all datasets to ensure each user and
item has at least five interaction records.

Metrics. As for the recommendation performance, we fol-
low [Yin er al., 2023] and calculate the Hit Rate (HR), Nor-
malized Discounted Cumulative Gain (NDCG), and Mean
Reciprocal Rank (MRR) after generating the Top-k recom-
mendation list with a full-ranking protocol. Higher values in-
dicate better performance for all metrics. For energy cost, we
evaluate the number of operations (OPs) [Xing et al., 2024]
and theoretical energy consumption gauged in joules (J).

Baselines. We compare SSR with multiple SOTA SR base-
lines with two categories: (1) RNN-/CNN-based SR models:
CASER [Tang and Wang, 2018], GRU4REC [Hidasi et al.,
2015] and NARM; (2) Transformer-based SR models: SAS-
REC [Kang and McAuley, 20181, FMLP [Zhou et al., 2022],
BSAREC [Shin et al., 2024], and LRUREC [Yue et al., 2024].

Implementation Details. We use the time-aware and user-
level split-by-ratio strategy [Sun e al., 2022] to split the
whole dataset, where the last 20% of the total item sequences
is the test set. To make a fair comparison, all model hyper-
parameters are searched with the TPE [Bergstra et al., 2011]
strategy within 20 trials with Optuna [Akiba ef al., 2019]. By
default, we implement all models with Torch and use Adam
optimizer with the 1073 learning rate. The embedding di-
mension for each item is 64, and the time step size T for LIF
neurons is 4.

5.2 Performance Evaluation

Recommendation Performance. Table 2 lists the results of
our proposed SSR compared with all other baselines on vari-
ous evaluation metrics across different datasets. We conclude
from the observations that SSR achieves comparable perfor-
mance across all metrics and datasets, with an average perfor-
mance gap of 1.06% compared to the best method. Despite
the data flow inside SSR being binary spikes, SSR maintains
the effectiveness of capturing useful sequence characteristics,
just as the floating-point operation does. Notably, SSR’s per-
formance gains are more significant on dense datasets. In

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CASER (0.19 (0.91) SSR
GRU4REC (0.46)}——m—— (0.64) LRUREC
NARM (0.5) (0.62) BSAREC
FMLP (0.58) (0.61) SASREC

Figure 3: Critical Difference (CD) diagram of all models in Table 2
with a confidence level of 95%.

contrast, they are modest on sparse datasets since dense se-
quences contain more sequential embedding knowledge fed
into LIF neurons, thereby generating more spike informa-
tion to communicate among layers and achieve better perfor-
mance. Besides, SSR often performs better in ranking-related
metrics. For instance, although BSAREC achieves a higher
average hit rate, approximately 2.95% greater than SSR on
the Steam and Arts datasets, SSR outperforms BSAREC on
the NDCG metric by about 2.28%. This suggests that, while
SSR may not always accurately identify all ground truth next
items from users’ previous interactions, it better captures se-
quential patterns, placing the ground truth items in higher
positions within the ranking list. Meanwhile, by examining
the critical difference diagram depicted in Figure 3, we can
roughly categorize all the methods we have employed into
three tiers, and it is a pleasant surprise that our SSR ranks
with the top tier, demonstrating that regardless of the data sce-
nario, SSR consistently demonstrates strong and stable per-
formance, making it less likely to yield poor results when
used for recommendations.

Energy Cost. We evaluate the inference energy efficiency
to illustrate the potential of SSR to enhance user experience
by prolonging mobile phone usage time while maintaining
effective recommendation performance. We assume running
SSR on a 45nm neuromorphic hardware [Horowitz, 2014]
and other baselines on GPUs, since SNNs can demonstrate
low computing energy costs when deployed on neuromor-
phic chips, and GPUs are the most suitable platform for ex-
ecuting ANNs. Since different baselines vary in computa-
tional complexity due to differences in parameters and archi-
tectures, directly comparing their energy consumption with
SSR would be unfair. Hence, we devise an ANN-based vari-
ant called SSR-ANN, referring to SSR, which utilizes the
standard DFT/IDFT computation, replaces all spiking neu-
rons with ReLU3, removes the stimulus encoder, and keeps
other parameters the same as SSR’s.

As listed in Table 3, SSR exhibits a notable energy cost
reduction compared to its ANN variants, with an average de-
crease of approximately 59.43% across all datasets, and the
computational operations are reduced by over 50%—such in-
triguing benefits position SNNs as an attractive choice for
energy-efficient solutions for the on-device SR tasks®.

3LIF neuron in SNN is an unbiased estimator of ReLU activation
function over time [Rueckauer et al., 2017].

“In practical applications, beyond computational costs, SSR ex-
ecuted on a neuromorphic chip can eliminate the additional energy
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Methods Metrics GRU4REC CASER NARM SASREC FMLP BSAREC LRUREC SSR
HR@10 0.2120  0.2120  0.2205 0.2264 0.2140 0.2308 0.2090  0.2312
Movielens MRR@10 0.0853  0.0880  0.0906 0.0907 0.0819 0.0928 0.0781  0.0959
NDCG@10 0.1147  0.1168  0.1208 0.1222  0.1123 0.1264 0.1084  0.1274
HR@10 0.2020  0.1943  0.2031 0.2064 0.2020 0.2025 0.2094 0.2049
Steam MRR@10 0.1403  0.1321 0.1422 0.1451 0.1439 0.1418 0.1461 0.1446
NDCG@10 0.1547  0.1466  0.1564 0.1594 0.1575 0.1559 0.1609  0.1586
HR@10 0.1590  0.1396  0.1560 0.1622 0.1638 0.1661 0.1606  0.1646
Arts MRR@10 0.1189  0.0995 0.1175 0.1177 0.1182 0.1130 0.1180  0.1194
NDCG@10 0.1283  0.1090 0.1265 0.1282  0.1299 0.1256 0.1281  0.1301
HR@10 0.1511  0.1161  0.1498 0.1650 0.1604 0.1725 0.1788 0.1684
Music MRR@10 0.0895  0.0582  0.0947 0.0935 0.0947 0.0966 0.0988  0.0968
NDCG@10 0.1040  0.0718 0.1078 0.1104 0.1104 0.1137 0.1178  0.1148
HR@10 0.1297  0.1127 0.1293 0.1273  0.1331 0.1396 0.1334  0.1424
Video MRR@10 0.0733  0.0582  0.0709 0.0696  0.0699 0.0664 0.0687  0.0746
NDCG@10 0.0865  0.0709  0.0845 0.0830 0.0868 0.0835 0.0838  0.0875
T-Test (SSR, *)  p-value 0.6328  0.1789  0.7010 0.8236 0.7283 0.8893 0.8000  1.0000

Table 2: Performance comparison against the other baselines. Bold and underline values are the best and second-best results across all
methods in one dataset with the best-searched hyperparameter settings. We run three trials and report the mean metric results. Pair-wise
t-tests are implemented between SSR and each baseline to determine the significance of the entire performance difference.

SSR SSR-ANN

Dataset

OPs (M) Energy (mJ) OPs(M) Energy (ml])
Movielens 11.27 0.51 26.60 1.22
Steam 4.97 0.23 12.22 0.56
Arts 6.22 0.28 13.18 0.67
Video 7.69 0.35 18.70 0.86
Music 11.95 0.53 27.72 1.27

Table 3: Computational efficiency across different datasets when
making batch inferences. OPs refer to Synaptic Operations (SOPs)
in SNNs and Floating Point Operations (FLOPs) in ANNs.

5.3 Efficiency Evaluation

Memory Usage. We vary the dimensionality of item em-
beddings from 50 to 250 to evaluate the compression effect
of LIF neurons on the original dense embeddings. Observa-
tions in Figure 4 reveal that the parameter size of the con-
ventional model increases linearly with the embedding di-
mension. In contrast, the embedding size regulated by the
LIF layer encoder is substantially reduced, achieving a max-
imum reduction rate of 99.36%. Moreover, as the embed-
ding dimension grows, the size follows a logarithmic growth
pattern. This demonstrates that spike-wise embedding effec-
tively compresses and retains essential information, reducing
computational memory overheads for resource-constrained
edge devices via sparse tensor computation.

consumption associated with data movement between the chip and
memory. Furthermore, neuromorphic chips offer significantly lower
latency—about 200 times less—than conventional chips. For in-
stance, Speck [Yao et al., 2024] achieves a latency of less than 0.1
ms when implementing SNNs on-chip. In contrast, the latency in-
creases to 24.7 ms when the SNN is not implemented on-chip.
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Figure 4: In-memory size per item token representation w.r.¢ dimen-
sion for conventional embedding and spike-wise embedding.

Model Robustness. We conduct experiments by randomly
replacing different percentages of items in sequences with
randomly selected fake items and retraining the model us-
ing the corrupted sequences as input to evaluate the robust-
ness of SSR against data noise issues. The noise ratios var-
ied from 0% to 20%, with increments of 5%. SASREC and
NARM are the target models for comparison, as they fea-
ture representative neural architectures within their respective
baseline categories. We adopt relative metrics, i.e., Relative
(Rel.) HR@10 and Rel. NDCG@10, to assess the perfor-
mance trend of different models w.r¢ different levels of noise
perturbation. Figure 5 exhibits the performance degradation
under different noise levels, indicating the potential of SNNs
in addressing data noise issues. In the sparser Arts dataset,
while SASREC and NARM initially perform well under low
noise levels, their performance degrades significantly when
exposed to 15% noise. In contrast, SSR demonstrates greater
robustness to noise compared to these models. Even with
20% noise, SSR maintains a relative HR@10 of 98.92% and
an NDCG@10 of 98.18%. In the relatively denser Movie-
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Figure 5: Relative (Rel.) metrics performance degradation w.r.t
noise ratio across datasets with different densities.
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Figure 6: Model recommendation performance w.rt sequence length
across datasets with different densities.

lens dataset, SSR’s performance is comparable to that of other
models when the noise degree is less than 15% and then de-
clines more slowly when noisier items are included. The su-
periority of SSR might be attributed to SNNs’ advantage in
capturing sparse features. When item sequences are sparse
and have low similarity, introducing noise can easily lead to
over-fitting in ANN-based models. However, SNNs’ sparse
computational characteristics can effectively mitigate this is-
sue. When the sample is relatively dense and similar, the
noise impact can be alleviated through knowledge transfer be-
tween samples, resulting in minimal performance differences
among these models. Nevertheless, when the noise level is
sufficiently high, causing a rapid decrease in sample similar-
ity, the advantages of SNNs become more evident.

Long Sequence Scenarios. We evaluate the performance
consistency of SSR across SR tasks with varying task com-
plexities by altering the maximum length of the input se-
quences, as the high-order sequential dependencies intro-
duced by long item sequences pose challenges for models
to capture user preferences accurately. Similarly, we select
SASREC and NARM as baselines to compare their perfor-
mance with SSR and categorize sequences into three groups
based on the sequence length. As illustrated in Figure 6,
the models generally exhibit higher predictive accuracy for
shorter input sequences, as leveraging more interaction histo-
ries can extract more valuable information through SR mod-
els. Meanwhile, SSR consistently demonstrates more excel-
lent stability than the other models. In sparser Arts data sce-
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Figure 7: Sensitivity of SNN-related hyper-parameters in SSR.

narios, SSR outperforms other baselines, achieving a higher
average HR @ 10 improvement rate than the dense Movielens
scenario, with an approximate increase of 17.31%. This may
be attributed to the spike-wise signals propagated within the
SSR model, which are better at filtering out the items in an
input sequence that are most relevant to the prediction. This
reduces the impact of noise on the results, thereby more ef-
fectively uncovering users’ latent preferences under long se-
quence conditions.

5.4 Hyper-Parameter Analysis

Time Step. Time steps 7' dictate the complexity of SSR,
and a higher number of time steps leads to an increased en-
ergy cost. As depicted in the left part of Figure 7, the HR@10
of SSR shows a notable improvement of approximately 15%
when the number of time steps increases from 1 to 4. Beyond
this point, the performance gains plateau, suggesting that the
membrane potential of LIF neurons in SSR has stabilized and
can generate consistent spike trains, with no additional time
steps needed for stabilization. Hence, setting T=4 provides a
practical solution for achieving a better cost-accuracy trade-
off in SSR during inference.

Decay Rate. Decay rate 7 determines the frequency of in-
formation communication between layers in SSR by control-
ling the firing rate of neurons. A lower decay rate indicates
more spike transmission. The right part of Figure 7 shows
that HR@ 10 remains relatively stable at lower decay rates
but experiences a sharp decline of up to 40% once the decay
rate exceeds (.5, indicating that higher decay rates hinder the
model’s ability to capture relevant information, leading to the
loss of crucial temporal details, which ultimately degrades
HR performance. Meanwhile, lower decay rates often cause
LIF neurons to fire spikes excessively, leading to unneces-
sary energy costs with minimal performance improvements.
Therefore, a moderate decay rate like 0.5 can better balance
the cost and performance of SSR.

6 Conclusion

In this paper, we proposed a novel on-device SR model called
SSR, leveraging SNNs to achieve energy-efficient and sparse
computing. SSR transforms dense item embeddings into
sparse spike-wise representations, effectively capturing dy-
namic user preferences while reducing memory and compu-
tational overheads. Extensive experiments on diverse real-
world datasets demonstrate that SSR achieves comparable
recommendation accuracy to ANN-based baselines while sig-
nificantly improving theoretical energy efficiency.
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