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Abstract

Federated semantic segmentation enables pixel-
level classification in images through collabora-
tive learning while maintaining data privacy. How-
ever, existing research commonly overlooks the
fine-grained class relationships within the seman-
tic space when addressing heterogeneous problems,
particularly domain shift. This oversight results in
ambiguities between class representation. To over-
come this challenge, we propose a novel federated
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segmentation framework that strikes class consis-
tency, termed FedSaaS. Specifically, we introduce
class exemplars as a criterion for both local- and
global-level class representations. On the server
side, the uploaded class exemplars are leveraged
to model class prototypes, which supervise global

branch of clients, ensuring alignment with global-
level representation. On the client side, we incorpo-
rate an adversarial mechanism to harmonize con-
tributions of global and local branches, leading to
consistent output. Moreover, multilevel contrastive
losses are employed on both sides to enforce con-
sistency between two-level representations in the
same semantic space. Extensive experiments on
several driving scene segmentation datasets demon-
strate that our framework outperforms state-of-the-
art methods, significantly improving average seg-
mentation accuracy and effectively addressing the
class-consistency representation problem.

1 Introduction

Semantic segmentation plays a pivotal role in various fields,
such as autonomous driving [Feng et al., 2020], medical di-
agnosis [Qureshi et al., 2023], and remote sensing [Yuan et
al., 2021], where precise pixel-level classification is critical.
While deep learning has significantly improved segmentation
accuracy through the use of large datasets, the need for ex-
tensive labeled data is often hindered by concerns surround-
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Figure 1: (a) Data from different regions exhibits severe domain
shift and label skew. In the semantic space, the same class often
shows significantly different distributions across clients. (b) Exist-
ing FL methods primarily focus on generalization or personalization
(left) but often ignore class-level alignment. Class-consistency FL
(right) ensures consistent representation of the same class by align-
ing and constraining both global- and local-level representations.

ing data privacy and security. Federated learning (FL) ad-
dresses this challenge by facilitating collaborative, decentral-
ized model training while preserving data privacy [McMahan
et al., 2017]. As such, FL represents a promising paradigm
for enabling cross-region semantic segmentation.

However, federated semantic segmentation continues to
face significant challenges due to the heterogeneity of client
data. In real-world applications, data from different clients
often exhibit substantial variation, stemming from factors
like sensor biases, environmental changes, and user prefer-
ences. This heterogeneity gives rise to discrepancies in the
learned representations, which complicates the model’s abil-
ity to generalize across clients [Huang et al., 2023]. This is-
sue becomes particularly prominent in FL. when clients share
the same objects but exhibit distinct feature distributions, a
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phenomenon known as domain shift. As illustrated in Fig-
ure 1(a), driving images from different domains exemplify
this challenge: data from clients 1 and 2 are derived from real
street scenes in different regions, while clients 3 and 4 con-
sist of synthetically generated data. Domain shift factors can
cause the same objects to appear visually distinct, leading to
misaligned representation distributions in the semantic space
and impeding accurate class identification.

Existing research often overlooks the fine-grained class re-
lationships within the semantic space when addressing do-
main shift factors. In general FL methods, such as [Wang et
al., 2025; Xu et al., 2024; Collins et al., 20211, clients focus
on extracting effective local-level representations from their
specific domains, while the server aims to capture global-
level representations shared across multiple domains. Since
these two types of representations correspond to different
scales of data understanding, inconsistencies may arise be-
tween local and global representations in the semantic space.
This issue is particularly pronounced in federated semantic
segmentation tasks, where both local- and global-level rep-
resentations are crucial for capturing fine-grained class-level
relationships, both intra-class and inter-class. Existing solu-
tions [Ma et al., 2024; Miao et al., 2023; Kou et al., 2024]
often employ style transfer and contrastive learning to en-
hance generalization or adapt to local characteristics. How-
ever, these approaches fail to address the inconsistency prob-
lem of class representations between local and global seman-
tic spaces. As shown in Figure 1(b), such inconsistencies can
lead to semantic mismatches, where the same class is repre-
sented differently across domains. This leads to divergent se-
mantic interpretations, ultimately impairing the model’s abil-
ity to generalize effectively. To address the challenge of
class inconsistency, this paper explores methods for aligning
and constraining both local and global class representations
within the semantic space.

In this work, we propose a class-consistency Federated
semantic Segmentation approach via global prototype
Supervision and local adversarial harmonization, termed
FedSaaS. To measure class representations at both global and
local levels in the semantic space, we introduce class exem-
plars as a criterion, inspired by mask average pooling [Siam et
al., 2019]. FedSaaS leverages class exemplars on the server
side to train the global model and generate class prototypes
that supervise the global branch of the client model, ensur-
ing alignment with global-level class representations. On the
client side, we integrate an adversarial mechanism to har-
monize the contributions of the local and global branches,
thereby achieving consistent outputs. Furthermore, multilevel
contrastive losses based on class exemplars are employed on
both the client and server sides to enforce consistency within
the same semantic space. We evaluate FedSaaS on five au-
tonomous driving scene datasets, constructing datasets with
varying levels of heterogeneity (slight and severe). Experi-
mental results demonstrate that FedSaaS outperforms state-
of-the-art methods across different degrees of domain shift.

The contributions of this paper are highlighted as follows:

* We propose FedSaaS, a federated semantic segmen-
tation framework that introduces class exemplars to

achieve consistency in class representations at both
global and local levels within the semantic space.

* We supervise the alignment of local class representa-
tions by modeling class prototypes and integrate an
adversarial mechanism within the client to harmonize
the contributions of the global and local branches,
thereby ensuring consistent outputs. Multilevel con-
trastive losses are introduced to further enhance the con-
sistency between the two-level representations.

» Experiments on driving scene datasets demonstrate the
superior performance of FedSaaS. Ablation studies and
empirical analyses further validate its effectiveness in
achieving consistency, improving segmentation preci-
sion, and enhancing communication efficiency.

2 Related Work

Semantic Segmentation. It is a task that assigns each pixel in
an image to a predefined category. State-of-the-art methods
predominantly employ encoder-decoder architectures based
on various network models, including convolutional neu-
ral networks [Long et al., 2015; Ronneberger et al., 2015;
Zhao et al., 2017; Chen et al., 2017], vision transformers
[Dosovitskiy et al., 2020; Liu et al., 20211, diffusion models
[Tian et al., 2024; Amit et al., 2021], and Mamba [Xing et al.,
2024]. These methods typically rely on large-scale labeled
datasets and centralized training, achieving high segmenta-
tion accuracy on public benchmarks. However, the central-
ized training paradigm raises significant concerns related to
data privacy and accessibility. In response, recent research
has begun to explore distributed training frameworks as a
promising alternative in such contexts.

Federated Learning. FL is a suitable paradigm for meeting
the distributed training requirements in semantic segmenta-
tion tasks. This approach has made significant progress in ad-
dressing generalization challenges such as label shift and do-
main shift [Wang er al., 2025; Xu et al., 2024]. Personalized
federated learning (PFL) further extends this paradigm by ac-
counting for the specific needs of each client, adapting the
global model to better align with the data distribution of indi-
vidual clients [Collins et al., 2021]. Nevertheless, unlike tra-
ditional FL tasks, semantic segmentation introduces unique
challenges due to its requirement for precise pixel-level clas-
sification. This necessitates the retention of fine-grained spa-
tial information at the local level, which complicates the di-
rect application of existing general FL. methods. These chal-
lenges are particularly pronounced in scenarios with severe
data heterogeneity.

Federated Semantic Segmentation. The problem of FL-
based semantic segmentation was first studied by [Michieli
and Ozay, 2021]. Existing methods can be broadly cat-
egorized into two types: local personalization and global
generalization. The first type primarily focuses on PFL
frameworks, aiming to adapt local models to the specific
characteristics of each client [Tan er al., 2022]. This ap-
proach has been widely applied in fields such as medical
image analysis and autonomous driving [Xie et al., 2024;
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Figure 2: Overview of the FedSaaS Framework. (a) Client-side details. (b) Server-side and weighted integrated distillation details.

Wang et al., 2023b; Kou et al., 2024]. These works typi-
cally fuse various forms of local features learned by clients
with shared features on the server to align with the distribu-
tion of local data. However, the fusion process often lacks
appropriate constraints, which can result in an overemphasis
on either global or local features, leading to an imbalance be-
tween local and global outputs. To address this limitation,
we introduce an adversarial mechanism within each client,
which promotes mutual learning between local and global
branches, thereby facilitating a balanced contribution from
both. The second category, global generalization, aims to
enhance generalization by learning shared knowledge across
domains, with a particular focus on addressing style hetero-
geneity within each domain [Ma et al., 2024; Fantauzzo et
al., 2022]. Commonly adopted techniques include knowledge
distillation [Wang et al., 2023a], ensemble learning [Gong et
al., 2022], and prompt learning [Su et al., 2024]. To mit-
igate fine-grained domain heterogeneity, an effective strat-
egy is to combine contrastive loss to map local pixel em-
beddings into a global semantic space [Miao et al., 2023;
Tan et al., 2024] and learn global class embeddings. Inaccu-
rate mapping often occurs, leading to inconsistencies between
local and global representations. To tackle this challenge,
we introduce class exemplars to explore both intra-class and
inter-class relationships, which are then used to supervise the
client-side global branches, ensuring alignment with global-
level representations in the semantic space.

3 Methodology

3.1 Overview

Figure 2(a) illustrates the overall framework of the proposed
FedSaaS approach. The training objective is to ensure that the
local and global representations of each class, derived from
all client datasets, are mapped into a shared semantic space.
For a total of N clients, each client holds its own dataset
(D1, ...,Dy). To maintain consistency between local and
global representations for each class, we train a model F on
each client (Fq, ..., Fn), with collaborative training occur-
ring across them. Specifically, each model F consists of two
branches: a global branch & and a local branch F~. Al-
though the data used by the two branches partially overlap,
their representations remain inconsistent. Our goal is to align

the representations at both levels by mapping them into a uni-
fied semantic space, thereby enabling harmonized outputs.

We follow the model decoupling idea proposed by [Collins
et al., 2021], dividing the backbone into two components: 1)
a feature extractor W : R? — R which maps input sam-
ples to the feature semantic space, and 2) a segmentation head
® : RX — RY, which maps feature semantic space to label
space. The final fully connected layer in a given backbone
network is treated as the segmentation head. Here, the pa-
rameters D, K, and C' represent the dimensions of the input,
feature, and label spaces, respectively.

The FedSaaS training process involves operations on both
the client and server sides. On the client side, the train-
ing dataset consists of raw image data. On the server side,
the training dataset comprises class exemplars uploaded from
clients. These exemplars are obtained by multiplying the out-
put of pretrained fully convolutional network (FCN) with the
mask image corresponding to each class in the original image.
To ensure compatibility for this multiplication, the output size
of the FCN must match the size of the original image. This
process is formally defined as: m§ = FCN(z) ® M¢, where
x € RT>W represents the original image, and M¢ € RT*W
denotes the mask of a specific class, and © denotes the
Hadamard product. Class exemplars capture the spatial dis-
tribution and correlations of the corresponding class, making
them a valuable criterion for achieving alignment between
local- and global-level class representations.

3.2 Weighted Ensemble Distillation

On the server side, a global branch F& is trained using
weighted ensemble distillation based on class exemplars to
map and constrain the global class representation. For the
global branch ]—",CG of client k, when provided with unseen
exemplars m¢,i # k, the predicted logits are computed as
2 = FZ(WE,©F:m§). Simultaneously, the server-side
global branch F¢ generates predictions for the same exem-
plars, producing logits z = F&(W% @Y m¢). The simi-
larity between the outputs of the client-side and server-side
global branches is measured by sim(zy,z). A higher value
of sim(zy, z) indicates that the client’s global branch exhibits
better generalization to unseen domains, and thus, it is as-
signed a higher weight. To quantify this, we define a weight
function «; that reflects the generalization capability of each
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client’s global branch: «; = e mlenz)
i=1,i%k sim(zk,2)
similarity measure sim(-) can be implemented using metrics
such as Kullback-Leibler divergence or cosine similarity.
Subsequently, the logits from the client-side global
branches are aggregated in a weighted manner to produce new
predicted logits: Z = Zi\; a; - z;. The server-side global
branch is then trained by minimizing the following loss func-
tion designed to learn from the aggregated logits:

ﬁdistill N EmC [Sim(za 2)] (1)

, where the

This process enables the server-side global branch to ef-
fectively integrate knowledge from multiple clients, thereby
achieving enhanced generalization across diverse domains.

To enhance the constraint of global semantic consistency,
we introduce inter-client contrastive learning on the server
side, leveraging class exemplars. Class exemplars encapsu-
late semantic information specific to client categories, pro-
viding a direct basis for constructing positive and negative
samples in two-level contrastive learning. We define the inter-
client contrastive loss as:

N ,
ﬁinter — _i Z 10g exp ('Uic’l}"'/T)
con N & " exp (vfvT/7) + 3, exp (vjv~/7)’

@)

where v{ is the normalized vector of the class exemplar m,
vT represents positive samples from the same class, v~ rep-
resents negative samples from other classes, and 7 is the tem-
perature coefficient. The overall loss function for training the
server-side global branch is

Ly = Lastinn + Lonker. 3)

con

By training the global branch from the client to the server, the
consistency of similar representations is improved, ensuring
aligned semantic representations across clients.

3.3 Global Prototype Supervision

The server further generates class prototypes to supervise the
client-side global branch, ensuring alignment between local-
and global-level class representations. As illustrated in Fig-
ure 3, these class prototypes are designed based on the deep
representations of class exemplars, denoted as h¢(x, y).

To construct the class prototypes, we generate category
distribution vectors and category co-occurrence relationships
separately. First, we perform a weighted average pooling
across all class exemplars to obtain the category distribution
vector for each class. The weight is calculated as: 8. =
1 — K ' /max(K,") — min(K_"), where K, represents
the number of class exemplars for class ¢ and K ! denotes
its inverse value. This weighting scheme addresses the issue
of underrepresentation for classes with fewer exemplars dur-
ing training by assigning them larger weights. Based on the
deep representations h°(z,y) and the computed weights, the
class distribution vector v, for each class is calculated as:

1 &
Ve = I(C;B(Ehc(xay)]] ) (4)

&%, -
. ® Foo'| ol ‘. Client
inter-class : ' | powNLOAD
_ U Reer Ve LiTe ¢ lleg
S Lo Wi | 0k
intra-class | & Be oW "_i
— OO v (S— k3 update

Figure 3: Diagram of the prototype head and process of global pro-
totype supervision.

where @[] represents a dimensionality reduction operation.

Next, we generate the co-occurrence relationship ¢. . be-
tween class ¢ and class ¢/, which reflects their relative distri-
bution across all spatial positions. It is computed as

ZQC ZQ(C,C/) H[hc(‘rv y) 7& oA hc, (1./7 y/) 7& 0]

o llhé(z,y) # 0] ’
(5

where ). .y represents the neighborhood region of classes ¢
and ¢/, and T[-] denotes the indicator function. Based on the
co-occurrence relationship, we further incorporate positional
information and regional relationships of class exemplars to
calculate the correlation R, .- between classes ¢ and ¢’

Rc,c’ :(bc,c’ : Z hc(mv y)
Qe

(bc,c’ =

> (@ y) - Ka(w,y, 2, y) |, (6)

Qe,er

where K4(-) represents a Gaussian kernel function that
weights the influence of distance between adjacent pixels.

By combining the distribution vector v, and the correlation
R, » for each class, we obtain the class prototype g.:

1
gc =V + W Z Rc,c/ * Vet (7)
! c'eCy,c’#c

where C) denotes the total number of classes.

Class prototypes contain two key features: intra-class dis-
tribution and inter-class co-occurrence relationship. Once the
clients receive the class prototypes g., these prototypes are
converted into dynamic weights for the convolutional kernels
in the global branch. To achieve this, we define a weighted
generation network fy (g.), which projects g, into the weight
dimension. This network can be implemented using a mul-
tilayer perceptron (MLP). Through the supervision of class
prototypes, the local-level class representations generated by
the client-side global branch are effectively aligned with the
global representations, ensuring consistency across domains.

3.4 Local Adversarial Harmonization

On the client side, the local branch and global branch focus on
different levels of class representations, necessitating a mech-
anism to balance their contributions to the final model output.
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To address this, we propose a local adversarial harmonization
mechanism that facilitates mutual learning between the two
branches by confusing a newly trained discriminator. This
mechanism is divided into two stages: discriminator training
and branches training.

Discriminator training. Given the output logits of the lo-
cal and global branches, a domain discriminator is trained to
distinguish their origins. The objective is to maximize the
discriminator’s classification accuracy, ensuring it can cor-
rectly differentiate between the outputs of the local and global
branches. To this end, the discriminator maximizes a binary
cross-entropy loss function:

Lq=—Eglplogp+ (1 —p)log(l—p)], ®)

where p € {0, 1} represents the ground-truth label, indicat-
ing whether the current input originates from the local branch
(p = 0) or the global branch (p = 1), and p is the prediction
output of the domain discriminator.

Branches training. To counter the discriminator, the train-
ing objective of the local and global branches is to make
the domain discriminator incapable of distinguishing their
outputs. This is achieved by incorporating adversarial con-
straints into their loss functions, which aim to minimize the
discriminator loss and thereby deceive the discriminator. For
the global branch, we adjust the parameters of the feature ex-
tractor under the supervision of global prototypes. The pa-
rameters of the segmentation head are first replaced with the
server-side parameters @, and subsequently optimized us-
ing a segmentation loss £S - The training losses for the two
branches are defined as:

Lgiobal = Cfeg + ALy,

. 9)
Lioear = L, + ALa+ LI,

where £L o 1s the local segmentation loss and A is a hyper-
parameter that adjusts the weight of discriminator loss £4. A
contrastive loss, £7  derived from the client’s own class
exemplars, is added to the local branch loss to constrain the
local-level class representations:

exp(vev™ /T)
exp(vevt/T) 4+ >, - exp(vev= /T)
The logits from the two branches are summed and aver-
aged to produce the final output. Through the local adver-
sarial mechanism, the segmentation model dynamically har-

monizes the contributions of local and global representations,
ensuring consistent outputs.

intra __
‘Ccon N IOg

. (10)

4 Experiments

4.1 Experimental Settings

To evaluate the performance of the proposed method, we se-
lect the driving scene segmentation task for both training and
validation. This task involves a wide range of complex cat-
egorical objects and presents real-world class imbalance is-
sues, posing significant challenges in achieving semantic con-
sistency across categories. We construct datasets for two het-
erogeneity scenarios: slight and severe, based on training dif-
ficulty. These datasets differ notably in terms of domain shift

and label shift. For the slight heterogeneity scenario, we use
the widely adopted baseline dataset, Cityscapes [Cordts et
al., 2016], which includes street views from multiple cities
across Europe. Due to small geographical and device-related
differences, this dataset exhibits minimal domain shift. For
the severe heterogeneity case, we utilize five driving scene
datasets: Cityscapes, Mapillary Vistas [Neuhold et al., 2017],
BDDI100K [Yu et al., 2020], GTAS [Richter et al., 2016], and
Synthia [Ros et al., 2016]. This collection not only contains
real or virtual street views from cities worldwide but also in-
cludes simulated datasets captured from various angles and
devices, resulting in both severe domain and label shifts. In
this scenario, the model’s ability to generalize across diverse
scenes is more rigorously tested.

We select representative FL. methods and state-of-the-art
(SOTA) federated segmentation approaches for comparison,
including FedAvg [McMahan er al., 2017], FedProx [Li et
al., 20201, FedDrive [Fantauzzo et al., 20221, FedSeg [Miao
etal.,2023], and FedST [Ma et al., 2024]. Due to differences
in dataset size and annotation types, we standardize the data
preprocessing by cropping all images and resizing them to
512 x 1024. For model training, we adopt the BiSeNet V2 ar-
chitecture [Yu et al., 2021], a lightweight network designed to
capture both spatial features and high-level semantic context.
The temperature coefficient 7 for the multilevel contrastive
loss and the weight A for the adversarial loss are set to 0.05
and 0.1, respectively. We set batch size to 16, with 10 local
iterations and 50 communication rounds. To evaluate perfor-
mance, we use two common semantic segmentation metrics:
mean Intersection over Union (mloU), which measures the
intersection over union between predicted and ground truth
pixels averaged across all categories, and Pixel Accuracy,
which describes the ratio of correctly classified pixels.

4.2 Main Results

Quantitative Analysis. We evaluate the performance on
validation datasets, reporting the average and fluctuation de-
viation over three independent tests. Table 1 presents a com-
parison between our FedSaaS method and other SOTA meth-
ods. As shown, our method achieves the best performance
across all data environments. In the slight heterogeneity sce-
nario, we observe a modest improvement over the current best
methods, with increases of 2.75% in Accuracy and 1.66% in
mloU. In the severe heterogeneity case, FedSaaS performs
significantly better, with improvements of 6.68% in Accuracy
and 4.48% in mloU. This is because FedSaaS leverages class
consistency to jointly represent the characteristics of classes
at both the local and global levels. Additionally, to assess
generalization, we separate Cityscapes from the severely het-
erogeneous dataset and use it as an unseen domain for test-
ing. We average the results of the remaining four clients, and
the scores demonstrate that FedSaaS outperforms the SOTA
methods in this scenario as well.

Qualitative Analysis. Figure 4 presents the visualization
results of testing different clients under the severe hetero-
geneity scenario. It is observed that Feddrive and FedST,
both designed to address the domain shift problem, improve
segmentation accuracy only for certain classes compared to
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Figure 4: Comparison of visual results from different methods on datasets with severe heterogeneity.

Slight Heterogeneity Severe Heterogeneity Unseen-Domain
Method Acc =+ std mloU = std Acc = std mloU =+ std Acc =+ std mloU =+ std
FedAvg (PMLR 2017) 7920+ 1.96 4792+ 153 6658 +£258 37.19+£2.12 61.61+£1.68 34.28+2.04
FedProx (MLSys 2020) 78.93 £0.67 47.62+090 67.06£1.26 38.08+1.62 63.09+191 3537+ 1.54
FedDrive (IROS 2022) 84.74 £ 131 51.14£0.77 73.24+£1.31 4283+0.56 70.40=+1.85 43.06+£0.78
FedSeg (CVPR 2023) 8436 £1.81 51.36+129 72.86+2.89 40.14+2.04 67.04+£225 3748+£2.30
FedST (AAAI 2024) 8532+ 0.68 52.60+036 7558+£1.99 44.19+137 73.43+1.89 44.77+£0.96
FedSaaS (Ours) 88.57 £0.95 5434 +0.62 82.26 +2.30 48.67 =1.18 74.15+1.47 4596 +1.14
Backbone 81.09 £ 0.73 49.61 £0.58 68.14+£1.77 37.554+093 6524 +1.66 35.63+147
+ Proto. 8553+ 1.04 5357073 76.06£249 43.08+1.72 70.08£1.36 39.08+1.25
+ Proto. + Lcon 88.21 £1.27 5421 4+0.66 80.38+2.61 46.21+1.46 7396+1.86 45.83+1.30
+ Proto. + Leon + Ly 88.57 £ 0.95 54.34 +0.62 82.26 =230 48.67 =1.18 74.15+1.47 46.06 +1.14

Table 1: Performance comparison (%) under slight and severe heterogeneity scenarios across various methods (top), and effectiveness vali-

dation of FedSaaS modules (bottom).

traditional FL. methods. In contrast, our FedSaaS method im-
proves segmentation performance across all categories. By
aligning and constraining both local and global class repre-
sentations, our approach ensures high segmentation perfor-
mance for all clients. More detailed comparisons are shown
in the Appendix of full version of this paper.

Ablation Studies. We evaluate the effectiveness of each
module, as shown in the lower half of Table 1. The initial
backbone structure consists of local and global branches on
client side and follows the FedAvg configuration. The outputs
from both branches are combined through summation and av-
eraging to produce the final output. Subsequently, we incor-
porate class exemplars into the backbone, enabling the seg-
mentation head ©F to be trained on server side while simul-
taneously generating class prototypes (abbreviated as Profto.
in the subsequent charts) to supervise parameter updates in
client-side global branch. This enhancement significantly im-
proves the performance of the overall framework, resulting in
an accuracy increase ranging from 4.42% to 7.92%.

We further incorporate the two-level contrastive loss (ab-

breviated as L., in the table) based on class exemplars to
enforce class representation constraints at both the local and
global levels. Compared to the results from the slight hetero-
geneity scenario, the combination of prototype supervision
and multilevel contrastive loss yields a particularly notable
performance improvement in the severe heterogeneity case,
with an increase of 12.24% in Accuracy and 8.66% in mloU.
This highlights the importance of achieving class consistency
in scenarios with significant domain shifts. We also introduce
an adversarial harmonization module before the outputs of the
two client branches. By comparing the results before and af-
ter the inclusion of this module, we observe an enhancement
in the model’s performance. Notably, the alignment between
global and local representations is achieved through the above
mechanisms, which enables the adversarial mechanism to op-
erate effectively on both branches.

4.3 Empirical Analysis

Visualization. We use t-SNE [Van der Maaten and Hinton,
2008] to visualize the pixel embeddings of semantic classes
under the severe heterogeneity scenario, as shown in Figure 5.
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Backbone + Proto.

+ Proto.+ L,p

Figure 5: Visualization of the pixel embeddings for differenct se-
mantic classes.

Original images FedAvg FedSaaS w/o Proto. = FedSaaS

Figure 6: Grad-CAM visualization of the feature attention regions
in the last convolutional layer of the global branch.

The results demonstrate that, without additional modules, the
model produces poor embeddings, with most semantic class
pixels intermingled. Incorporating the Proto. module results
in a noticeable separation between pixels of different seman-
tic classes. The introduction of the two-level contrastive loss
Lon further enhances the divergence between categories in
the embedding space, highlighting its critical role in con-
straining semantic class representations.

We visualize the global branch’s attention to categories us-
ing Grad-CAM [Selvaraju et al., 2017]. As shown in Fig-
ure 6, we compare the attention given by the model to the
most common categories in driving scenes—namely, pedes-
trians and vehicles—by analyzing the output of the last con-
volutional layer in both the FedAvg and FedSaaS global
branches. It is evident that both FedAvg and FedSaaS w/o
Proto. exhibit insufficient focus and attention to the image.
After incorporating the Profo. module, the global branch is
able to accurately locate and identify the corresponding cat-
egories in the respective channels. This supervision of local
class alignment through global class prototypes enables the
model to gain a richer understanding of various categories,
which is crucial for achieving high segmentation accuracy.

Communication Efficiency. Figure 7 illustrates the perfor-
mance curves of different methods during training. It is ob-
served that, compared to other methods within the same com-
munication round, FedSaaS achieves superior performance
with enhanced communication efficiency. Additionally, the
need to upload class exemplars from clients introduces ex-
tra communication overhead. We examine the impact of ran-
domly uploading a subset of class exemplars on performance.
As shown in Table 2, as the number of uploaded exemplars in-

80 L 50
> —— FedSaaS = ——TFedSaaS
> S ”
o651 ——FedST £40 —— FedST
S / — FedSeg | 3 —— FedDrive
E’ 50l FedDrive | S 30 7 ——FedSeg |

—— FedProx /4 FedProx
4 —— FedAvg —— FedAvg
2
350 5 10 15 20 0O 5 10 15 20

Communication Round Communication Round

Figure 7: Comparison of communication efficiency.

Upload ‘ Slight Heterogeneity ‘ Severe Heterogeneity

ratio Acc mloU Acc mloU
25% 84.26 51.27 69.12 35.97
50% 86.53 53.84 75.50 43.28
75% 87.96 54.08 77.74 44 .36

Table 2: Performance comparison (%) of different upload ratios of
class exemplars under slight and severe heterogeneity scenarios.

creases, segmentation accuracy improves. Notably, test accu-
racy when uploading approximately 50%-75% of the exem-
plars is significantly higher than when uploading only 25%.
This suggests that, in scenarios where the dataset is large or
communication constraints are tight, uploading around half of
the class exemplars can still achieve relatively high accuracy,
thereby reducing transmission costs.

Stability Analysis. The branch and discriminator are opti-
mized toward opposing objectives: the branch aims to min-
imize its loss, while the adversarial dynamics force the dis-
criminator’s loss to increase. This competition may introduce
initial instability in the training process, particularly under se-
vere data heterogeneity, manifesting as transient loss fluctu-
ations or occasional branch misalignment. To mitigate these
effects, we adopt two strategies: 1) We initialize the adver-
sarial weight A\ at a reduced value to limit early-stage per-
turbation. As optimization stabilizes, \ is progressively in-
creased to its target value. 2) During training, sharp perfor-
mance declines trigger a rollback to the best checkpoint, ac-
companied by gradient clipping on L to suppress instability.
As shown in Figure 7, these measures maintain stable perfor-
mance growth without compromising convergence speed.

5 Conclusion

In this paper, we have proposed a class-consistency FL ap-
proach tailored for semantic segmentation tasks. To ad-
dress the ambiguity in class representations caused by do-
main shifts, we have introduced a novel framework, Fed-
SaaS, which leverages class exemplars as a criterion to en-
sure consistency between local and global representations.
Specifically, we have sequentially incorporated class proto-
types and adversarial mechanism to achieve two-level rep-
resentation alignment, thereby ensuring consistent outputs at
both branches. Extensive experiments conducted on several
datasets demonstrate that FedSaaS outperforms state-of-the-
art methods in addressing the class-consistency problem.
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