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Abstract
Most existing decentralized learning methods with
differential privacy (DP) guarantee rely on constant
gradient clipping bounds and fixed-level DP Gaus-
sian noises for each node throughout the training
process, leading to a significant accuracy degrada-
tion compared to non-private counterparts. In this
paper, we propose a new Dynamic Differentially
Private Decentralized learning approach (termed
Dyn-D2P) tailored for general time-varying di-
rected networks. Leveraging the Gaussian DP
(GDP) framework for privacy accounting, Dyn-
D2P dynamically adjusts gradient clipping bounds
and noise levels based on gradient convergence.
This proposed dynamic noise strategy enables us
to enhance model accuracy while preserving the
total privacy budget. Extensive experiments on
benchmark datasets demonstrate the superiority of
Dyn-D2P over its counterparts employing fixed-
level noises, especially under strong privacy guar-
antees. Furthermore, we provide a provable util-
ity bound for Dyn-D2P that establishes an explicit
dependency on network-related parameters, with a
scaling factor of 1/

√
n in terms of the number of

nodes n up to a bias error term induced by gradient
clipping. To our knowledge, this is the first model
utility analysis for differentially private decentral-
ized non-convex optimization with dynamic gradi-
ent clipping bounds and noise levels.

1 Introduction
Distributed learning has recently attracted significant atten-
tion due to its great potential in enhancing computing effi-
ciency and has thus been widely adopted in various applica-
tion domains [Langer et al., 2020]. In particular, it can be
typically modeled as a non-convex finite-sum optimization
problem solved by a group of n nodes as follows:

min
x∈Rd

f (x) ≜
1

n

n∑
i=1

fi (x) (1)

∗Corresponding author.

with fi (x) = 1
J

∑J
j=1 fi (x; j), where J denotes the local

dataset size of each node, fi(x; j) denotes the loss function
of the j-th data sample at node i with respect to the model
parameter x ∈ Rd, and fi (x) and f (x) denote the local ob-
jective function at node i and the global objective function,
respectively. All nodes collaborate to seek the optimal model
parameter to minimize the global loss f (x), and each node i
can only evaluate local stochastic gradient ∇fi (x; ξi) where
ξi ∈ {1, 2, ..., J} is a randomly chosen sample.

Bottlenecks such as high communication overhead and
the vulnerability of central nodes in parameter server-based
methods [Zinkevich et al., 2010; McMahan et al., 2017]
motivate researchers to investigate fully decentralized meth-
ods [Lian et al., 2017; Tang et al., 2018] to solve Prob-
lem (1), where a central node is not required and each node
only communicates with its neighbors. We thus consider
such a fully decentralized setting in this paper, with a par-
ticular focus on general and practical time-varying directed
communication networks for communication among nodes.
Decentralized learning involves each node performing local
stochastic gradient descent to update its model parameters,
followed by communication with neighboring nodes to share
and mix model parameters before proceeding to the next it-
eration [Zhu et al., 2024]. However, the frequent informa-
tion exchange among nodes poses significant privacy con-
cerns, as the exposure of model parameters could potentially
be exploited to compromise the privacy of original data sam-
ples [Wang et al., 2019]. To protect each node from these po-
tential attacks, differential privacy (DP), as a theoretical tool
to provide rigorous privacy guarantees and quantify privacy
loss, can be integrated into each node within decentralized
learning to enhance privacy protection [Cheng et al., 2018;
Yu et al., 2021].

Existing decentralized learning algorithms with differential
privacy guarantee for non-convex problems tend to employ a
constant/fixed gradient clipping bound C̄ [Yu et al., 2021;
Xu et al., 2022; Li and Chi, 2025] to estimate the l2 sen-
sitivity of gradient update and uniformly distribute privacy
budgets across all iterations. As a result, each node injects
fixed-level DP Gaussian noises with a variance proportional
to the estimated sensitivity (i.e., constant clipping bound C̄)
before performing local SGD at each iteration. However, our
empirical observations indicate that the norm of gradient typ-
ically decays as training progresses and ultimately converges
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Figure 1: The evolution of the gradient norm when training ResNet-
18 on Cifar-10 dataset in a fully decentralized setting with 4 nodes.
It can be observed that the stochastic gradient norm at each node
typically decays as training progresses, and eventually falls below
the constant clipping bound (indicated by the blue dotted horizontal
line) after certain number of iterations, which makes the clipping
operation ineffective in the later stages of training.

to a small value (c.f., Figure 1). This observation suggests
that using a constant clipping bound to estimate l2 sensitivity
throughout the training process may be overly conservative,
as gradient norms are often smaller than the constant C̄, es-
pecially in the later stages of training. Therefore, the added
fixed-level Gaussian noise becomes unnecessary and instead
degrades the model accuracy without providing additional
privacy benefits. The following question thus arises naturally:
Can we design a decentralized learning method that dynami-
cally adjusts the level of DP noise during the training process
to minimize accuracy loss while maintaining privacy guaran-
tee?

To this end, we develop a new dynamic differentially pri-
vate learning method for solving Problem (1) in fully decen-
tralized settings, which enhances model accuracy while ad-
hering to a total privacy budget constraint. The main contri-
butions of this work1 are threefold:

• We propose a differentially private decentralized learn-
ing method with a dynamic DP Gaussian noise strategy
(termed Dyn-D2P), tailored for general time-varying di-
rected networks. In particular, each node adds noise with
a variance calibrated by a dynamically decaying gradi-
ent clipping bound and an increasing per-step privacy
budget appropriately allocated across iterations. This
mechanism enables each node to apply dynamically de-
creasing noise, thereby enhancing model accuracy with-
out compromising the total privacy budget.

• Theoretically, we investigate the impact of dynamic
noise strategy on model utility for a general form of
Dyn-D2P where clipping bounds and noise levels can be
arbitrary sequences (c.f., Theorem 1), revealing the ad-
vantages of using dynamically decaying clipping bounds
(c.f., Remark 1). By employing exponentially decaying
sequences, we prove the utility bound of Dyn-D2P with
explicit dependency on the network-related parameter,
exhibiting a scaling factor of 1/

√
n in terms of the num-

1Supplementary appendix can be found in our full version [Zhu
et al., 2025].

ber of nodes up to a bias error term induced by gradient
clipping (c.f., Corollary 1). To our knowledge, this is the
first provable utility guarantee in the realm of dynamic
differentially private decentralized learning.

• Extensive experiments are conducted to verify the per-
formance of the proposed Dyn-D2P. The results show
that, under the same total privacy budget, Dyn-D2P
achieves superior accuracy compared to its counterpart
using fixed-level DP Gaussian noise, especially under
strong privacy guarantees. Moreover, we validate the ro-
bustness of Dyn-D2P against certain hyper-parameters
related to the varying rates of gradient clipping bound
and per-step privacy budget, and verify the performance
of Dyn-D2P over different graphs and node numbers,
which aligns with our theoretical findings.

2 Preliminary and Related Work
Differential privacy. Differential privacy was originally in-
troduced in the seminal work by Dwork et al. [2006] as a
foundational concept for quantifying the privacy-preserving
capabilities of randomized algorithms, and has now found
widespread applications in a variety of domains that necessi-
tate safeguarding against unintended information leakage [Li
et al., 2020; Shin et al., 2018; Wei et al., 2021b]. We recall
the standard definition of DP as follows.

Definition 1 ((ϵ, δ)-DP [Dwork et al., 2014]). A randomized
mechanism M with domain D and range R satisfies (ϵ, δ)-
differential privacy (or (ϵ, δ)-DP), if for any two adjacent in-
puts x, x′ ∈ D differing on a single entry and for any subset
of outputs O ⊆ R, it holds that

Pr [M (x) ∈ O] ⩽ eϵPr [M (x′) ∈ O] + δ, (2)

where the privacy budget ϵ denotes the privacy lower bound
to measure a randomized query and δ is the probability of
breaking this bound. Note that a smaller value of ϵ implies a
stronger privacy guarantee.

The following proposition provides the Gaussian DP
(GDP) mechanism to ensure privacy guarantee.

Proposition 1 (µ-GDP [Dong et al., 2022]). Let f : D → Rd

be a function and S be its l2 sensitivity. Then, drawing
a random noise N from Gaussian distribution with N ∼
N
(
0, σ2Id

)
and adding it to f such that M(x) = f(x) +N

satisfies µ-GDP if σ is set as

σ = S/µ, (3)

where µ is the privacy budget in the GDP framework, and a
smaller value of µ implies a stronger privacy guarantee.

The above proposition shows that the variance σ of the
added noise required to ensure µ-GDP is dependent on both
privacy budget µ and sensitivity S. It should be noted that the
above privacy guarantee in the sense of GDP can be trans-
formed into the standard DP by the following proposition
which shows that there is a one-to-one correspondence be-
tween ϵ and µ values when fixing δ.
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Proposition 2 (From µ-GDP to (ϵ, δ)-DP [Bu et al., 2020]).
A random mechanism is µ-GDP if and only if it is (ϵ, δ)-DP
for all ϵ ⩾ 0, where

δ = Φ

(
− ϵ

µ
+

µ

2

)
− eϵΦ

(
− ϵ

µ
− µ

2

)
, (4)

and Φ (·) is the Gaussian cumulative distribution function.
In what follows, we will review existing works related to

achieving DP guarantees in machine learning and highlight
the limitations in decentralized scenarios.
Decentralized learning methods with DP guarantee. DP
guarantee is initially integrated into a centralized (single-
node) setting for designing differentially private stochastic
learning algorithms [Abadi et al., 2016; Wang et al., 2017;
Iyengar et al., 2019; Chen et al., 2020; Wang et al., 2020].
Further, DP guarantee is considered in distributed learning
with server-client structures and the representative works in-
clude [McMahan et al., 2018; Li et al., 2019; Wang et
al., 2023; Wu et al., 2020; Wei et al., 2020; Zeng et al.,
2021; Wei et al., 2021a; Li et al., 2022; Liu et al., 2022;
Zhou et al., 2023; Wei et al., 2023]. Recently, there have
been efforts to achieve DP guarantees for fully decentral-
ized learning algorithms. For example, Cheng et al. [2018;
2019] achieve DP in fully decentralized learning for only
strongly convex problems. Wang and Nedic [2024] achieve
DP in fully decentralized architectures by tailoring gradi-
ent methods for deterministic optimization problems. For
non-convex stochastic optimization problems as we consider
in this work, Yu et al. [2021] present a differentially pri-
vate decentralized learning method (DP2-SGD) based on D-
PSGD [Lian et al., 2017], which relies on a fixed commu-
nication topology and uses the basic composition theorem
to bound the overall privacy loss. To have a tight privacy
guarantee, Xu et al. [2022] propose a differentially private
asynchronous decentralized learning method (A(DP)2SGD)
based on AD-PSGD [Lian et al., 2018], which provides pri-
vacy guarantee in the sense of Rényi differential privacy
(RDP) [Mironov, 2017]. However, it should be noted that
the aforementioned two algorithms [Yu et al., 2021; Xu et al.,
2022] work only for undirected communication graphs which
is often not satisfied in practical scenarios. Most recently, Li
and Chi [2025] achieve DP guarantee as well as communi-
cation compression in decentralized learning for non-convex
problems with the total privacy cost calculated via the mo-
ments accountant technique [Abadi et al., 2016], while their
methods are only applicable to time-invariant graphs.
Learning with dynamic DP Gaussian noise levels. For
the aforementioned differentially private decentralized meth-
ods designed for non-convex stochastic optimization prob-
lems [Yu et al., 2021; Xu et al., 2022; Li and Chi, 2025],
the injected fixed-level noise may exceed what is actually
needed for privacy requirements as training progresses, es-
pecially during the later stages of training, since their esti-
mated sensitivity based on constant/fixed gradient clipping
bound C̄ may not reflect the actual value of sensitivity (c.f.,
Figure 1). The overestimate of sensitivity may, indeed, lead
to a waste of unnecessary privacy budget during the train-
ing process [Wei et al., 2023]. Therefore, a tighter sensi-

tivity estimate is useful for improving model accuracy with-
out sacrificing privacy. There have been few works dedi-
cated to tightly estimate the sensitivity in a dynamic man-
ner. For instance, a scheme of decaying gradient clipping
bounds has been employed to estimate the sensitivity in
differentially private centralized learning [Du et al., 2021;
Wei and Liu, 2021], resulting in a decreasing amount of
noise injection. In the realm of distributed learning, a sim-
ilar strategy of dynamic clipping bounds is utilized in [An-
drew et al., 2021] to estimate sensitivity. Most recently, Wei
et al. [2023] use the minimum of decaying clipping bounds
and current gradient norms to estimate the l2 sensitivity, lead-
ing to a less amount of noise injection. However, these
distributed methods [Andrew et al., 2021; Fu et al., 2022;
Wei et al., 2023] only focus on server-client architecture and,
most importantly, they do not provide any theoretical guaran-
tee on model utility. In this paper, we aim to design a differ-
entially private decentralized learning method that incorpo-
rates dynamic noise strategies in fully decentralized settings,
and provide rigorous theoretical guarantee on model utility,
as well as its utility-privacy trade-off.

3 Algorithm Development
In this section, we develop our differentially private de-
centralized learning methods using the Gaussian DP (GDP)
framework as depicted in Proposition 1, which measures the
privacy profile (ϵ, δ) in terms of µ according to Proposition 2.
We consider solving Problem (1) over the following general
peer-to-peer network model.
Network model. The communication topology is modeled
as a sequence of time-varying directed graph Gk =

(
V, Ek

)
,

where V = {1, 2, ..., n} denotes the set of nodes and Ek ⊂
V×V denotes the set of directed edges/links at iteration k. We
associate each graph Gk with a non-negative mixing matrix
P k ∈ Rn×n such that (i, j) ∈ Ek if P k

i,j > 0, i.e., node i
receiving a message from node j at iteration k. We assume
that each node is an in-neighbor of itself.

The following assumptions are made on the mixing matrix
and graph for the above network model to facilitate the sub-
sequent utility analysis for our proposed algorithm.
Assumption 1 (Mixing matrix). The non-negative mixing
matrix P k, ∀k is column-stochastic, i.e., 1⊤P k = 1⊤, where
1 is an all-one vector.
Assumption 2 (B-strongly connected). There exist positive
integers B and △ such that the graph formed by the edge set⋃(l+1)B−1

k=lB Ek is strongly connected and has a diameter of at
most △ for ∀l ⩾ 0.

Now, we present our differentially private decentralized
learning algorithm (termed Dyn-D2P) with a dynamic noise
strategy, which works over the above general network model.
The complete pseudocode is summarized in Algorithm 1. At
a high level, Dyn-D2P is comprised of local SGD and the av-
eraging of neighboring information, following a framework
similar to SGP [Assran et al., 2019] which employs the Push-
Sum protocol [Kempe et al., 2003] to tackle the unblanceness
of directed graphs. However, the key distinction lies in the
gradient clipping operation and the injection of DP Gaussian
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Algorithm 1 Dyn-D2P

1: Initialization: DP budget (ϵ, δ), x0
i = z0i ∈ Rd, w0

i = 1,
step size γ > 0, total number of iterations K, initial clip-
ping bound C0 and hyper-parameters ρc > 1 and ρµ > 1.

2: for k = 0, 1, ...,K − 1, at node i, do
3: Randomly samples a local training data ξki with the

sampling probability 1
J ;

4: Computes stochastic gradient at zki : ∇fi(z
k
i ; ξ

k
i );

5: Calculates the clipping bound by: Ck = C0 · (ρc)−
k
K ;

6: Clips the stochastic gradient:

gki = Clip
(
∇fi

(
zki ; ξ

k
i

)
;Ck

)
= ∇fi

(
zki ; ξ

k
i

)
·min

{
1,

Ck∥∥∇fi
(
zki ; ξ

k
i

)∥∥
}
;

(5)

7: Calculates the per-step privacy budget by: µk = µ0 ·
(ρµ)

k
K with µ0 the solution of (8);

8: Calculates the DP noise variance by:

σk =
Ck

µk
=

C0 · (ρc)−
k
K

µ0 · (ρµ)
k
K

=
C0

µ0
· (ρc · ρµ)−

k
K ;

9: Draws randomized noise Nk
i from the Gaussian distri-

bution: Nk
i ∼ N

(
0, σ2

kId
)
;

10: Differentially private local SGD:

x
k+ 1

2
i = xk

i − γ(gki +Nk
i );

11: Sends
(
x
k+ 1

2
i , wk

i

)
to all out-neighbors and receives(

x
k+ 1

2
j , wk

j

)
from all in-neighbors ;

12: Updates xk+1
i by: xk+1

i =
∑n

j=1 P
k
i,jx

k+ 1
2

j ;
13: Updates wk+1

i by: wk+1
i =

∑n
j=1 P

k
i,jw

k
j ;

14: Updates zk+1
i by: zk+1

i = xk+1
i /wk+1

i .
15: end for

noise before performing local SGD. In particular, each node
i maintains three variables during the learning process: i) the
model parameter xk

i ; ii) the scalar Push-Sum weight wk
i and

iii) the de-biased parameter zki = xk
i /w

k
i , with the initializa-

tion of x0
i = z0i ∈ Rd and w0

i = 1 for all nodes i ∈ V . At
each iteration k, each node i updates as follows:

Private local SGD: x
k+ 1

2
i = xk

i − γ
(
gki +Nk

i

)
,

Averaging: xk+1
i =

n∑
j=1

P k
i,jx

k+ 1
2

j , wk+1
i =

n∑
j=1

P k
i,jw

k
j ,

De-bias: zk+1
i = xk+1

i /wk+1
i ,

where γ > 0 is the step size and gki is the clipped gradient
(c.f., (5)). Nk

i denotes the injected random noise to ensure
µk-GDP guarantee for node i at iteration k. This noise is

drawn from a Gaussian distribution with variance σ2
k, cali-

brated according to the dynamic clipping bound Ck and per-
step privacy budget µk. We note that the two key mecha-
nisms in the proposed Dyn-D2P to achieve dynamic noise
levels and enhance model accuracy include: i) dynamically
decreasing clipping bounds (c.f., line 5 in Algorithm 1); ii)
dynamically increasing per-step privacy budget (c.f., line 7 in
Algorithm 1). The detailed design and motivation for these
mechanisms will be explained as follows.

Dynamic decreasing clipping bounds. For differentially
private decentralized learning algorithms, the gradient clip-
ping operation is necessary for each node to bound the l2 sen-
sitivity of local SGD update and inject noise accordingly cal-
ibrated with l2 sensitivity (i.e., clipping bound) and privacy
budget. According to the previous discussion in Section 1
that the norm of stochastic gradient of each node typically
decreases as training proceeds, we know that the stochastic
gradient would not be clipped after some iteration k if we
use the constant clipping bound C̄ as Yu et al. [2021]; Xu et
al. [2022]; Li and Chi [2025] did, thus resulting in adding
unnecessary excessive noise calibrated with C̄ in the later
stage of training. To address this issue, we employ a dynamic
gradient clipping scheme for each node to reduce the clip-
ping bounds Ck across the updates. Compared to the fixed
clipping bound C̄ used in [Yu et al., 2021; Xu et al., 2022;
Li and Chi, 2025], it can reduce the noise level after a par-
ticular k when Ck < C̄, which is beneficial for stabilizing
the updates. In particular, we set the clipping bound Ck as
Ck = C0 · (ρc)−

k
K , where ρc > 1 is the hyper-parameter to

control the decay rate of the clipping bound, C0 is the initial
clipping bound, and K is the total number of iterations.

Dynamic increasing per-step privacy budget. Given a to-
tal privacy budget, the existing differentially private decen-
tralized learning methods [Yu et al., 2021; Xu et al., 2022;
Li and Chi, 2025] uniformly distribute privacy budgets across
all training steps. However, recent works [Zhu et al., 2019;
Wei and Liu, 2021; Wei et al., 2023] point out that it is rela-
tively easier to leak privacy at the initial stage of the training
process, and it becomes increasingly difficult as the training
progresses. To this end, we allocate a small privacy budget in
the early stages and gradually increase privacy budgets, i.e.,
setting µk+1 ⩾ µk for all k ∈ {0, 1, 2, ...,K − 1}. In ad-
dition, according to (3), we observe that small (resp. large)
µk means adding large (resp. small) noise. Therefore, set-
ting µk+1 ⩾ µk implies adding large (resp., small) noise in
the early (resp., later) stages of decentralized training, which
helps improve model accuracy. The intuition is that at the be-
ginning of training, the model is far away from the optimum,
and the gradient magnitudes are usually large (c.f., Figure 1);
larger noise is thus allowed and even helps to quickly escape
the saddle point [Ge et al., 2015]. As training proceeds, the
model approaches the optimum and the gradient magnitude
converge, smaller noise is then desired to stabilize the update
for convergence.

The following proposition provides a way for privacy ac-
counting of dynamic non-uniform µk-GDP costs throughout
the whole training process.
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Proposition 3 (Composition theorem for GDP with vary-
ing µk [Du et al., 2021]). Consider a series of random
mechanisms Mk for k ∈ {0, 1, 2, ...,K − 1}, where Mk

is µk-GDP, and each mechanism works only on a subsam-
pled dataset by independent Bernoulli trial with probability
p. After K steps by composition of Gaussian mechanism,
M ≜ MK−1 ⊗ · · · ⊗M1 ⊗M0 satisfies µtot-GDP where

µtot = p ·

√√√√K−1∑
k=0

(
eµ

2
k − 1

)
. (6)

To this end, we set the per-step privacy budget µk as

µk = µ0 · (ρµ)
k
K , (7)

where ρµ > 1 is the hyper-parameter controlling the growth
rate of µk, and µ0 is the initial privacy budget. Given the
target total privacy budget (ϵ, δ), the corresponding privacy
budget in the GDP framework µtot can be obtained by (4).
Substituting (7) into (6) with p = 1

J , we have

J2µ2
tot =

K−1∑
k=0

(
e

(
µ0·(ρµ)

k
K

)2

− 1

)
, (8)

and µ0 can be computed using a numerical method such as
binary search. With a specific value of µ0 and ρµ, the value
of µk at each iteration k can be calculated by (7).

In addition, we provide two by-product differentially pri-
vate decentralized learning algorithms (termed Dyn[C]-D2P
and Dyn[µ]-D2P), which employ only dynamic clipping
bound reduction method and dynamic per-step privacy bud-
get growth method, respectively:

• Dyn[C]-D2P: we set the clipping bound Ck as Ck =

C0 · (ρc)−
k
K (c.f., Algorithm 1), while maintaining the

per-step privacy budget µk the same for all iterations,
i.e., fixing µk = µ̄, ∀k. By substituting µk = µ̄ into (6)
in Proposition 3 with p = 1

J , we obtain the closed-form
solution of µ̄:

µ̄ =

√
log

(
J2µ2

tot

K
+ 1

)
. (9)

With specific values of Ck and µ̄, we can calibrate the
DP noise variance at each iteration by σk = Ck

µ̄ = C0

µ̄ ·
(ρc)

− k
K . The pseudocode of Dyn[C]-D2P can be found

in Appendix D in our full version [Zhu et al., 2025].
• Dyn[µ]-D2P: we set the per-step privacy budget µk as
µk = µ0 · (ρµ)

k
K (c.f., Algorithm 1), where µ0 is the so-

lution of (8), while employing the fixed clipping bound,
i.e., Ck = C̄, ∀k. Therefore, the DP noise variance
σk at each iteration can be calculated by σk = C̄

µk
=

C̄
µ0

· (ρµ)−
k
K . The pseudocode of Dyn[µ]-D2P can be

found in Appendix D in our full version [Zhu et al.,
2025].

It can be observed that, given ρc and ρµ, the noise de-
cay rate of Dyn-D2P is faster than that of Dyn[C]-D2P and

Algorithm 2 General Form of Dyn-D2P

1: Initialization: DP budget (ϵ, δ), x0
i = z0i ∈ Rd, w0

i = 1,
step size γ > 0, total number of iterations K, clip-
ping bounds C0, ..., CK−1, and noise levels σ̃ · σ̃0, ...., σ̃ ·
σ̃K−1.

2: for k = 0, 1, ...,K − 1, at node i, do
3: Follows from line 3 and 4 in Algorithm 1;
4: Gradient clipping: gki = Clip

(
∇fi

(
zki ; ξ

k
i

)
;Ck

)
;

5: Draws randomized noise Nk
i from the Gaussian distri-

bution: Nk
i ∼ N

(
0, σ̃2Id

)
;

6: Differentially private local SGD:

x
k+ 1

2
i = xk

i − γ(gki + σ̃kN
k
i );

7: Follows from line 11-14 in Algorithm 1.
8: end for

Dyn[µ]-D2P. We also present an algorithm termed Const-
D2P as our baseline, which employs constant clipping bound
(i.e., fixing Ck = C̄, ∀k) and uniformly distributes privacy
budgets across updates (i.e., µk = µ̄, ∀k) as usually did in
most of existing DP-based decentralized methods [Yu et al.,
2021; Xu et al., 2022; Li and Chi, 2025]. According to the
values of C̄ and µ̄ (c.f., (9)), the constant DP noise variance
is σ̄ = C̄

µ̄ . The pseudocode of Const-D2P can be found in
Appendix D in our full version [Zhu et al., 2025].

4 Theoretical Analysis
In this section, we theoretically investigate the impact of our
dynamic noise strategy on model utility guarantee and pro-
vide the utility bound for proposed Dyn-D2P given a cer-
tain privacy budget. We first present a general form of Dyn-
D2P where Ck and σk can be arbitrarily predefined sequences
(c.f., Algorithm 2). Different from Algorithm 1, we denote
σk = σ̃ · σ̃k for convenience in subsequent analysis, and we
term σ̃ as noise scale without loss of generality.

Then, we show that the DP guarantee for each node in Al-
gorithm 2 can be achieved by setting the noise scale σ̃ prop-
erly according to the given total privacy budget (ϵ, δ) as well
as the equivalent privacy parameter µtot, which is summa-
rized in the following proposition.

Proposition 4 (Privacy guarantee). Let K be the total num-
ber of iterations. Algorithm 2 achieves (ϵ, δ)-DP guarantee
for each node if we set the noise scale as

σ̃ =
1

Jµtot

√√√√2
K−1∑
k=0

C2
k

σ̃2
k

, (10)

where µtot is the solution of (4) with µ = µtot.

Proof. Refer to Appendix C in our full version [Zhu et al.,
2025].

Next, we make the following commonly used assumption
for the utility analysis of Algorithm 2.
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Assumption 3 (L-smoothness). For each function
fi, i ∈ V , there exists a constant L > 0 such that
∥∇fi (x)−∇fi (y)∥ ⩽ L ∥x− y∥.

Suppose Assumptions 1-3 hold, and assume that each per-
sample gradient is upper-bounded, i.e., ∥∇fi (z; ξi)∥ ⩽ Λ.
Then, we are ready to provide the following theorem to char-
acterize the utility guarantee of Algorithm 2.
Theorem 1 (Model utility). If we set the noise scale σ̃ as
in (10), Algorithm 2 can achieve (ϵ, δ)-DP guarantee for each
node and has the following utility guarantee

1

K

K−1∑
k=0

E
[∥∥∇f

(
x̄k
)∥∥2]

⩽
2
(
f
(
x̄0
)
− f∗)

γK
+

3L2Ψ2
∑n

i=1

∥∥x0
i

∥∥2
(1− q)

2
nK

+
3γ2L2Ψ2

(1− q)
2 · 1

K

K−1∑
k=0

· 1
n

n∑
i=1

E
[∥∥gki ∥∥2]

+ γL · 1

K

K−1∑
k=0

E

∥∥∥∥∥ 1n
n∑

i=1

gki

∥∥∥∥∥
2


+

(
6γ2KL2Ψ2d

(1− q)
2
J2µ2

tot

+
2γKLd

nJ2µ2
tot

)
1

K

K−1∑
k=0

C2
k

σ̃2
k

1

K

K−1∑
k=0

σ̃2
k︸ ︷︷ ︸

≜ T1: privacy noise term

,

+ 2E

[
1

K

K−1∑
k=0

Λ
∥∥∇f

(
x̄k
)∥∥ · 1

n

n∑
i=1

Pk
i (Ck)

]
︸ ︷︷ ︸

≜ T2: bias term
(11)

where x̄k = 1
n

∑n
i=1 x

k
i , f∗ = min

x∈Rd
f (x) while Ψ and q ∈

[0, 1) are positive constants2 depending on the diameter of the
network △ and the sequence of mixing matrices P k, whose
definition can be found in Lemma 2 in the appendix in our full
version [Zhu et al., 2025], Pk

i (Ck) denotes the probability of
a stochastic gradient being clipped with clipping bound Ck

for node i at iteration k.

Proof. Refer to Appendix A in our full version [Zhu et al.,
2025].

Remark 1 (On clipping bounds Ck). The clipping of gradi-
ents will destroy the unbiased estimate of the local full gradi-
ent for each node, resulting in a constant bias error (reflected
by T2 in (11)). It is obvious that the smaller the clipping
bound Ck, the greater the probability Pk

i (Ck) that clipping
occurs at iteration k. Based on this fact, we know that in gen-
eral, the bias term T2 in (11) will be small if Ck’s are large
and vise versa, given the same distribution of gradients. This
implies that we can use large clipping bounds to reduce the
bias term T2. However, this may make the privacy noise error
term T1 in (11) become larger. It is thus essential to choose

2q characterizes the speed of information propagation over the
network. A smaller value of q indicates faster propagation.

a proper sequence of Ck that could effectively balance T1

and T2. However, finding an optimal sequence of clipping
bounds to achieve the best trade-off necessitates knowledge
of the distribution of the stochastic gradient, which is impos-
sible to obtain in practice. The existing literature [Andrew
et al., 2021] points out that a noteworthy practical way is to
keep the probability Pk

i

(
Ck

i

)
approximately constant. Con-

sidering that the norm of the gradient is decreasing as train-
ing progresses, Ck should also be decreasing so as to keep
Pk
i (Ck) roughly constant, which supports the design of our

algorithm (c.f., Algorithm 1).
Next, we specify the sequences Ck and σ̃k in Algorithm 2,

yielding a special instance of dynamic clipping bound and
noise scheduling as used in Algorithm 1. We then provide the
corresponding utility bound in the following corollary.
Corollary 1. Under the same conditions of Theorem 1, by
setting Ck = Θ

(
(ρc)

− k
K

)
and σ̃k = Θ

(
(ρc · ρµ)−

k
K

)
for

some ρc > 1 and ρµ > 1, if we set γ = 1√
nJµtot

, γK =
√
nJµtot and assume that Jµtot >

√
n, we have

1

K

K−1∑
k=0

E
[∥∥∇f

(
x̄k
)∥∥2] ⩽ O

(
1

(1− q)
2 √

nJµtot

)
+ T2,

(12)
where O(·) hides some constants, e.g., L,

∑n
i=1

∥∥x0
i

∥∥2, Λ.

Proof. Refer to Appendix B in our full version [Zhu et al.,
2025].

Remark 2 (Tight utility bound). Setting aside the non-
vanishing bias term T2, the utility bound derived in Corollary
1 exhibits explicit dependency on the network-related param-
eter q, and reveals a scaling factor of 1/

√
n with respect to

the number of nodes n, which has never been observed in the
previous differentially private decentralized algorithms [Yu
et al., 2021; Xu et al., 2022]. By setting n = 1 which cor-
responds to the centralized/single-node case, our utility re-
sult (12) can be reduced to O (1/Jµtot), sharing the same
polynomial order as existing analysis [Zhang et al., 2017; Du
et al., 2021]. To our best knowledge, we provide the first the-
oretical utility analysis for decentralized non-convex stochas-
tic optimization with dynamic gradient clipping bounds and
noise levels, highlighting the utility-privacy trade-off.
Remark 3 (Non-trivial analysis). The exponential decay
scheme of the sequences Ck and σ̃k aligns with that of the
sequences Ck and σk in Algorithm 1, up to a constant factor.
Therefore, the theoretical result (utility bound) in Corollary 1
corroborates the parameter settings in Algorithm 1. We note
that our analysis is non-trivial and can not be directly de-
rived by extending the existing analysis [Du et al., 2021] for
the centralized/single-node case. The authors in [Du et al.,
2021] assume Ck and σ̃k to be constant when deriving util-
ity bounds, thereby simplifying the analysis (c.f., Theorem 1
in [Du et al., 2021]). In contrast, our analysis involves a
more precise setting of Ck and σ̃k as outlined in Corollary 1,
which requires a more sophisticated analysis (c.f., Eq.(35) to
(36) in the appendix in our full version [Zhu et al., 2025]
for the derivation). We will also evaluate the impact of two
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Algorithm ϵ = 0.3 ϵ = 0.7 ϵ = 1 ϵ = 3

Non-Private 82.16
Const-D2P 46.37 52.38 60.02 71.11
Dyn[µ]-D2P 64.12 66.21 69.37 76.3
Dyn[C]-D2P 66.93 68.37 72.02 77.65
Dyn-D2P 71.87 72.14 75.06 79.89

Table 1: Final testing accuracy (%) for different algorithms when
training ResNet-18 on Cifar-10 dataset, under different values of pri-
vacy budget ϵ.

(a) Training loss (b) Testing accuracy

Figure 2: Comparison of convergence performance for five algo-
rithms under (1, 10−4)-DP guarantee for each node, when training
ResNet-18 on Cifar-10 dataset.

hyper-parameters ρµ and ρc on algorithm performance in
the experimental section. The fixed schedule for the clipping
bound and noise level in Corollary 1 is not the only option
for our general algorithm form (Algorithm 2). Exploring al-
ternative dynamic clipping bound mechanisms–such as using
more complex schedules than exponential decaying method
or adaptive clipping bound calculated based on the real-time
gradient norm–would require additional heuristic efforts and
complicate the theoretical utility analysis. We leave these ex-
plorations for future work.

5 Experiments
We conduct extensive experiments to verify the performance
of proposed Dyn-D2P (c.f., Algorithm 1), with comparison
to our two by-product algorithms Dyn[C]-D2P and Dyn[µ]-
D2P, and two baselines: i) Const-D2P, which employs fixed-
level noise; ii) non-private decentralized learning algorithm,
which does not use gradient clipping or add DP noise, and
thus serves as the upper bound of model accuracy. All ex-
periments are deployed in a server with Intel Xeon E5-2680
v4 CPU @ 2.40GHz and 8 Nvidia RTX 3090 GPUs, and
are implemented with distributed communication package
torch.distributed in PyTorch [Paszke et al., 2017], where a
process serves as a node, and inter-process communication is
used to mimic communication among nodes.

5.1 Experimental Setup
We compare five algorithms in a fully decentralized set-
ting composed of 20 nodes, on two benchmark non-convex
learning tasks: i) training ResNet-18 [He et al., 2016] on
Cifar-10 [Krizhevsky, 2009] dataset; ii) training shallow

Algorithm ϵ = 0.3 ϵ = 0.7 ϵ = 1 ϵ = 3

Non-Private 89.98
Const-D2P 45.37 58.63 74.65 80.81
Dyn[µ]-D2P 81.12 82.98 82.23 84.36
Dyn[C]-D2P 82.93 83.65 84.06 84.98
Dyn-D2P 84.88 85.36 86.21 87.89

Table 2: Final testing accuracy (%) for different algorithms when
training shallow CNN on FashionMnist dataset, under different val-
ues of privacy budget ϵ.

(a) Training loss (b) Testing accuracy

Figure 3: Comparison of convergence performance for five algo-
rithms under (3, 10−4)-DP guarantee for each node, when training
shallow CNN on FashionMnist dataset.

CNN model (composed of two convolution layers and two
fully connected layers) on FashionMnist [Xiao et al., 2017]
dataset. We split shuffled datasets evenly to 20 nodes. For
communication topology, unless otherwise stated, we use a
time-varying directed exponential graph (refer to Appendix E
in our full version [Zhu et al., 2025] for its definition). The
learning rate is set to be 0.05 for ResNet-18 training and 0.03
for shallow CNN model training. Privacy parameters δ is set
to be 10−4, and we test different values for ϵ which implies
different levels of privacy guarantee. Other parameters such
as C̄, C0, ρc and ρµ are detailed in Appendix F.1 in our full
version [Zhu et al., 2025]. Note that all experimental results
are averaged over five repeated runs.

5.2 Superior Performance against Baseline
Methods

For the ResNet-18 training task, we present the experimen-
tal result of final model accuracy in Table 1, and provide the
plots of training loss/testing accuracy versus iteration in Fig-
ure 2 with a privacy budget of ϵ = 1 (the plots with other val-
ues of ϵ can be found in Appendix G in our full version [Zhu
et al., 2025]). It can be observed that our Dyn-D2P and two
by-product algorithms (Dyn[C]-D2P and Dyn[µ]-D2P) con-
sistently outperform the baseline algorithm Const-D2P which
employs constant noise. Among these above DP algorithms,
Dyn-D2P achieves the highest model accuracy while main-
taining the same level of privacy protection. Furthermore,
a comparison of experimental results with different privacy
budgets (i.e., varying values of ϵ) shows that the stronger the
level of required privacy protection (i.e., the smaller the value
of budget ϵ), the more pronounced the advantage in model ac-
curacy with our dynamic noise strategy. In particular, when
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setting a small ϵ = 0.3 which implies a strong privacy guar-
antee, our Dyn-D2P achieves a 25% higher model accuracy
than Const-D2P employing constant noise strategies. These
results verify the superiority of our dynamic noise approach.

For the shallow CNN training task, we present the experi-
mental result of final model accuracy in Table 2, and provide
the plots of training loss/testing accuracy in terms of iteration
in Figure 3 with a privacy budget of ϵ = 1 (the plots with
other values of ϵ can be found in Appendix G in our full ver-
sion [Zhu et al., 2025]). The takeaways from the experimen-
tal results are similar to previous experiments on the ResNet-
18 training task, and our proposed Dyn-D2P performs much
better than the baseline algorithm Const-D2P while maintain-
ing the same level of privacy protection, which again high-
lights the superiority of our dynamic noise approach. In par-
ticular, under a strong level of required privacy guarantee with
budget ϵ = 0.3, our Dyn-D2P achieves a 39% higher model
accuracy compared to Const-D2P.

5.3 Sensitivity to Hyper-parameters
In this part, we test the robustness of our algorithm (c.f., Al-
gorithm 1) to different values of hyper-parameters ρc and ρµ.
We use grid search to demonstrate the impact of these two
parameters on the final model accuracy. It follows from the
results as shown in Figure 4 that, our algorithm can almost
maintain the final model accuracy and consistently improve
model accuracy compared to Const-D2P across a wide range
of ρc and ρµ, which implies that our proposed algorithm is
robust to the value of hyper-parameter ρc and ρµ.

Figure 4: Illustration of the robustness of Dyn-D2P against the val-
ues of ρµ and ρc under different privacy budget ϵ.

(a) (1, 10−4)-DP guarantee (b) (1, 10−4)-DP guarantee

Figure 5: Comparison of convergence performance (model utility)
for Dyn-D2P over (a) different graphs consisting of 20 nodes and (b)
an exponential graph with different number of nodes, respectively.

5.4 Performance over Different Graphs and Node
Numbers

First, we implement Dyn-D2P over a static directed ring
graph, a time-varying directed exponential graph, and a fully
connected graph, where the q value w.r.t. these three graphs
decreases in sequence. The experimental result shown in Fig-
ure 5(a) demonstrates that the model accuracy (utility) in-
creases in sequence across these graphs. Then, we implement
Dyn-D2P on a time-varying directed exponential graph con-
sisting of different numbers of nodes (refer to Appendix F.2
in our full version [Zhu et al., 2025] for more details on the
setup). It can be observed from Figure 5(b) that, increasing
the number of nodes improves the model accuracy (utility).
Note that both of these above observations align with the the-
oretical insights outlined in Corollary 1 and Remark 2.

6 Conclusion
In this work, we proposed a differentially private decentral-
ized learning method Dyn-D2P, for non-convex optimiza-
tion problems, which dynamically adjusts gradient clipping
bounds and noise levels across the update. The proposed dy-
namic noise strategy allows us to enhance the model accuracy
while maintaining the level of privacy guarantee. Extensive
experiments show that our Dyn-D2P outperforms the existing
counterparts with fixed-level noises, especially under strong
privacy levels. Our analysis shows that the utility bound of
Dyn-D2P exhibits an explicit dependency on the network-
related parameter and enjoys a scaling factor of 1/

√
n, up

to a bias error term induced by gradient clipping. To our
knowledge, we provide the first theoretical utility analysis for
fully decentralized non-convex stochastic optimization with
dynamic gradient clipping bounds and noise levels, highlight-
ing the utility-privacy trade-off. We will focus on eliminating
the bias term induced by gradient clipping in the future.
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