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Abstract

Evolutionary algorithms (EAs) have been widely
applied to multi-objective optimization due to their
population-based nature. Population update, a key
component in multi-objective EAs (MOEAs), is
usually performed in a greedy, deterministic man-
ner. However, recent studies have questioned this
practice and shown that stochastic population up-
date (SPU), which allows inferior solutions have
a chance to be preserved, can help MOEAs jump
out of local optima more easily. Nevertheless, SPU
risks losing high-quality solutions, potentially re-
quiring a large population. Intuitively, a possible
solution to this issue is to introduce an archive that
stores the best solutions ever found. In this paper,
we theoretically show that using an archive allows
a small population and may enhance the search per-
formance of SPU-based MOEAs. We examine two
classic algorithms, SMS-EMOA and NSGA-II, on
the bi-objective problem OneJumpZeroJump, and
prove that using an archive can reduce the expected
running time upper bound (even exponentially).
The comparison between SMS-EMOA and NSGA-
II also suggests that the (u + 1) update mode may
be more suitable for SPU than the (u + 1) update
mode. We also validate our findings empirically.
We hope this work may provide theoretical support
to explore different ideas of designing algorithms
in evolutionary multi-objective optimization.

1 Introduction

Multi-objective optimization deals with scenarios where mul-
tiple objectives must be optimized simultaneously. They are
very common in real-world applications. Since the objectives
of a multi-objective optimization problem (MOP) are usually
conflicting, there does not exist a single optimal solution, but
instead a set of solutions which represent different optimal
trade-offs between these objectives, called Pareto optimal so-
lutions. The objective vectors of these solutions form the
Pareto front. The goal of multi-objective optimization is to
find the Pareto front or a good approximation of it.
Evolutionary algorithms (EAs), a kind of randomized
heuristic optimization algorithms inspired by natural evo-

lution, have been found well-suited to MOPs due to their
population-based nature. Their widespread applications are
across various real-world domains [Deb, 2001; Zhou et al.,
2019]. Notably, there have been developed a multitude
of well-established multi-objective EAs (MOEAs), includ-
ing the non-dominated sorting genetic algorithm IT (NSGA-
1) [Deb er al., 2002], multi-objective evolutionary algorithm
based on decomposition (MOEA/D) [Zhang and Li, 20071,
and S metric selection evolutionary multi-objective optimiza-
tion algorithm (SMS-EMOA) [Beume et al., 2007].

In MOEAs, a key component is population update (aka en-
vironmental selection or population maintenance). It aims to
select a set of promising solutions from the current popula-
tion and newly generated solutions, which serves as a reser-
voir to generate high-quality solutions in subsequent genera-
tions. In most existing MOEAs, the population update is per-
formed in a greedy and deterministic manner, with the best
solutions (non-dominated solutions) always being preserved.
This is based on the assumption that higher-quality solutions
are more likely to generate better offspring. However, this
is not always the case, particularly in rugged problem land-
scapes with many local optima, where solutions can easily
get trapped in MOEAs. Repetitively exploring such local-
optimal solutions may not help. Indeed, recent studies show
that mainstream MOEAs (e.g., NSGA-II and SMS-EMOA)
can easily stagnate, and even more, their population may end
up in a very different area at a time [Li et al., 2023].

Very recently, Bian er al. [2025] analytically showed that
introducing randomness in the population update process
of MOEAs (called stochastic population update, SPU) can
help the search. Specifically, the study proved that for
SMS-EMOA solving the common benchmark problem One-
JumpZeroJump, when k = n/2 — Q(n), using SPU can bring
an acceleration of Q(2%/2/(vVku?)) = Q(2%/2 /(Vk(n—2k+
4)?)) on the expected running time, where n denotes the
problem size, k (2 < k < n/2) denotes the parameter of
OneJumpZeroJump, and o denotes the population size. Sub-
sequently, Zheng and Doerr [2024b] extended SMS-EMOA
to solve a many-objective problem, mOneJumpZeroJump,
showing that the same SPU can bring an acceleration of
O(2%/u) = ©(2F/(2n/m — 2k + 3)™/?) as well, where m
is the number of objectives. These works echoed the empiri-
cal studies that show the benefit of considering non-elitism in
MOEASs [Tanabe and Ishibuchi, 2019; Liang et al., 2023al.
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Stochastic Population Update

Stochastic Population Update + Archive

O(un®* - min{1,vku/2%/?}) [Bian et al., 2025]
O(pn* - min{1, 1/2*}) [Zheng and Doerr, 2024b]

O(pn* - min{1, (eln C/k)*~1}) [Theorem 3]

SMS-EMOA [ >2(n — 2k +4);ps = 1/2]
O(pn* - min{1, (eln C/k)*~1}) [Theorem 1] [n>3,C=eu/(ps(1—pe))l
(1> (n—2k+4)/(1—ps): C=ep/(ps(1 = pc))]
O(uV'k(n/2)*) [Bian et al., 2025]
NSGA-II (1> 8(n — 2k +3); ps = 1/4; k > 8¢7] O(un¥ - min{1, (eIn C/k)*~1}) [Theorem 5]

O(pn* - min{1, (eln C/k)*~1}) [Theorem 4]

(1= 5;C = e/(ps(1 = pe))l

(> 4(n — 2k +3)/(1—2ps); C = e/(ps(1 — pe))]

Table 1: The expected number of fitness evaluations of SMS-EMOA and NSGA-II for solving OneJumpZeroJump when using SPU alone, or
with an archive, where n denotes the problem size, k (2 < k < n/2) denotes the parameter of OneJumpZeroJump, 4 denotes the population
size, p. denotes the probability of using crossover, and ps denotes the proportion of the current population and offspring solution(s) that
SPU selects to preserve directly. The required ranges of p. are: 1 — p. = (1) for Theorems 1 and 4; p. = ©O(1) for Theorems 3

and 5. The required ranges of ps are: ps € [1/(p + 1),1 — 1/0(p)) for Theorem 1; ps € [1/(p + 1), (1
Pe € [1/(212), 1/2 — o(1/p1)) for Theorem 4; p, € [1/(20), (1 — 4)

SPU in [Bian et al., 2025; Zheng and Doerr, 2024b] in-
troduces randomness by randomly selecting a proportion p;
of the combined set of the current population and offspring
solution(s) to be directly preserved into the next generation.
This essentially gives a chance for inferior solutions to sur-
vive, which enables the evolutionary search to go along in-
ferior regions which may be close to Pareto optimal regions.
However, a cost of this method is that there is less space for
the best solutions in the population. Some very best solu-
tions to the problem (e.g., globally non-dominated solutions),
even found by an MOEA, may be discarded during the pop-
ulation update process. This necessitates a large population
used. Unfortunately, when the population size is large, the
benefit of using SPU may vanish. This is because the benefit
of SPU comes from the operation on inferior solutions while
the large population size will lead to a small probability of se-
lecting these solutions. For example, for SMS-EMOA solv-
ing OneJumpZeroJump, the acceleration of Q(2%/2/(v/ku?))
brought by SPU [Bian et al., 2025] will vanish when the pop-
ulation size p is exponential w.r.t. k, e.g., k = logn; for
SMS-EMOA solving mOneJumpZeroJump, the acceleration
of ©(2F/(2n/m — 2k + 3)™/?) [Zheng and Doerr, 2024b]
will vanish when the number m of objectives is large, e.g.,
m > k, because the population size p = (2n/m—2k+3)™/?
increases rapidly with m. This dilemma impacts both the ef-
fectiveness and practicality of using SPU in MOEAs.

Intuitively, a possible solution to this issue is to use an
archive to store the best solutions ever found. In fact, in the
area of MOEAs, this approach has become a popular prac-
tice [Li er al., 2024]. Since the formalization of the archiving
problem in the early 2000s [Knowles and Corne, 2003], there
has been increasing interest and feasibility to use (even un-
bounded) archives in MOEAs, as seen in e.g. [Fieldsend et
al., 2003; Krause et al., 2016; Brockhoff and Tusar, 2019;
Ishibuchi ef al., 2020]. In this paper, we analytically show
that incorporating an unbounded archive into SPU can reduce
the population size and significantly enhance acceleration.
Specifically, we compare the expected running time of two

— 2)/(p + 1)] for Theorem 3;

(2w)] for Theorem 5.

well-established MOEAs, SMS-EMOA and NSGA-II, with
SPU for solving OneJumpZeroJump, when an archive is used
or not. The results are shown in Table 1. Our contributions
can be summarized as follows.

* We theoretically show that incorporating an archive
mechanism with SPU can reduce the upper bound on
the expected running time (even exponentially). For ex-
ample, comparing Theorems 1 and 3 in Table 1, the ex-
pected running time of SMS-EMOA with SPU for solv-
ing OneJumpZeroJump, no matter whether an archive is
used or not, is O(un® - min{1, (eln C/k)¥=1}), where
C = ep/(ps(1 — pc)). The key difference is that using
an archive allows a constant population size, resulting
in a significantly smaller C' and thus reducing the upper
bound significantly. Note that Bian et al. [2024] recently
proved the effectiveness of using an archive (bringing
polynomial acceleration) for MOEAs, while our analy-
sis for MOEAs with SPU reveals that even exponential
acceleration can be obtained.

e Comparing the results of Theorems 1 and 4 in Table 1,
we can find that the upper bound of NSGA-II is smaller
than SMS-EMOA when using SPU. Our analysis reveals
that the benefit of NSGA-II is due to its (4 + u) update
mode, which selects each solution in the current popula-
tion for reproduction and thus makes exploring promis-
ing dominated solutions easier.

e In addition, our derived running time bounds for
MOEAs with SPU in the second column of Table 1
are significantly better than the previously known
ones [Bian et al., 2025; Zheng and Doerr, 2024b]. This
improvement stems from the analysis method of consid-
ering both the number and size of jumps across gap of
dominated solutions. The method happens to share sim-
ilarities with that of proving Lemma 12 in [Doerr and
Lutzeyer, 2024]. Moreover, our running time bounds are
more general, as we consider variable survival probabil-
ity ps and crossover probability p..
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We also validate our theoretical findings through an
empirical study on the artificial OneJumpZeroJump prob-
lem and the multi-objective travelling salesperson problem
(MOTSP) [Ribeiro et al., 2002]. The results show that com-
bining SPU with an archive leads to the best performance for
both SMS-EMOA and NSGA-II. Furthermore, the results on
the MOTSP show that with the SPU method, NSGA-II always
performs better than SMS-EMOA. These results confirm our
theoretical findings.

Finally, we give a brief overview about the running time
analysis of MOEAs. Over the last decade, there has been
an increasing interest for the evolutionary theory community
to study MOEAs. Early theoretical works [Laumanns et al.,
2004a; Laumanns et al., 2004b; Neumann, 2007; Giel and
Lehre, 2010; Neumann and Theile, 2010; Doerr et al., 2013;
Qian et al., 2013; Qian et al., 2016; Bian et al., 2018] mainly
focus on analyzing the expected running time of a simple
MOEA like GSEMO/SEMO. Recently, researchers have be-
gun to examine practical MOEAs. Huang er al. [2021] in-
vestigated MOEA/D, assessing the effectiveness of different
decomposition methods. Zheng et al. [2022] conducted the
first theoretical analysis of NSGA-II. Bian et al. [2025] an-
alyzed the running time of SMS-EMOA and showed that
SPU can bring acceleration. Moreover, Wietheger and Do-
err [2023] demonstrated that NSGA-III [Deb and Jain, 2014]
exhibits superior performance over NSGA-II in solving the
tri-objective problem 30neMinMax. Ren et al. [2024a] an-
alyzed the running time of SPEA2 on three m-objective
problems. Some other works on well-established MOEAs
include [Bian and Qian, 2022; Zheng and Doerr, 2022;
Zheng and Doerr, 2024a; Cerf et al., 2023; Dang et al., 2023a;
Dang et al., 2023b; Doerr and Qu, 2023b; Doerr and Qu,
2023c; Doerr et al., 2024; Doerr et al., 2025; Lu et al., 2024;
Opris et al., 2024; Opris, 2025; Ren et al., 2024b].

2 Multi-objective Optimization

Multi-objective optimization aims to optimize two or more
objective functions simultaneously, as shown in Definition 1.
In this paper, we focus on maximization, while minimization
can be defined similarly. The objectives are typically con-
flicting, meaning that there is no canonical complete order
in the solution space X. To compare solutions, we use the
domination relationship in Definition 2. A solution is Pareto
optimal if no other solution in X dominates it. The set of ob-
jective vectors corresponding to all Pareto optimal solutions
constitutes the Pareto front. The goal of multi-objective opti-
mization is to find the Pareto front or its good approximation.

Definition 1 (Multi-objective Optimization). Given a feasi-
ble solution space X and objective functions f1, fo, ..., fm,
multi-objective optimization can be formulated as

max f(@) = max (fi(x), f2(2), .., fn(®))-

Definition 2. Let f = (f1, fo,..., fm) : X — R™ be the
objective vector. For two solutions x andy € X:

e x weakly dominates y (denoted as x > y) if for any
L<i<m, fi(z) > fily);

e x dominates y (denoted as * > y) if x > y and
fi(x) > fi(y) for some i;

* x and y are incomparable if neither x >~ y nory > x.

Note that the notions of “weakly dominate” and “dominate”
are also called “dominate” and “strictly dominate” in some
works [Cerf er al., 2023; Wietheger and Doerr, 2023].

Next, we introduce the benchmark problem OneJumpZe-
roJump studied in this paper. The OneJumpZeroJump prob-
lem as presented in Definition 3 is constructed based on
the Jump problem [Doerr and Neumann, 2020], and has
been widely used in MOEASs’ theoretical analyses [Doerr
and Zheng, 2021; Doerr and Qu, 2023a; Lu et al., 2024;
Ren et al., 2024b]. Its first objective is the same as the Jump
problem, which aims to maximize the number of 1-bits of a
solution, except for a valley around 1™ (the solution with all
1-bits) where the number of 1-bits should be minimized. The
second objective is isomorphic to the first, with the roles of 1-
bits and 0-bits reversed. The Pareto front of the OneJumpZe-
roJump problem is {(a, n+2k—a) | a € [2k..n]JU{k,n+k}},
whose size is n — 2k 4 3, and the Pareto optimal solution cor-
responding to (a, n+2k—a), a € [2k..n]U{k,n+k}, is any
solution with (@ — k) 1-bits. We use F} = {(a,n+2k —a) |
a € [2k..n]} to denote the inner part of the Pareto front.
Definition 3 (OneJumpZeroJump [Doerr and Zheng, 2021]).
The OneJumpZeroJump problem is to find n bits binary
strings which maximize

k+ , o0 <n-—k =17,
f1(33)—{ lz|1, iflzli <n orx

n— x|, else,

k+|xlo, if|lxlo <n—Fkorx=0",
fg(ili) _ { ‘ ‘0 f| |O
n—|xlo, else,

where k € Z N2 < k < n/2, and |x|, and |x|o denote the
number of 1-bits and 0-bits in x € {0,1}", respectively.

3 Running Time Analysis of SMS-EMOA

In this section, we prove that using an archive can bring (even
exponential) speedup for the well-established MOEA, SMS-
EMOA [Beume et al., 20071, with stochastic population up-
date (SPU) solving the OneJumpZeroJump problem. In Sec-
tion 3.1, we first introduce SMS-EMOA with SPU, and its
expected running time for solving OneJumpZeroJump, which
is much tighter than the previous results [Bian et al., 2025;
Zheng and Doerr, 2024b]. Then, in Section 3.2, we prove that
using an archive can significantly reduce the upper bound on
the expected running time. Due to space limitation, all math-
ematical proofs could only be sketched or had to be omitted
completely. The full proof is given in the supplementary.

3.1 SMS-EMOA with SPU

SMS-EMOA presented in Algorithm 1 is a popular MOEA,
which employs non-dominated sorting and hypervolume in-
dicator to update the population. It starts from an initial popu-
lation of y solutions (line 1). In each generation, it randomly
selects a solution @ from the current population (line 3) for
reproduction. With probability p, it selects another solution
y and applies one-point crossover on x and y to generate an
offspring solution x’ (lines 4-7); otherwise, =’ is set as the
copy of x (line 9). Note that one-point crossover selects a ran-
dom point i € {1,2,...,n} and exchanges the first 7 bits of
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Algorithm 1 SMS-EMOA

Algorithm 2 POPULATION UPDATE OF SMS-EMOA (Q)

Input: objective function f1, fo-- -, fi,, population size p,
probability p. of using crossover
Output: p solutions from {0, 1}"
1: P < p solutions uniformly and randomly selected from
{0, 1}™ with replacement;
2: while criterion is not met do
3 select a solution « from P uniformly at random;
4:  sample u from the uniform distribution over [0, 1];
5. ifu < p. then
6: select a solution y from P uniformly at random;
7 apply one-point crossover on x and y to generate x’
8

. else
9: set ’ as the copy of x
10:  endif
11:  apply bit-wise mutation on x’ to generate x”’;

12: P < POPULATION UPDATE(P U {z"})
13: end while
14: return P

two parent solutions, which actually produces two new solu-
tions, but the algorithm only picks the one that consists of the
first part of the first parent solution and the second part of the
second parent solution. Afterwards, bit-wise mutation flips
each bit of «’ with probability 1/n to produce an offspring
2" (line 11). Then, the worst solution in P U {x"}, the union
of the current population and offspring, is removed (line 12)
using the POPULATION UPDATE OF SMS-EMOA subrou-
tine described in Algorithm 2. The subroutine first partitions
the solution set @ (where @ = PU{z’'}) into non-dominated
sets R1, Rs, ..., R, , where R, contains all non-dominated
solutions in (), and R; (¢ > 2) contains all non-dominated
solutions in @ \ U};ll R;. A solution z € R, is then removed
by minimizing A, (x, R,) := HV,(R,) — HV.(R, \ {x}),
where HV,.(X) denotes the hypervolume of the solution set
X with respect to a reference point r € R™ (Vi,r; <
mingey fi(x)), i-e., the volume of the objective space be-
tween the reference point and the objective vectors of the so-
lution set. A larger hypervolume indicates better approxima-
tion of the Pareto front in terms of convergence and diversity.
For bi-objective problems, as defined in the original SMS-
EMOA [Beume er al., 2007], the algorithm omits the refer-
ence point and directly preserves the two boundary points,
allowing the hypervolume to be calculated accordingly.

In [Bian et al., 2025], the SPU method is introduced and
shown to be beneficial for the search of MOEAs. During
population updates, SPU randomly selects a proportion ps of
the current population and the offspring solution(s) to directly
survive into the next generation and the removed part is se-
lected from the rest solutions. This implies that each solution,
including the worst solution in the population, has at least a
probability pg of surviving to the next generation. Specifi-
cally, SPU oF SMS-EMOA as presented in Algorithm 3 is
used to replace the original POPULATION UPDATE procedure
in line 12 of Algorithm 1. Note that p; is set to 1/2 in [Bian
et al., 2025], while we consider a general p; here.

The expected running time of SMS-EMOA with SPU for

Input: a set @) of solutions, and a reference point r € R™
Output: |Q)|—1 solutions from Q
1: partition @ into non-dominated sets Ry, Ro, .. .
2: let z = argmingepr, Ar(x, Ry);
3: return Q\ {z}

yRy;

Algorithm 3 SPU oF SMS-EMOA (Q)

Input: a set @ of solutions, and a reference point € R™
Output: |Q)|—1 solutions from @
I: @ « [|Q]- (1 —ps)] solutions uniformly and randomly
selected from () without replacement;
2: partition )’ into non-dominated sets Ry, Ra, . . .
3: let z = argmingepr, Ar(x, Ry);
4: return Q\ {z}

, Ry

solving OneJumpZeroJump has been proven to be O(un* -
min{1, vku/2F/?}) [Bian et al., 2025, which is better than
that, i.e., O(un®), of the original SMS-EMOA. Intuitively,
by by introducing randomness into the population update, the
evolutionary search has a chance to go along inferior regions
which are close to Pareto optimal regions, thereby making the
search easier. Here, we re-prove a tighter upper bound on the
expected running time of SMS-EMOA with SPU for solving
OneJumpZeroJump, as shown in Theorem 1. It is also more
general, as it considers a survival probability ps € [1/(p +
1),1 — 1/0(u)), rather than just ps = 1/2 as in [Bian et al.,
2025]. Note that the running time of EAs is often measured
by the number of fitness evaluations.

Theorem 1. For SMS-EMOA solving OneJumpZeroJump
with n — 2k = Q(n), if using SPU with survival probabil-
ityps € [1/(pn+ 1),1 — 1/0(p)), the crossover probability
1 —pe = Q(1), and the population size p > (n — 2k +
4)/(1 — ps), then the expected running time for finding the
whole Pareto front is O(un®* -min{1, (eIn C/k)*~1}), where
C = eu/(ps(1 = pe))-

The proof of Theorem 1 needs Lemma 2, which shows that
given a proper value of y, an objective vector on the Pareto
front will always be maintained once it has been found. The
reason is that in Algorithm 3, the removed solution is selected
from [ (u+1) - (1 —ps)| > n — 2k + 4 solutions in Q. For
each objective vector on the Pareto front, whose size is n —
2k + 3, only one solution has positive A-value. This ensures
that these solutions rank among the top n — 2k + 3 solutions,
and thus will not be removed.

Lemma 2. For SMS-EMOA solving OneJumpZeroJump, if
using SPU with survival probability p; € [1/(p + 1),1 —
1/0(1)), and the population size jn > (n — 2k +4)/(1 — ps),
then an objective vector f* on the Pareto front will always be
maintained once it has been found.

Proof Sketch of Theorem 1. We divide the optimization pro-
cedure into two phases: the first phase starts after initializa-
tion and finishes until the inner part I} of the Pareto front
is found; the second phase starts after the first phase and fin-
ishes until the extreme Pareto optimal solution 1™ is found.
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Note that the analysis for finding 0" holds similarly. Since
Lemma 2 ensures the maintenance of objective vectors in F7,
making the first-phase analysis similar to that of Theorem 1
in [Bian e al., 2025], we can derive that the expected running
time of the first phase is O(unlogn).

Next, we consider the second phase. By employing SPU,
any solution (including dominated ones) can survive into the
next generation with probability at least ps. This means
that the population can preserve some dominated solutions
to gradually reach 1”. We assume a “jump” to be an event
where a solution x with |x|; € [n — k..n — 1] is selected,
and a new dominated solution closer to 1™ is generated and
preserved. Thus, 1™ can be reached more easily through mul-
tiple jumps across the gap of dominated solution set (i.e.,
{x | |x|1 € [n — k+ 1..n — 1]}). We refer to the dominated
solutions along the multiple jumps as “stepping stones” and
assume that 1" can be reached through M stepping stones.
Then, we consider M + 1 consecutive jumps, which start
from a solution  with n — k 1-bits, and continue to gen-
erate the next stepping-stone solution until finding 1”. Any
failure during the intermediate jumps will result in restarting
the process from the solution with n — k& 1-bits. By enumer-
ating all possible jump sizes (the sum of which is required to
be k), we prove that the M + 1 consecutive jumps can happen
with probability at least (1—p..)(M +1)* /(eun*C?), where
C = eu/(ps(1 — pe)). Thus, 1™ can be found after at most
eun*CM /((1 — p.)(M + 1)¥) trials in expectation. As each
trial requires up to M + 1 generations and 1 —p. = Q(1), the
expected number of generations for finding 1" is

eunk . CJW B Mnk . CM (1)
(1 —pe)(M + 1)k ((M+ 1)’“-1)

Finally, we minimize this upper bound by taking M = [(k —
1)/InC—1] whenk > elnC,and M =0whenk <elnC.
This leads to that the expected number of generations of the
second phase is at most O(un* - min{1, (eln C/k)*~1}).
As SMS-EMOA generates one solution per generation, its
running time is equal to the number of generations. Combin-
ing the two phases, the total expected running time is O(un” -
min{1, (eln C/k)*~1}), where O(un logn) required by the
first phase is dominated, and C' = eu/(ps(1 — pe¢))- O

(M+1)-

Under the same conditions as the previous results O (un* -
min{1, vVku/2%?}) in [Bian et al, 2025] and O(un® -
min{1, /2*}) in [Zheng and Doerr, 2024b], where SPU is
used with ps = 1/2 and crossover probability p. = 0, our
bound in Theorem 1 becomes O(un* - (eln(2ep)/k)*~1).
Since the bound in [Zheng and Doerr, 2024b] is tighter than
that in [Bian et al., 2025], we focus on comparing our result
only with [Zheng and Doerr, 2024b]. When k& > 2eln(2epu),
our bound O(un* - (eln(2eu)/k)*~1) brings an improve-
ment ratio of ©(u(k/(2eIn(2ex)))*~1), which can be ex-
ponential when k is large, e.g., Kk = n/8. For a very small
range logpu < k < 2eln(2eu), our bound shows no ad-
vantage, which is because to minimize Eq. (1), we choose
M = [(k—1)/InC — 1] to round up to the nearest integer,
leading to an over-relaxation. If we instead set M = 1, the
same bound can be obtained. The reason of our better bound
is in the second phase of finding the Pareto optimal solution

1™: 1) We consider M + 1 “jumps” across the gap between
dominated solutions, and account for all possible jump sizes
to find 1™; 2) We select the optimal number of jumps, i.e.,
M = [(k—1)/InC — 1]. Note that Bian et al. [2025] con-
sidered only two fixed-size jumps, and although Zheng and
Doerr [2024b] accounted for all possible jump sizes, they also
reduced the process to two jumps.

3.2 An Archive is Provably Helpful

In the last section, we have proved that for SMS-EMOA with
SPU solving OneJumpZeroJump, the expected running time
is O(un* - min{1, (eIn C/k)*~1}), where C' = ep/(ps(1 —
pc)). From the analysis, we find that SPU benefits evolu-
tionary search by exploring inferior regions that are close to
Pareto optimal areas, but it also requires a larger population
size pp > (n—2k+4)/(1—ps) to preserve the Pareto optimal
solutions discovered. The greater the randomness introduced
by SPU (i.e., the larger the value of p;), the larger the popu-
lation size needed. Note that a large population size may di-
minish the benefit of SPU, because it will lead to a very small
probability of selecting specific dominated solutions for re-
production, which is required by SPU. For example, when the
population size p is exponential w.r.t. k, e.g., & = logn, the
improvement by SPU will vanish, compared to the expected
running time O(un*) without SPU [Bian et al., 2025].

In this section, we theoretically show that the limitation of
SPU can be alleviated by using an archive. Once a new so-
lution is generated, the solution will be tested if it can enter
the archive. If there is no solution in the archive that domi-
nates the new solution, then the solution will be placed in the
archive, and meanwhile those solutions weakly dominated by
the new solution will be deleted from the archive. Algorith-
mic steps incurred by adding an archive in SMS-EMOA are
given as follows. In Algorithm 1, an empty set A is initialized
in line 1, and the following lines are added after line 11:

if Az € A such that z > a2’ then
A— (A\{ze€eAla" »z})U{z"}
end if

The set A instead of P is returned in the last line.

We prove in Theorem 3 that if using an archive, a popula-
tion size u > 3 is sufficient to guarantee the same running
time bound of SMS-EMOA with SPU as Theorem 1. Note
that Theorem 1 requires & > (n — 2k + 4)/(1 — ps), which
implies that using an archive can allow a small population
size and thus bring speedup.

Theorem 3. For SMS-EMOA solving OneJumpZeroJump
with n — 2k = Q(n), if using SPU with survival probabil-
ityps € [1/(p+ 1), (r — 2)/(p + 1)], the crossover prob-
ability p. = ©O(1), the population size pn > 3, and using
an archive, then the expected running time for finding the
whole Pareto front is O(un®* -min{1, (eIn C/k)*=1}), where

C = eu/(ps(1 = pe)).

Proof Sketch of Theorem 3. We divide the optimization pro-
cedure into three phases, where the first phase aims at finding
the two boundary solutions in the inner part F; of the Pareto
front (i.e., a solution with & 1-bits and a solution with n—k 1-
bits), the second phase aims at finding the two extreme Pareto
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optimal solutions 1™ and 0™, and the third phase aims at find-
ing the remaining objective vectors on the Pareto front.

A key property used in the proof is that the maximum f;
value among the Pareto optimal solutions in PU{z"'} will not
decrease, because the two boundary solutions in R; (i.e., the
first non-dominated set by non-dominated ranking) are prior-
itized for preservation into the next generation. For the first
phase, we show that the expected number of generations for
finding a solution with n — k 1-bits is O(unlogn), by con-
tinuously selecting the solution with the maximum f; value
in the population and flipping a 0-bit to increase the f; value.
The process for finding another boundary solution with & 1-
bits is symmetric. For the second phase, the analysis follows
that of the second phase in Theorem 1, leading to an expected
running time of O(un® - min{1, (eln C/k)*=1}) for find-
ing 1™ and 0™, where C' = ep/(ps(1 — p.)). For the third
phase, since 0™ and 1" must be maintained in the popula-
tion P, we consider the case where 0™ or 1™ is selected as
a parent, and another solution @ € P is chosen as the sec-
ond parent. By using one-point crossover, new points on the
Pareto front can be continuously generated and added to the
archive. Consequently, the expected running time of the third
phase is O(pnlogn). Combining the three phases, the total
expected running time is O(un* - min{1, (eln C/k)*~1}),
where O(un log n) required by the first phase and third phase
is dominated and thus omitted. O

For the case without an archive, in order to avoid losing
the Pareto optimal solutions found while using SPU, the pop-
ulation size must be large, i.e., u > (n — 2k +4)/(1 — ps).
However, for the case with an archive, the population size
only needs to be a constant. The main reasons are: 1) Using
an archive that stores all the Pareto optimal solutions gener-
ated enables the algorithm not to worry about losing Pareto
optimal solutions, but only endeavoring to seek new Pareto
optimal solutions. 2) In the context of our analysis, a constant
population size is sufficient to preserve exploration-favoring
solutions, i.e., the two boundary Pareto optimal solutions.

The smaller population size allows a larger probability of
selecting inferior solutions that are close to Pareto optimal ar-
eas for reproduction, thus leading to speedup. When & is lim-
ited, using only SPU may not bring acceleration. For exam-
ple, when k& = eln(8en), if using SPU with p; = 1/2, u =
2n, and p. = 1/2, the expected running time of SMS-EMOA
on OneJumpZeroJump is O(un® -min{1, (eln C/k)k=1}) =
O(n**1) (where C = e/ (ps(1 — p.)) = 8en), implying no
acceleration compared to O(un*) = O(n**!) without SPU
[Bian er al., 2025]. However, by adding an archive and reduc-
ing the population size i to 5, while keeping other settings
unchanged, the bound reduces to O(n* - (eln(20e)/k)*~1),
implying a superpolynomial reduction in the upper bound
as k = eln(8en). Note that we set u = 5 to satisfy
the condition of Theorem 3, i.e., to make ps = 1/2 €
[1/(p+ 1), (¢ — 2)/(1 + 1)]. On the other hand, when &
is large, using SPU alone can lead to exponential accelera-
tion, and the addition of an archive can further enhance this
acceleration. For example, when k = n/8, if using SPU with
ps = 1/2, p = 2n, and p. = 1/2, the expected running
time is O(un® - (8eIn(8en)/n)"/#=1), which implies an ex-

ponential reduction in the upper bound compared to O(un*)
without SPU. By adding an archive and setting u to 5, the
bound reduces to O(n* - (8¢In(20e)/n)™/8~1), resulting in
an improvement ratio of ©(n(In(8en)/In(20e))"/5-1), i.e.,
an exponential reduction in the upper bound.

We also note that the recent work [Bian et al., 2024] has
proven that using an archive can provide polynomial acceler-
ation for MOEAs for the first time. For example, for SMS-
EMOA solving OneMinMax, the expected running time is
O(pn logn) both with and without an archive, but the archive
allows for a constant p, achieving an acceleration of O(n).
Our work gives another theoretical evidence for the effective-
ness of using an archive, and further shows that superpolyno-
mial or even exponential acceleration can be achieved. In our
analysis with SPU, a sequence of M + 1 consecutive jumps
are required, which implies continuously selecting specific
solutions for reproduction; using an archive allows a small
population size, which increases the selection probability sig-
nificantly and thus leads to greater acceleration.

4 Running Time Analysis of NSGA-II

In this section, we show that an archive is also helpful for
NSGA-II solving OneJumpZeroJump if using SPU. Specifi-
cally, we prove in Theorem 4 that the expected running time
of NSGA-II using SPU for solving OneJumpZeroJump is
O(pn*-min{1, (eln C/k)¥=1}), where C = ¢/ (ps(1—p.)),
and the population size p is required to be at least 4(n — 2k +
3)/(1 — 2p,). Theorem 5 shows that using an archive with a
constant population size, the same running time bound holds.
Their proofs are similar to that of Theorems 1 and 3, respec-
tively. The main difference is that in each generation, the
probability of selecting a specific parent solution for repro-
duction is changed from 1/u to 1 due to the (x4 + p) mode
and fair selection employed by NSGA-II, making the value of
C independent of . The introduction of NSGA-II, the corre-
sponding SPU and archive mechanisms, and the proof details
are provided in the supplementary due to space limitation.

Theorem 4. For NSGA-II solving OneJumpZeroJump with
n — 2k = Q(n), if using SPU with survival probabil-
ity ps € [1/(2u),1/2 — o(1/)), the crossover probability
1 —pe. = Q1), and the population size p > 4(n — 2k +
3)/(1 — 2py), then the expected running time for finding the
whole Pareto front is O(un* -min{1, (e In C/k)¥~1}), where
C =e/(ps(1—pc)).

Bian et al. [2025] analyzed NSGA-II solving OneJumpZe-
roJump with & > 8e?, ps = 1/4, and p. = 0, deriving an
expected running time of O(uv/k(n/2)"). In contrast, Theo-
rem 4 gives a tighter bound O (un®- (e In(4e) /k)*~1), with an
improvement ratio of ©(v/k(k/(2¢1n(4e)))*~1), which can
be exponential when k is large, e.g., K = n/8. Our analysis
leads to improvement because, in the second phase of finding
the extreme Pareto optimal solution 17, we consider an opti-
mal number M + 1 of jumps across the gap of the dominated
solution set (i.e., {x | |z|; € [n —k+ 1..n —1]}), rather than
a continuous sequence of k jumps from |z|; = n — kton
in [Bian et al., 2025].
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Algorithm Original Algorithm 1 = 2|PF| Only SPU p = 2[PF| Only Archive i = 2|PF| SPU+Archive 1 = 1 |PF|
SMS-EMOA 4.0923e+4 (5.69¢e+3) 1 3.8018e+4 (6.27e+3) T 2.1939e+4 (2.03e+3) T 1.2201e+4 (1.66e+3)
NSGA-II 4.0017e+4 (2.55e+3) 1 3.2850e+4 (3.03e+3) t 1.9363e+4 (2.21e+3) t 9.8081e+3 (1.49¢+3)

“” indicates that the result is significantly different from that of the SPU + archive algorithm (last column), at a 95% confidence by the
Wilcoxon rank-sum test.

Table 2: The IGD [Coello Coello and Reyes Sierra, 2004] results (mean and standard deviation) of the four variants of NSGA-II and SMS-
EMOA on the 100-cities MOTSP instance clusAB from TSPLIB [Reinelt, 1991]. For each MOEA, the best mean is highlighted in bold.

Theorem 5. For NSGA-II solving OneJumpZeroJump with
n — 2k = Q(n), if using SPU with survival probability ps €
[1/(2p), (u—4)/(2u)], the crossover probability p. = ©(1),
the population size p > 5, and using an archive, then the
expected running time for finding the whole Pareto front is

O(pn®* -min{1, (eIn C/k)*=1}), where C = ¢/(ps(1—p¢)).

Comparing Theorems 4 and 5, we find that if using
SPU, the expected running time for NSGA-II solving One-
JumpZeroJump with or without an archive is both O(un* -
(eInC/k)*=1), where C' = e/(ps(1 — p.)). The difference
is that using an archive allows for a small constant population
size p, which can bring an acceleration factor of O(n/(1 —
2ps)), as fu is required to be at least 4(n — 2k + 3) /(1 — 2ps)
if not using an archive. Compared to SMS-EMOA, using an
archive does not lead to an exponential reduction in the upper
bound for NSGA-II. The reason is that NSGA-II employs the
(1 + ) update mode and fair selection, allowing it to select
and explore all solutions in each generation, thereby allevi-
ating selection pressure. This results in a smaller constant
C = e/(ps(1 — p.)) independent of y in Theorems 4 and 5,
compared to C' = ep/(ps(1 — pc)) in Theorems 1 and 3.
This also implies that NSGA-II achieves a smaller expected
running time than SMS-EMOA, suggesting that the (u + p)
mode may be more suitable for SPU than the (¢ + 1) mode.

5 Experiments

In this section, we conduct experiments on OneJumpZero-
Jump and the well-known multi-objective travelling salesman
problem (MOTSP) [Ribeiro et al., 2002]. Table 3 presents
the results of NSGA-II solving the OneJumpZeroJump prob-
lem with size n € {10, 15,20,25,30} and £k = 3. The
settings are: population size ;4 = 8 with an archive, and
u = 8(n — 2k + 3) without; survival probability ps = 1/2
when using SPU; and crossover probability p. = 1/2. We
present the average number of fitness evaluations over 200
runs for three configurations: SPU only, archive only, and
SPU + archive. Results show that using SPU+archive signifi-
cantly reduces running time compared to using only SPU, and
using only archive. We have similar results on SMS-EMOA
in the supplementary.

For the MOTSP, the Pareto front size |P.F| is known, al-
lowing us to set commensurable population sizes p for the
compared MOEAs. We conduct experiments on two 100-
cities instances (i.e., clusAB and kroAB) of MOTSP ! using
NSGA-II and SMS-EMOA under four scenarios with vary-
ing population sizes: 1) the original algorithms, 2) using only
SPU, 3) using only an archive, and 4) using SPU and an

"https://webia.lip6.fr/~lustt/Research.html

size n SPU Archive SPU+Archive
10 5212.48 11733.52 5125.52
15 35653.92 57941.48 25808.24
20 106424.76  183201.24 65398.97
25 239294.88 415550.16 146384.08
30 479311.56 767354.84 284114.12

Table 3: Average number of fitness evaluations over 200 indepen-
dent runs for NSGA-II solving OneJumpZeroJump with k = 3.

archive. For a fair comparison, each scenario used 1, 000, 000
fitness evaluations over 30 runs. Table 2 presents the results
of a widely-used quality indicator, Inverted Generational Dis-
tance (IGD) [Coello Coello and Reyes Sierra, 2004] on the in-
stance clusAB. We used IGD since it can measure how well
the obtained solution set represents the Pareto front [Li et al.,
2020]. Table 2 shows that using SPU and an archive simulta-
neously can lead to the smallest value of IGD for both SMS-
EMOA and NSGA-II, and statistically outperforms the other
three scenarios. Moreover, with the SPU method, NSGA-II
always achieves smaller IGD values than SMS-EMOA. Sim-
ilar results can be observed on the kroAB instance, along
with additional experiments using smaller population sizes
(u = |PF|/6, |PF|/8, and |PF|/10). These findings fur-
ther validate our theoretical analysis, with full experimental
details available in the supplementary.

6 Conclusion

This paper analytically shows that SPU in MOEAs needs an
archive to better leverage its exploration ability. We prove
that for NSGA-II and SMS-EMOA solving OneJumpZe-
roJump, introducing an archive for SPU can address the
dilemma of large population size and may provide an ex-
tra exponential speedup. The reason is that SPU requires a
large population to preserve the best solutions found, while
an archive enables a small population size, increasing the
chance of selecting inferior but undeveloped solutions. We
also find that the (u + 1) update mode may be more suitable
for SPU than the (1 + 1) update mode. Another contribution
lies in improving the running time bounds for SMS-EMOA
and NSGA-II solving OneJumpZeroJump using SPU. These
theoretical findings are empirically validated on OneJumpZe-
roJump and the MOTSP. We hope our work may provide
some theoretical evidence for the attempts of designing new
MOEAs that separate the exploration (via the evolutionary
population) and elitist solution preservation (via an external
archive), such as in non-elitist or less elitist MOEAs [Tanabe
and Ishibuchi, 2019; Liang et al., 2023b].
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