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Abstract
Modeling complicated interactions among the ego-
vehicle, road agents, and map elements has been
a crucial part for safety-critical autonomous driv-
ing. Previous work on end-to-end autonomous
driving relies on the attention mechanism to han-
dle heterogeneous interactions, which fails to cap-
ture geometric priors and is also computationally
intensive. In this paper, we propose the Interac-
tion Scene Graph (ISG) as a unified method to
model the interactions among the ego-vehicle, road
agents, and map elements. With the representa-
tion of the ISG, the driving agents aggregate es-
sential information from the most influential ele-
ments, including the road agents with potential col-
lisions and the map elements to follow. Since a
mass of unnecessary interactions are omitted, the
more efficient scene-graph-based framework is able
to focus on indispensable connections and leads
to better performance. We evaluate the proposed
method for end-to-end autonomous driving on the
nuScenes dataset. Compared with strong baselines,
our method significantly outperforms in full-stack
driving tasks.

1 Introduction
The conventional Autonomous Driving (AD) system is man-
ually divided into multiple sequential modules, including per-
ception [Huang et al., 2021; Li et al., 2022b; Liu et al.,
2022], prediction [Hu et al., 2021a; Jia et al., 2023a], plan-
ning [Hu et al., 2021b], and control [Wu et al., 2022]. How-
ever, the manual division prevents the system from being op-
timized jointly and globally, resulting in sub-optimal perfor-
mance. To address this issue, end-to-end autonomous driv-
ing algorithms [Hu et al., 2023; Jiang et al., 2023; Zhang et
al., 2021] optimize different modules altogether, making the
whole system differentiable. With the potential of reducing
accumulated errors and achieving higher performance, end-
to-end algorithms are drawing increasing attention [Chen et
al., 2023]. In end-to-end driving algorithms, both the predic-
tion [Gu et al., 2023] and the planning [Zeng et al., 2019;

∗Corresponding author.

Figure 1: The Interaction Scene Graph is composed of the Dynamic
Scene Graph (DSG) and the Static Scene Graph (SSG). In DSG, the
traffic agents, represented by the round nodes, pay attention to the
surrounding agents by the directed connections. In SSG, the traffic
agents reason about their trajectories based on the connected lanes
which are represented by the rectangular nodes.

Hu et al., 2021b] modules share the same task of predicting
future trajectories of agents (i.e., road agents in the predic-
tion task and the ego vehicle in the planning task). The fu-
ture trajectories are affected by the interactions among the
agents and surrounding environments. Hence, modeling the
interactions plays a central role in conventional end-to-end
algorithms, which is commonly concreted by the attention
mechanism [Hu et al., 2023; Jiang et al., 2023]. However,
the attention mechanism, mainly based on correlations of im-
plicit features, lacks the prior knowledge of geometry about
which driving elements are more important. As a result, the
attention-based interactions inevitably waste their modeling
capacities on the unimportant driving elements, while per-
forming worse when being impaired by nuisance elements.

In this paper, we propose the Interaction Scene Graph
for end-to-end Autonomous Driving (GraphAD) to enhance
the interactions among driving elements. GraphAD encodes
strong prior knowledge of the interactions into a graph model,
the Interaction Scene Graph (ISG). The ISG is a directed
graph model whose nodes represent key driving elements in
the environment, including traffic agents and lanes. The driv-
ing elements are carefully selected for information aggrega-
tion, such that only important driving elements are repre-
sented. The directed edges in the graph represent the inter-
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actions between the nodes. Each node is linked to only a
small number of other nodes, making the edges sparse. As a
result, the ISG is a concise and efficient representation of the
interactions.

Specifically, the ISG consists of two complementary parts,
including the Dynamic Scene Graph (DSG) and the Static
Scene Graphs (SSG), as shown in Fig. 1. The DSG focuses
on the interactions among agents. Each node of DSG corre-
sponds to an agent. Each edge has a weight, measuring the at-
tention one agent pays to the other. The weights are employed
to predict the future trajectories of the agents. Note that the
interactions among agents depend on the future trajectories,
i.e., an agent would pay more attention to one another if their
trajectories would collide in the future. Hence, the weights in
DSG and the predicted future trajectories are interdependent.
The predicted future trajectories can in turn refine the weights
in the DSG. So we optimize the DSG and the predicted fu-
ture trajectories iteratively. The SSG depicts the interac-
tion between the agent and the surrounding map elements.
Each agent is represented as a node in the SSG. In the mean-
while, the surrounding lanes in the map are also represented
as nodes. The directed edges come from the agent and go to
the lanes, modeling the attention the agents pay to the lanes.
We apply graph neural networks [Kipf and Welling, 2016;
Velivckovic et al., 2017] on the DSG and SSG. The extracted
features are utilized to predict the future trajectories of the
ego and all other agents. By such means, we are able to adopt
a unified method to accomplish both the prediction and the
planning tasks.

We evaluate our method on the nuScenes dataset [Caesar
et al., 2020]. Extensive ablation studies are conducted to
demonstrate the effectiveness of our design choices. We sum-
marize our main contributions as follows: First, GraphAD
is the first end-to-end autonomous algorithm which employs
a graph model to describe the complex interactions in traf-
fic scenes. The graph model allows us to introduce strong
prior knowledge of the traffic scene into the algorithm ef-
fectively and efficiently. Second, we elaborately devise the
ISG which concisely presents the heterogeneous interactions
among ego vehicle, traffic agents, and map elements. In par-
ticular, the DSG is able to iteratively refine the prediction
of future trajectories and describe subtle interactive games
among agents. Finally, when compared with strong base-
lines [Hu et al., 2023; Hu et al., 2022; Jiang et al., 2023],
our method achieves state-of-the-art performance on multiple
tasks.

2 Related Work
2.1 End-to-End Autonomous Driving
Instead of adopting a modular paradigm in the traditional AD
framework, end-to-end methods, which aim to output future
actions based on sensor inputs, have attracted considerable at-
tention. When formulated in an end-to-end manner, the whole
framework can be optimized towards the ultimate planning
task with high computational efficiency [Chen et al., 2023;
Hu et al., 2023]. Some pioneering approaches attempt
to directly predict the planned trajectory while lacking ex-
plicit supervision of intermediate perception and prediction

tasks [Prakash et al., 2021; Wu et al., 2022; Wu et al., 2023;
Zhang et al., 2021; Jia et al., 2023b]. Considering the trans-
parency and interpretability for safety, recent works [Casas
et al., 2021; Hu et al., 2022; Chen and Krahenbuhl, 2022;
Hu et al., 2023; Ye et al., 2023; Jiang et al., 2023] introduce
requisite preceding tasks in the end-to-end framework, thus
unifying perception, prediction, and planning into a holistic
model. For instance, UniAD [Hu et al., 2023], which re-
gards task-specific queries as a powerful tool for message
passing throughout the AD pipeline, has achieved remarkable
performance in both multi-object tracking, online mapping,
motion forecasting, occupancy prediction, and planning. Fu-
sionAD [Ye et al., 2023] extends the capacity of UniAD [Hu
et al., 2023] with multi-modal input. In the meantime, some
researchers focus on the impact of different privileged inputs.
VAD [Jiang et al., 2023] contends that end-to-end AD can be
performed in a fully vectorized manner with high efficiency,
while OccNet [Tong et al., 2023] attempts to perform the
planning task based on the predicted occupancy.

Despite previous methods that have gained impressive per-
formance, the interactions between traffic agents and the sur-
rounding environment are not fully explored. In this work, we
propose the Interaction Scene Graph to explicitly model the
heterogeneous interactions between the dynamic and static
driving elements.

2.2 Graph Neural Networks
Thanks to the success of Graph Neural Networks in graph
data, GNNs [Kipf and Welling, 2016; Hamilton et al., 2017;
Velivckovic et al., 2017] have been widely adopted in various
fields, such as object detection [Wang and Solomon, 2021;
Shi and Rajkumar, 2020; Xu et al., 2019], skeleton-based
action recognition [Yan et al., 2018; Li et al., 2023a],
person re-identification [Yang et al., 2020]. Also, GNN-
related advances attract researchers in the autonomous driv-
ing community, several studies propose to leverage the abil-
ity of GNNs for scene perception and motion prediction.
GNN3DMOT [Weng et al., 2020] and PTP [Weng et al.,
2021] attempt to model inherit interactions among detected
targets for 3D multi-object tracking. For online mapping,
LaneGCN [Liang et al., 2020] constructs a lane graph from an
HD map, and TopoNet [Li et al., 2023b] introduces relation
modeling between lane and traffic elements with a learned
scene knowledge graph. In multi-agent motion forecasting,
both moving agents and map elements are designed as nodes
in graph construction, and the introduction of the relationship
among them would benefit trajectory prediction [Salzmann et
al., 2020; Mo et al., 2022]. HDGT [Jia et al., 2023a] de-
vises a heterogeneous graph and explicitly models all seman-
tics and relations in the scene. Different from prior works,
GraphAD is the first to capture the interactions among dy-
namic agents and static map elements in the end-to-end AD
framework. Also, GraphAD proposes to consider the poten-
tial movements of dynamic agents in graph construction by
introducing the trajectory proposals.

3 Method
The overall framework of GraphAD is presented in Fig. 2.
First, with multi-view video sequences, camera parameters,
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Image Encoder

Surround View Images

BEV Features

BEV Features (T - 1)

Temporal
Aggregation

Camera
Parameters

MapFormer

Intention Interaction
 BEV Interaction


Ego-status

Command

Motion Head

Planning Head

Trajectory Proposals

Static Scene Graph

Ego Query

Motion Head

TrackFormer

Perception Query

Dynamic Scene Graph

Figure 2: GraphAD features the graph-based interactions between the structured instances in the driving environment, including the dynamic
traffic agents and the static map elements. GraphAD first constructs the spatiotemporal scene feature on the Bird-Eye-View as the unified
representation for downstream tasks. Then, GraphAD extracts the structured instances by the TrackFormer and the MapFormer. Taking these
instances as graph nodes, GraphAD proposes the Interaction Scene Graph to iteratively refine the features of dynamic nodes, by considering
the inter-agent and agent-map interactions. Finally, the processed node features are utilized for motion prediction and end-to-end planning.

and ego-poses as input, the image features are extracted
by the image encoder and then lifted to the Bird-Eye-View
(BEV) features. The multi-frame BEV features are further
aggregated to form the spatiotemporal scene representation.
Second, GraphAD employs two transformer decoders, i.e. the
TrackFormer and the MapFormer, to extract the structured
representations for the dynamic and static driving elements.
Third, the Interaction Scene Graph is explicitly constructed
to model the interactions among the ego vehicle, dynamic
elements, and static elements, by considering the potential
movements. Finally, the graph-aggregated ego query fea-
ture, combined with ego status features and high-level driving
command, is processed by the planning head to predict the
ego-vehicle trajectory. We elaborate on the designs of these
steps in the following sections.

3.1 Spatiotemporal Scene Representation
Image Encoder. The image encoder includes a backbone
network for multi-scale feature extraction and a neck for fus-
ing these features. Formally, with the multi-view images
I ∈ RN×3×HI×WI as input, the image encoder creates the
extracted visual features F2d ∈ RN×CI×H′

I×W ′
I , where N

is the number of camera views, CI is the channel number,
(HI ,WI) and (H ′

I ,W
′
I) are the input and downsampled im-

age sizes. The output visual feature can contain the funda-
mental semantics and geometry of the surrounding environ-
ment.
Image-to-BEV Transformation. To build a unified scene
representation for temporal aggregation and multi-task infer-
ence, we lift the multi-view image features to BEV repre-
sentations with the Lift-Splat-Shoot paradigm [Philion and

Fidler, 2020; Huang et al., 2021; Li et al., 2022a]. Specifi-
cally, the image features Ft

2d at time t are processed to cre-
ate the context features Ft

con ∈ RN×C×H′
I×W ′

I and categor-
ical depth distributions Dt ∈ RN×D×H′

I×W ′
I , where C is

the channel number and D is the number of depth bins. The
outer product Ft

con ⊗ Dt is then computed as lifted feature
point cloud Pt ∈ RNDH′

IW
′
I×C . Finally, the voxel-pooling

is employed to process the feature points and generate the
BEV feature Ft

BEV ∈ RC×H×W at time t.

Temporal Feature Aggregation. The multi-frame BEV
features {Ft

BEV }
tcur

t=tcur−T+1, where tcur is the current time
and T ∈ N+ is the number of frames, are first warped into
the ego-centric coordinate system at the current time so that
the ego-motion misalignment is removed. Afterward, the
aligned multi-frame BEV features are concatenated along
the channel dimension and further processed by a convolu-
tional BEV encoder. The output spatiotemporal BEV feature
FBEV ∈ RCo×H×W will serve as the unified spatiotemporal
scene representation for downstream tasks.

3.2 Structured Element Learning
Based on the spatiotemporal scene features, the extraction
of structured elements, including traffic agents and map ele-
ments, is important for safety-critical planning in autonomous
driving. Therefore, GraphAD utilizes the TrackFormer and
the MapFormer to predict these driving-related instances.

TrackFormer. With the spatiotemporal BEV representa-
tion, the TrackFormer aims to perform end-to-end 3D object
detection and tracking. Following the design of [Hu et al.,
2023], we employ two groups of object queries and the trans-
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former decoder to solve the problem. Specifically, one group
of track queries, which corresponds to previously detected
objects, is still required to predict the updated 3D bounding
boxes of the same object identities. The other group of de-
tection queries is responsible for the objects which are visible
for the first time. For each timestamp, the positive queries,
including the tracked and newborn, will serve as the track
queries for the next timestamp. The transformer decoder
layer includes the self-attention between all object queries
and the deformable attention for attending to the spatiotem-
poral BEV features.

MapFormer. To better capture the geometric constraints of
map elements, we follow recent practices [Liao et al., 2022;
Jiang et al., 2023] to learn vectorized representations of local
maps. Specifically, the MapFormer utilizes the instance-level
and point-level queries to form the hierarchical map queries,
which are processed by a similar transformer decoder as in
TrackFormer. Finally, the output map queries are projected to
the class scores and a series of BEV coordinates of potential
map elements. To fully capture the map information, four
kinds of elements are modeled, including the lane centerline,
lane divider, road boundary, and pedestrian crossing.

3.3 Interaction Scene Graph
With the extracted driving instances in structured formats, in-
cluding traffic agents and map elements, the key challenge
lies in how the network can perceive heterogeneous interac-
tions. These interactions, including the driving game between
dynamic agents, or the simple centerline-following heuris-
tics, are important for forecasting the future of surrounding
environment and making driving decisions. To this end, we
construct the Interaction Scene Graph to capture these hetero-
geneous interactions. As an iterative process, the Interaction
Scene Graph functions in three steps. First, all dynamic and
static elements are formulated as graph node representations,
including explicit geometry and implicit features. Second, the
Interaction Scene Graph is constructed with strong geometric
priors. Third, the graph node features are updated based on
the established graph edges, which are further processed to
update the geometry. The detailed formulation is elaborated
in the following paragraphs.

Graph Node Representation. The Interaction Scene
Graph is constructed on the structured nodes of traffic agents
and map elements. Each graph node is designed to include
both the explicit geometry and the implicit features. Note
that the ego-vehicle is treated as one of the traffic agents to
participate in graph-based interactions.

Specifically, the graph nodes of traffic agents, i.e. dynamic
graph nodes, are organized as one set P d = {pd1, . . . , pdNd

},
where Nd is the number of dynamic graph nodes. Also,
pdi = (xd

i , f
d
i ) represents the node representation with its tra-

jectory proposal xd
i ∈ RMd×2 as BEV coordinates and its

node feature fdi ∈ RCg with Cg channels, where Md is the
time horizon of trajectory prediction. The trajectory propos-
als are the trajectory predictions from the previous layer. For
the first layer, the clustering results from k-means are utilized
instead. The implicit node features are computed as the com-
bination of previous node features, queries from the Track-

Former, embeddings of trajectory proposals, and learnable
intention embeddings, following [Hu et al., 2023]. For the
unified formulation, we treat different modalities of the same
agent as different dynamic graph nodes.

Similarly, the graph nodes of map elements, i.e. static
graph nodes, are organized as the other set P s =
{ps1, . . . , psNs

}, where Ns is the number of static graph nodes
and psi = (xs

i , f
s
i ) represents one map element by a series of

BEV coordinates xs
i ∈ RMs×2 with Ms points and its node

feature fsi ∈ RCg with Cg channels. The structured predic-
tions from the MapFormer, including the BEV coordinates
and the output query features, are directly used as the static
graph nodes. Since the map elements in the driving scenes
usually serve as constant environment constraints, their node
features are not updated in the iterative layers.
Graph Connection Construction. To capture the hetero-
geneous interactions between all graph nodes, the Interaction
Scene Graph consists of the Dynamic Scene Graph (DSG)
and the Static Scene Graph (SSG). The Dynamic Scene
Graph is formulated as Gd = (P d, Ed) by using the traffic
agents as dynamic graph nodes, which intends to model the
driving game between these agents. The Static Scene Graph
is formulated as Gs = (P d, P s, Es) by incorporating both
the dynamic and static graph nodes, which focuses on provid-
ing the appropriate map information for the dynamic agents.
For both DSG and SSG, we follow the same high-level phi-
losophy for computing the edge connections. Specifically, we
compute the pair-wise distances between nodes and connect
each node to its K nearest neighbors. Despite the straight-
forward formulation, the design choices of pair-wise distance
functions are still underexplored.

Existing graph-based methods [Wang and Solomon, 2021;
Jia et al., 2023a] usually exploit the pair-wise distance in fea-
ture or coordinate spaces. However, the heterogeneous and
evolutionary interactions in the constructed scene graph, with
dynamic agents and map elements, cannot be well processed
by existing approaches. To this end, we propose to utilize the
geometric distances based on trajectory proposals to measure
the correlations between graph nodes. On the Dynamic Scene
Graph, the distance Hd(pdi , p

d
j ) between two dynamic graph

nodes is computed as the minimal distance between their tra-
jectory proposals at each time, as in Eq. (1):

Hd(pdi , p
d
j ) =

Md

min
t=1

∥xd
i (t)− xd

j (t)∥2, (1)

where xd
i (t) refers to the predicted future position at time t.

On the Static Scene Graph, the distance Hs(pdi , p
s
j) between

a dynamic node and a static node is computed as the min-
imal distance between the dynamic trajectory proposal and
the static map coordinates, as in Eq. (2):

Hs(pdi , p
s
j) =

Md

min
t=1

(
Ms

min
k=1

∥xd
i (t)− xs

j(k)∥2
)
, (2)

where xd
i (t) refers to the predicted future position at time t

and xs
j(k) refers to the k-th coordinate point of the predicted

map element. When the pair-wise distances are computed, the
nearest K graph nodes with minimal distances are selected as
the graph neighbors.
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Method L2 (m) ↓ Collision (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

NMP† [Zeng et al., 2019] - - 2.31 - - - 1.92 -
SA-NMP† [Zeng et al., 2019] - - 2.05 - - - 1.59 -
FF† [Hu et al., 2021b] 0.55 1.20 2.54 1.43 0.06 0.17 1.07 0.43
EO† [Khurana et al., 2022] 0.67 1.36 2.78 1.60 0.04 0.09 0.88 0.33
ST-P3 [Hu et al., 2022] 1.33 2.11 2.90 2.11 0.23 0.62 1.27 0.71
UniAD [Hu et al., 2023] 0.48 0.96 1.65 1.03 0.05 0.17 0.71 0.31
VAD∗ [Jiang et al., 2023] 0.54 1.15 1.98 1.22 0.00 0.33 1.07 0.47
GPT-Driver [Mao et al., 2023a] 0.27 0.74 1.52 0.84 0.07 0.15 1.10 0.44
Agent-Driver [Mao et al., 2023b] 0.22 0.65 1.34 0.74 0.02 0.13 0.48 0.21

GraphAD 0.32 0.61 1.10 0.68 0.03 0.07 0.25 0.12

Table 1: Benchmark results for open-loop planning performance. † denotes LiDAR-based methods. ∗ represents the reproduced results
with official checkpoints. GraphAD achieves the state-of-the-art planning performance.

Graph Feature Aggregation. Since the interaction con-
nections have been established, the final part is to refine the
node feature by aggregating the information from its con-
nected neighbors. A simple yet effective approach is pro-
posed for the feature aggregation in the Interaction Scene
Graph. Specifically, the feature of each neighbor node is con-
catenated with the target node and then processed by a Multi-
Layer Perceptron (MLP). Finally, the permutation-invariant
max-pooling is used to aggregate the processed neighbor fea-
tures into the target node. Also, the Dynamic Scene Graph
and Static Scene Graph share the same approach for graph
feature aggregation. At the end of each iteration layer, the up-
dated features of dynamic agents are utilized to predict their
multi-modal trajectories, including the probability score and
the trajectory points for each modality. The predicted tra-
jectory points are further used to update the geometric node
features into the next iteration layer.

3.4 Planning Head
Planning Head Structure. The input information for the
planning head includes the high-level driving command, the
ego-status features, and the processed ego-query from the In-
teraction Scene Graph. The three groups of features are con-
catenated and processed by a simple MLP for the final plan-
ning predictions.

Ego-status Features. The ego-status information, which
mainly includes the velocity, acceleration, and angular ve-
locity, is important for the open-loop planning performance.
Therefore, we use a small Multi-Layer Perceptron (MLP) to
encode the ego-status information, along with the history tra-
jectories of the ego-vehicle, into the ego-status features.

Occupancy-based Post-optimization. To further avoid the
collision with other road agents and ensure the driving safety,
we follow the implementation of UniAD [Hu et al., 2023] to
train an occupancy head, whose predictions can be utilized to
post-optimize the predicted planning trajectories.

3.5 Training
Loss Functions. The loss functions include the depth esti-
mation loss Ldepth, the TrackFormer loss Ltrack, the Map-
Former loss Lmap, the motion trajectory loss Lmotion, the

Method minADE(m)↓ minFDE(m)↓ MR↓ EPA↑
Constant Pos. 5.80 10.27 0.347 -
Constant Vel. 2.13 4.01 0.318 -
PnPNet 1.15 1.95 0.226 0.222
ViP3D 2.05 2.84 0.246 0.226
UniAD 0.71 1.02 0.151 0.456
GraphAD 0.68 0.98 0.161 0.514

Table 2: Benchmark results for motion-forecasting.

DSG SSG minADE(m)↓ minFDE(m)↓ MR↓
✓ 0.683 1.014 0.165

✓ 0.684 1.018 0.167
✓ ✓ 0.665 0.989 0.160

Attention Attention 0.678 1.000 0.160

Table 3: The ablation studies for the Interaction Scene Graph.

occupancy loss Locc, and the planning loss Lplan. GraphAD
is end-to-end trained with the summation of multi-task losses:

L = Ldepth+Ltrack+Lmap+Lmotion+Locc+Lplan. (3)

Specifically, we use binary cross-entropy for Ldepth and
follow existing methods [Hu et al., 2023; Jiang et al., 2023]
for training other tasks.
Multi-stage Training. First, GraphAD is trained to jointly
predict the 3D object detection and vectorized map elements.
Second, we freeze the image backbone and train GraphAD
for tracking, vectorized map, and graph-based motion predic-
tion. Finally, we further add the tasks of occupancy prediction
and planning for end-to-end training.

4 Experiments
Our experiments are conducted on the challenging nuScenes
dataset [Caesar et al., 2020], where 1000 complex driving
scenes are included. For annotations, over 1.4M 3D bound-
ing boxes of 23 categories are provided in total, and the key-
frames are annotated at 2 Hz.

4.1 Implementation Details
For benchmark results, GraphAD adopts the input size of 640
and ResNet101-DCN [He et al., 2016] as the image back-
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Similarity minADE(m)↓ minFDE(m)↓ MR↓
Feature Distance 0.673 0.993 0.160
Current Distance 0.677 0.999 0.160

Trajectory Distance 0.665 0.989 0.160

Table 4: The ablation studies for the choices of node similarity func-
tions.

bone. The image neck generates feature maps with 512 chan-
nels and 16× downsampling. For image-to-BEV transfor-
mation, GraphAD uses the method in BEVDepth [Li et al.,
2022a] to generate the BEV features with 80 channels. Four
frames of BEV features are fused to create the spatiotem-
poral scene representation FBEV ∈ R256×200×200. The
TrackFormer strictly follows the settings of UniAD [Hu et
al., 2023], while the MapFormer uses 100 map queries and a
six-layer transformer decoder. The Interaction Scene Graph
stacks three iterative layers for motion prediction with six
modalities. The number of neighbours is set to 24 for the
Dynamic Scene Graph and 8 for the Static Scene Graph.
For ego-status features in the planning head, we follow the
preprocessing of CAN-bus information from VAD [Jiang et
al., 2023]. For ablation studies, we adopt the input size of
256× 704 and ResNet50 as the image backbone.

4.2 Metrics

We follow the same evaluation protocol of previous state-of-
the-art method UniAD [Hu et al., 2023]. For motion pre-
diction, we employ End-to-end Prediction Accuracy (EPA),
Average Displacement Error (ADE), Final Displacement Er-
ror (FDE), and Miss Rate (MR). In planning task, Displace-
ment Error (DE, L2 distance) and Collision Rate (CR) are
employed, where CR is considered as the main metric.

4.3 Benchmark Results

Planning Results. As shown in Tab. 1, GraphAD achieves
the state-of-the-art performance for open-loop planning on
the nuScenes validation set. When compared to the second
best method, Agent-Driver [Mao et al., 2023b], GraphAD
achieves a 42.9% reduction of collision rate, which demon-
strates the effectiveness of the proposed Interaction Scene
Graph for aggregating information from related traffic agents
and map elements.

Prediction Results. The benchmark results for motion
prediction on the nuScenes validation set are summarized
in Tab. 2. GraphAD achieves the best performance with 0.68
minADE and 0.514 EPA, significantly outperforming the pre-
vious best method UniAD [Hu et al., 2023]. The improved
performance validates the enhanced capacity of Interaction
Scene Graph in modeling the map guidance and intention in-
teraction from other driving instances.

4.4 Ablation Studies

To demonstrate the effectiveness of the proposed Interaction
Scene Graph, we conduct extensive ablation studies on the
nuScenes validation set.

Figure 3: The qualitative visualization of the Dynamic Scene
Graph. The agent of interest, marked by the red dot, has 6 dif-
ferent modalities of future trajectories. With each motion intention,
this agent interacts with the most influential traffic agents, which are
denoted by the connections. Faraway connections are omitted for
clarity.

Effectiveness of Interaction Scene Graph. In Tab. 3, we
ablate the influence of Dynamic Scene Graph (DSG) and
Static Scene Graph (SSG) on the motion prediction of traffic
agents. We can observe that both types of scene graphs make
significant contribution to the performance boost. Since the
DSG can model the driving game between dynamic agents
and the SSG is able to provide explicit map constraints, both
types of graph-based interactions can provide valuable and
complementary information for the trajectory prediction. For
comprehensive evaluation, we also implement an attention-
based variant, where the inter-agent and agent-map interac-
tions are entirely realized by the vanilla attention mechanism.
However, we find the attention-based variant, without explicit
geometric prior, fails to extract valid information and gener-
ates inferior performance.

Design choices of graph node distance. In Tab. 4, we an-
alyze the influence of different methods for computing the
distance between graph nodes. “Feature Distance” and “Cur-
rent Distance” denote distances in the feature space and dis-
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Figure 4: The qualitative visualization of the planning trajectories. The images from six cameras are shown on the left. The predicted
trajectories of traffic agents and the planning result of the ego vehicle are shown on the right. The color intensities of these trajectories vary
according to the probability p and the time t. The red arrows highlight the environments which most likely influence the ego vehicle planning.

Method minADE(m)↓ minFDE(m)↓ MR↓
Attention 0.682 1.017 0.170

MLP + Avg-pooling 0.680 1.014 0.164
MLP + Max-pooling 0.665 0.989 0.160

Table 5: The ablation studies for the graph aggregation methods.

tances between current locations respectively, while “Trajec-
tory Distance” is the distance between potential trajectories.
Since the distance function directly determines which neigh-
bour nodes will participate in the feature aggregation, its de-
sign choice is of vital importance. From the experimental
results, we can find the proposed trajectory distance signifi-
cantly outperforms the current distance because it explicitly
considers the potential interactions in the future, which is cru-
cial for accurate trajectory estimation. On the other hand,
the geometric distance on trajectories also outperforms the
feature distance. It is possibly because the graph nodes, in-
cluding both traffic agents and map elements, with different
sources and modalities have heterogeneous features.
Design choices of methods for graph feature aggrega-
tion. In Tab. 5, we compare different methods for aggre-
gating the neighbour node features to update the vertex. As
observed in the table, MLP-based aggregation methods per-
forms better than attention-based methods. Furthermore, the
max-pooling operation outperforms the avg-pooling method,
reaching 0.665m minADE, 0.989m minFDE and 0.160 MR.
Thus, we choose MLP with max-pooling as default setting.
Design choices of planning head. In Tab. 6, we explore the
effects of different components for the planning task, where
“Graph” refers to the proposed Interaction Scene Graph,
“Ego-states” means the utilization of ego-vehicle status, and
“Post-optim.” represents the optimization strategy with the
predicted occupancy. The following effects can be observed:
(1) The incorporation of ego-state features can bring a sig-
nificant improvement on the planning performance, since the
information, like velocity and acceleration, makes it much
easier to recover the ego-trajectory. (2) Whether or not the
ego-state features are utilized, the proposed method of Inter-
action Scene Graph consistently improves the planning per-
formance. (3) The post-optimization with the predicted occu-
pancy plays an important role in ensuring the driving safety,

Graph Ego-states Post-optim. Planning

L2 (m) ↓ Col. (%) ↓
1.39 1.13

✓ 1.35 1.07
✓ 0.65 0.63

✓ ✓ 0.64 0.47
✓ ✓ ✓ 0.73 0.15

✓ ✓ 0.74 0.22

Table 6: The ablation studies for designs in the planning head.

by avoiding the potential collisions with explicit adjustments.
With all above components, GraphAD, with smaller input
sizes and image backbone, achieves a remarkable collision
rate of 0.15%.

4.5 Qualitative Results
To qualitatively evaluate our method for better understand-
ing, we visualize both the intermediate interactions and the
final results of GraphAD. As shown in Fig. 3, the agent of
interest has 6 predicted future trajectories for different po-
tential intentions. The dynamic scene graph for each tra-
jectory automatically links the agent to other traffic agents
nearby. With these explicit geometry priors, the agent can fo-
cus on the interactions with the important agents. From the
cases in Fig. 4, GraphAD enables the ego vehicle to maneu-
ver safely in complex situations like road junction and oppo-
site meeting. These planning abilities results from the accu-
rate motion prediction and necessary inter-agent interactions,
based on the proposed graph designs.

5 Conclusion
In this paper, we propose a new end-to-end autonomous driv-
ing algorithm, GraphAD, which employs an elaborately de-
signed graph to describe heterogeneous interactions in com-
plex traffic scenes. The graph explicitly encodes key driv-
ing elements and their relations, allowing us to introduce
strong prior knowledge into the algorithm. As a consequence,
GraphAD achieves state-of-the-art performance in both the
prediction and the planning tasks. The way using graphs to
encode more complex interactions among diverse traffic in-
stances, such as traffic lights and routing decisions, needs fur-
ther exploration.
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