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Abstract

Dense object segmentation is essential for var-
ious applications, particularly in pathology im-
age and remote sensing image analysis. How-
ever, distinguishing numerous similar and densely
packed objects in this task presents significant
challenges. Several methods, including CNN-
and ViT-based approaches, have been proposed to
tackle these issues. Yet, models trained on lim-
ited datasets exhibit limited generalization abil-
ity. The Segment Anything Model (SAM) has re-
cently achieved significant progress in zero-shot
segmentation but relies heavily on precise posi-
tional guidance. However, providing numerous
accurate location prompts in dense scenarios is
time-consuming. To overcome this limitation, we
conducted an in-depth exploration of the SAM
mechanism and found that its strong generaliza-
tion ability stems from the encoder’s edge detec-
tion capability, which is semantically independent,
making location prompts essential for segmenta-

tion. This insight inspired the development of

DenseSAM, which replaces location prompts with
semantic guidance for automatic segmentation in
dense scenarios. Specifically, it uses local details
to weaken the edges of background objects, lever-
ages global context to enhance intra-class feature
similarity, while further increasing contrast with the
background, and integrates a dual-head decoding
process to enable lightweight automatic semantic
segmentation. Extensive experiments on pathol-
ogy images demonstrate that DenseSAM delivers
remarkable performance with minimal training pa-
rameters, providing a cost-effective and efficient
solution. Moreover, experiments on remote sens-
ing images further validate its excellent scalability,
making DenseSAM suitable for various dense ob-
ject segmentation domains. The code is available at
https://github.com/imAzhou/DenseSAM.

*Corresponding Author. Email: zunleifeng @zju.edu.cn
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Figure 1: From left to right: SAM output mask prompted with one
point, multiple points and all boxes respectively, the rightmost is our
output without location prompt.

1 Introduction

Dense object segmentation is a critical visual task with broad
applications in specialized fields such as cell segmentation in
pathology image analysis. This task involves numerous simi-
lar and closely packed objects, posing challenges in adhesion
and differentiation. Numerous methods have been proposed
to tackle these challenges, including CNN-based [Tian et al.,
2020; Yoo et al., 2019] and ViT-based [Prangemeier et al.,
2020; Lin et al., 2024]. Although these methods have shown
remarkable performance, they require extensive training re-
sources and exhibit limited generalization ability.

Recently, the advent of the Segment Anything Model
(SAM) [Kirillov et al., 2023] has marked groundbreaking
progress in zero-shot image segmentation. Leveraging a vast
number of parameters and pre-training on the SA-1B segmen-
tation dataset, SAM excels at accurately segmenting objects
across diverse domains. However, despite its powerful ca-
pabilities, SAM remains significantly limited in dense object
segmentation due to its heavy reliance on numerous accurate
manual location prompts to achieve satisfactory results.

As shown in Fig.1 (a), when a single positive point is pro-
vided, two adjacent cells are segmented together. Further-
more, using a few positive and negative points still results in
large areas of adhesion (b). Consequently, satisfactory results
are achieved only when bounding box prompts are provided
for each object (c). However, locating all objects in dense
scenarios is inherently time-consuming and labor-intensive.
This raises two key questions: Why does SAM heavily rely on
precise location prompts, and how can we achieve automatic
and accurate segmentation of dense objects without relying
on location prompts?

To answer the first question, we delved deeply into the me-
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chanics of SAM. First, we hypothesize that SAM’s encoder
detects all objects in an image but relies on location prompts
as query tokens to employ the attention mechanism for lo-
cating image tokens corresponding to objects near the spec-
ified positions. Based on this hypothesis, we adopted two
metrics to analyze the image tokens: (1) a local metric that
calculates the variance of image tokens, and (2) a global met-
ric that measures the cosine similarity between image tokens.
As shown in Fig. 2(b), the image tokens output by the SAM
encoder exhibit higher variance at the object edges and high
similarity between the selected object token (green star) and
other objects, including those with different semantics (green
arrow), which validates the above hypothesis. After cross-
attention in the SAM decoder (c), the variance of image to-
kens within the selected object becomes consistent, and the
similarity with distant object tokens decreases. Therefore, we
infer that SAM accurately identifies object edges but relies
on precise location to compute attention between query and
image tokens. More specifically, SAM’s strong generaliza-
tion ability stems from its encoder, while its decoder depends
on positional cues to locate objects detected by the encoder,
rather than on the semantic relationships between objects.

To address the second question, semantic guidance is pro-
posed as a replacement for location prompts to achieve au-
tomatic segmentation. Specifically, we observe that in dense
object segmentation, these numerous closely packed objects
often share similar and homogeneous semantic features. This
observation inspired us to leverage SAM’s strong generaliza-
tion capability in edge detection and replace location-based
prompts with semantic guidance, enabling automatic and pre-
cise segmentation. Thus, an Efficient Semantic Injection
(ESI) module is proposed to achieve this goal. Specifically,
image tokens from the hidden layers of SAM’s image encoder
are utilized for local information extraction and global con-
text contrastive learning. By using a local workflow to atten-
uate background object edges and a global workflow to en-
hance intra-class feature similarity while increasing contrast
with the background, these semantic features are integrated
into the decoding process. The metric results for both local
and global analysis on the ESI output image tokens are shown
in Fig. 2(d). As illustrated, the distribution of image tokens
reveals a clear spatial correspondence between foreground
and background semantic information. Additionally, a dual-
head decoding structure is designed to simultaneously out-
put objects and their boundaries, significantly improving the
distinction between adjacent objects. By utilizing semantic
guidance, along with the efficient dual-head structure, we en-
able lightweight automatic semantic segmentation with only
a few trainable parameters.

Our contributions are summarized as follows: (1) We pro-
pose an automated, cost-efficient segmentation framework,
DenseSAM, which is built upon a thorough analysis of SAM,
demonstrating that its generalization ability arises from its
precise edge detection. (2) A novel Efficient Semantic Injec-
tion (ESI) module is proposed that integrates local and global
perspectives to enhance foreground-background distinction.
(3) Extensive experiments showing DenseSAM’s state-of-
the-art performance with minimal parameters and strong gen-
eralization to new tasks.

(a) Input & GT (b) SAM encoder (c) SAM decoder (d) Proposed ESI
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Figure 2: Heatmap in local and global metric. For ESI, brighter re-
gions in local indicate background areas with higher variance, while
darker regions in global reflect lower similarity to cell objects.

2 Related Work

Dense Object Segmentation. Dense object segmentation
is a challenging task that deals with identifying and separating
individual objects within a dense scenarios [Tu er al., 2008;
Li et al., 2018; Lou et al., 2012]. For specialized domain like
pathology and remote sensing image analysis, its main chal-
lenges include not only segmenting numerous closely packed
objects but also addressing the frequent occlusions, partial
coverage, and objects adhesion, which significantly compli-
cate the segmentation process. Prevailing approaches often
enhance task-oriented segmentation by training models with
extensive domain-specific samples to overcome these chal-
lenges. Depending on the model structure used, they can be
roughly categorized as CNN-based, ViT-based, and a combi-
nation of both. CNN-based methods excel at capturing fine-
grained local and multi-scale features through their hierar-
chical convolutional structures, making them ideal for dis-
tinguishing closely packed objects in dense scenarios [Tian er
al., 2020; Yoo et al., 2019]. In contrast, ViT-based meth-
ods can handle larger receptive fields and effectively cap-
ture global contextual information, making them well-suited
for managing complex scenes with significant contextual re-
lationships [Wang er al., 2024; Prangemeier et al., 2020].
Building on the complementary strengths of CNNs and ViTs,
various approaches have emerged that integrate both into a
single framework to achieve enhanced performance [Li et al.,
2023; Hu et al., 2023].

Even though these expert methods have shown promising
results in specific fields, training them from scratch demands
substantial resources. Moreover, they exhibit poor general-
ization across different domains, such as a model tailored for
cell segmentation is unsuitable for building extraction.

Segment Anything Model and It’s Variants. The Seg-
ment Anything Model (SAM) [Kirillov et al., 2023] is an
advanced universal segmentation model, which consists of
an image encoder, a prompt encoder, and a mask decoder.
Trained on 1.1 billion masks and 11 million images, SAM
demonstrates impressive zero-shot capabilities and has in-
spired a surge of research into its potential across various
downstream tasks. Depending on which components of SAM
are tuned, we classify those variants into four types: a). Tun-
ing whole SAM, b). Tuning minimal parameters, c). Training
auxiliary network, d). Training auxiliary network without lo-



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

o R '1 Encoder Decoder % ﬂ_»
s had — £ >
SR | Transformer Layer < —»
<790 xL > . L, 2
5 @ » £
Aut L . o —» -
Inforence b ESI Module 4y it
\ » D
y  Reshape ﬁ —> ST > Reshape '~
W ——— - o oadip —> A
Sel '~ w 1D /Y train
el Select = — DWConvs —»
dditi
K . . closer hia qp addition
xL é Linear ReLU Linear £ . —p foreground — © mltiply
. I S
hidd %), i
1;ye:: e, Y o ﬁ —> F%»I > dh—> ) ”
Linear ReLU Linear —» —» background [ @ share weight

Figure 3: The proposed DenseSAM framework. The newly added ESI module injects semantic information into the decoding process,

replacing SAM’s location prompts to enable automatic segmentation.

cation prompts. For example, MedSAM [Ma et al., 2024]
fine-tuning the entire SAM on 1.57 million medical images
for promptable medical segmentation. To enable efficient
fine-tuning without relying on large datasets, Med-SA [Wu
et al., 2023] fine-tunes minimal additional parameters in
the SAM image encoder for efficient adaptation to medical
imaging, while SAM-PARSER [Peng ef al., 2024] and CAT-
SAM [Xiao et al., 2024] use similar techniques for various
domains, including medical imaging, remote sensing, and
natural images. More advanced approaches [Hu ez al., 2024c;
Zhang et al., 2024b] use or train auxiliary networks (such
as language models or expert models) to generate location
prompts automatically, replacing the time-consuming manual
intervention. Apart from using location prompts, some meth-
ods [Zhang et al., 2024a; Chen et al., 2024] eliminate them
altogether by training auxiliary networks to generate masks
directly, while either training or freezing the image encoder.

We propose a new type that achieves automatic segmen-
tation by training only a few semantic parameters, offering
a cost-effective and efficient solution for adapting SAM to
dense object segmentation.

3  Why Dose SAM Rely on Location Prompts?

Inspired by studies analyzing the working mechanisms of
visual models [Selvaraju et al., 2017; Hu et al., 2024b;
Hu et al., 2024al, in this section, we aim to understand the in-
ternal mechanism of SAM and investigate its reliance on pre-
cise location prompts. Based on SAM’s architecture, which
consists of a heavyweight image encoder with 640M param-
eters and a lightweight mask decoder and prompt encoder
with a combined 4M parameters, we hypothesize that SAM’s
encoder detects all objects in an image but requires location
prompts as query tokens to identify image tokens correspond-
ing to objects near the specified positions. To validate this
hypothesis, two analytical metrics are introduced to examine
the distributional changes of image tokens within the encoder
and decoder: (1) a local metric that calculates the variance of

image tokens and (2) a global metric that measures the cosine
similarity between image tokens.

First, the feature extraction mechanism within the SAM
image encoder was examined, focusing on its reliance on
a series of attention operations applied to flattened one-
dimensional image patch embeddings. This process can be
represented by the following equation:

El+1 = fproj(fattn(fproj (El>))7 le {]—v ceey L} 3 (1)
where E; represents the encoder layer’s output image to-
kens with dimensions (h, w, ¢), h, w and ¢ denote the height,
width, and channel, respectively. The total number of encoder
layers is denoted by L. The projection function, f,;, maps
the flattened image tokens (h * w, ¢) before it is fed into the
attention operation f,:+:,. After computing attention, the im-
age tokens are reshaped back into two-dimensional space and
projected by f};mj, returning E; to (h, w, ¢).

We visualized the layer’s output F; using heatmaps for
analysis. Keeping h and w constant, we calculated the vari-
ance along the channel c to generate the local metric heatmap
in Fig.2, revealing that image tokens near object edges ex-
hibit greater variability in their channel features. Then, we
calculated the cosine similarity between a specific token (the
green star in Fig.2) and all other tokens, generating a simi-
larity matrix of shape (h,w), which forms the global metric
heatmap displayed in Fig.2. As observed, tokens within the
same object exhibit the highest similarity, while tokens from
other objects, regardless of distance or semantic class, also
display high similarity, as indicated by the green arrows in
Fig.2. Thus, it is concluded that the SAM encoder extracts
the edges of all objects and preserves object-centric similar-
ity, irrespective of their semantics.

Next, the image token update process during SAM’s de-
coding phase was analyzed using the same statistical ap-
proach. In this phase, image tokens are decoded alongside
the location prompts, as demonstrated below:

Rk+17Qk’+1 = ftwa(Rkak)7k S {071}7 (2)
M = fdecode(RQa Q2)a (3)
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Figure 4: Analysis of typical cases in SAM and our decoder using
local and global metrics.

Here, Ry and @) represent the one-dimensional image to-
kens and the query tokens containing location prompts in the
SAM mask decoder, respectively. The core module of the
mask decoder, f,,q, refers to the Two-Way Attention block,
which performs % rounds of cross-attention to update the fea-
ture values of Ry and Qi. The updated Rs and (), are then
passed into the decoding function fgecoqe, Where Ro is re-
shaped into a two-dimensional space and upsampled, while
(2 undergoes processing through a set of MLPs for channel
mapping. The final output masks M are generated by com-
bining the upsampled Rs and the mapped Q.

The same local and global analyses are performed on the
updated R, under one-point location prompts. As shown in
Fig.2, by incorporating the location of the green star into the
query tokens, the variance of image tokens belonging to the
green star’s object becomes more consistent after two iter-
ations of cross-attention between the query tokens and im-
age tokens, while the cosine similarity with distant tokens de-
creases. More typical cases on the updated R are provided in
Fig.4. The analysis results further confirm our hypothesis that
the lightweight SAM decoder relies heavily on precise and
unambiguous location prompts to identify corresponding ob-
Jjects, and without such prompts, SAM performs significantly
deteriorates with densely packed homogeneous objects.

The above analysis inspired us to explore whether seman-
tic guidance could replace location prompts for dense objects
with homogeneous semantics to achieve a lightweight, auto-
matic, and efficient segmentation tool.

4 How To Enhance SAM for Dense Objects?

Since SAM’s strong generalization ability stems from its en-
coder, while its decoder relies on location prompts to seg-
ment objects, the presence of numerous semantically similar
objects in dense object scenes inspired us to replace location
prompts with semantic guidance in the decoder.

To enable semantics-guided automatic segmentation, an
Efficient Semantic Injection (ESI) module is proposed, which
includes both local and global workflows. As shown in Fig.3,
the image tokens from the hidden layers of the SAM encoder

are leveraged for local details extraction and global context
comparison, given its capability to detect object edges, as an-
alyzed in Section 3. In the local workflow, after reconstruct-
ing the image tokens into a two-dimensional (2D) space, a
depth-wise convolutional layer is incorporated to capture lo-
cal information, as demonstrated to be beneficial in previous
works [Yuan et al., 2021; Li et al., 2021]. The process is
expressed by the following formula:

Ri:ocal - flocal(ﬁeshape(Ek))y k S {17 sy K} 5 (4)
Jrocat () = Conv(ReLU (DW Conv(x))), 5)

where f,cq; denotes the local module to process image to-
kens Ej. For different layer’s output Ey, the parameters of
the fi,cq; module are shared, where K is a hyper-parameter.

In the global workflow, supervised contrastive learn-
ing [Khosla et al., 2020] is employed to enhance the similar-
ity within the same semantic category and amplify the distinc-
tion between different categories. The process is expressed by
the following formula:

R{ = Foiopa(Ex), k € {1,.., K}, 6)

fgtobat(z) = Proj(ReLU(Proj(x))), @)
where fgy00q: denotes the global module, and the weights are
shared, similar to those in fjocqi.

In summary, the semantic injection process of ESI can be
expressed as follows:

Rpsy = Sum(Flatten( R, RY"™), (8)

Ry = R3 + Rpsy. 9)
Subsequently, the R5°" is fed into the decoder for cross-
attention with the query tokens. The analysis results on both
local and global metrics validate the effectiveness of the pro-
posed ESI module. As shown in Fig.2, the output Rgg; in-
creases the variance of background object tokens and the sim-
ilarity between foreground tokens increases, while their sim-
ilarity with background tokens is significantly reduced.

To refine the distinction between overlapping objects, we
have innovatively designed a Dual-Head (DH) structure, en-
abling the simultaneous output of both object and its bound-
aries. Specifically, without location prompts, we incorporate
semantic embeddings into the query tokens and use two sets
of MLPs for mapping the query tokens. The process can be
expressed as following:

My, M, = f21 . (R3Y.Q,), (10)

where Q/2 denotes the query tokens incorporated with newly
added semantic embedding, which is processed by f22
the proposed Dual-Head decoding structure that includes two
sets of MLPs. The output results, M; and M,, represent
the masks of objects and their boundaries, respectively. A
marker-controlled watershed algorithm is applied to post-
process these two masks, as in Al-Net [Zhao er al., 2021],
yielding the final instance segmentation results.

The modules we proposed require only about 3M trainable
parameters, making lightweight automatic semantic segmen-
tation feasible. In the following experimental section, we will
demonstrate the effectiveness of the proposed DenseSAM on
six datasets and conduct an ablation study to substantiate the
validity of each component.
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Type Method Year TIr)amable \ CoNIC CPM17 MoNuSeg
AAMS | Dice AJI PQ  Dice ANl PQ  Dice Al PQ

S PseudoEdgeNet 2019 43.43M | 4498 2576 6.74 7246 4942 4510 56.68 29.03 31.86
£ Scribble2Label 2020 33.82M | 67.04 48.62 4584 70.82 5026 4599 7344 5420 51.78
< C2FNet 2020 11.50M | 33.18 1325 4.00 6439 4211 27.06 6396 4051 34.12
Z SSL-Net 2020 - 65.98 43.04 4408 7028 494 4268 7251 51.69 49.97
¢ SC-Net 2023 81.23M | 66.72 47.13 4259 7373 51.69 49.66 7441 5620 53.19
> BoNuS$ 2024 52.93M | 7033 52.13 4630 75.13 5454 4991 7673 60.73 55.43
3 Med-SA i 2023 13.00M | 70.60% 52.98% 48.69% 77.28% 5123% 49.67* T4.11% 47.62% 47.37*
E Med-SA 2023 13.00M | 41.75% 38.97* 34.12* 71.35*% 42.08* 39.16* 71.30* 33.27* 35.69*
= UN-SAM 2024 319.09M | 71.58* 55.62* 51.97* 78.99*% 60.74* 51.96* 75.31* 58.02% 49.13*
& DenseSAM (ours) 3.1IM | 7819 63.76 6117 84.14 71.84 6687 8041 66.50 61.44

Table 1: Comparison with SOTA methods on CoNIC, CPM17 and MoNuSeg datasets. Bold indicates the best and underlined denotes the

@

second-best. “-” indicates missing data in original paper, while “*” denotes reproduced results. All values are in %.

5 Experiments
5.1 Experimental Setup

Datasets. To evaluate the performance of the proposed
DenseSAM in dense segmentation of pathology images, we
used three commonly used pathology datasets. Additionally,
to demonstrate the applicability of DenseSAM in other dense
segmentation domains, we also used three common remote
sensing datasets, showcasing DenseSAM’s robust dense seg-
mentation capability. The six datasets are as follows:

Pathology datasets: CPM17 [Vu et al., 2019] includes 32 /
32 pathology images for train / test, with sizes of 500 x 500 or
600 x 600 pixels. We resize each image to 1024 x 1024 pix-
els, and then crop it into 512 x 512 pixel patches with no over-
lap. CoNIC [Graham et al., 2021b] consists of 4981 image
patches, each sized 256 x 256. Following BoNuS [Lin et al.,
2024] we randomly split all images into 7:1:2 ratio, resulting
in 3486 /997 / 498 for train / validation / test. MoNuSeg [Ku-
mar et al., 2017] comprises 44 images with each of size 1000
x 1000 pixels. The dataset has 30 / 14 images for train / test.
We randomly split the train subset into 24 / 6 images for train
/ validation. Each image is resized to 1024 x 1024, and then
crop to 256 x 256 without overlap.

Remote sensing datasets: WHU Building [Ji et al., 2018]
has a ground resolution of 0.3 meters and an image size of
512 x 512 pixels. It contains 4736 / 1036 / 2416 images for
train / validation /test. Inria Building [Maggiori ef al., 2017]
contains 360 images collected from five cities at a 30cm reso-
lution. We process it consistent with UANet [Li et al., 2024]
and crop them in to 512 x 512 pixels, resulting in 9737/ 1942
images for train / validation. Massachusetts Building [Mnih,
2013] owns 151 aerial images with spatial resolution 1 meters
and an image size of 1500 x 1500 pixels. we crop the images
into 500 x 500 pixels, get 1233 / 36 / 90 images for train /
validation / test.

Metrics. For semantic segmentation, we adopt three pixel-
level metrics: Intersection over Union (IoU), F1 score (F1),
and precision (Pre.). We calculate the mean value of
the background and foreground in these metrics, consistent
with UANet [Li er al., 2024]. For instance segmentation,

three object-level evaluation metrics is utilized: object-level
Dice coefficient (Dice), aggregated Jaccard index (AJI), and
panoptic quality (PQ), align with BoNuS [Lin ef al., 2024].

Implementation Details. By default, we use the ViT-H
type for the image encoder, unless otherwise specified. For
the loss function, we use a linear combination of Dice loss,
BCE loss and contrastive loss. We adopt Adam optimizer
and training ranges from 10 to 30 epochs.

5.2 Quantitative Results

In this section, we compare the DenseSAM against several
NonSAM-based and SAM-based methods on pathology and
remote sensing datasets. To ensure fairness, we reference
results from the original papers or reproduced SAM-based
methods using open-source code when results were missing.

Pathology Instance Segmentation. To validate the effec-
tive of the proposed DenseSAM, we compare three instance
metrics on the CoNIC, CPM17 and MoNuSeg datasets.
As shown in Table 1, DenseSAM outperforms expert net-
works including PseudoEdgeNet [Yoo et al., 2019], Scrib-
ble2Label [Lee and Jeong, 2020], C2FNet [Tian et al., 20201,
SSL-Net [Xie et al., 2020], SC-Net [Lin er al., 2023], and
BoNuS [Lin ef al., 2024]. These expert networks are spe-
cializing in cell segmentation tasks which training parameters
range from 10 to 100 million, far beyond of DenseSAM.

For SAM-based methods, Med-SA [Wu et al., 2023] and
UN-SAM [Chen er al., 2024] is selected for comparison.
Table 1 shows that Med-SA with point prompts performed
rather poorly on AJI metric, which is the primary metric for
evaluating whether adherent cells are separated. Moreover,
when the point prompts are removed, Med-SA’s performance
significantly deteriorates across all metrics. UN-SAM trains
a large number of parameters to eliminate the need for loca-
tion prompts. However, compared to UN-SAM, DenseSAM
achieves more impressive performance across all metrics with
fewer trainable parameters.

It is worth mentioning that CoNIC is extracted from the
Lizard [Graham et al., 2021a] dataset, which includes around
fifty thousand nuclei from 16 different centers, representing
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Tvpe Method Year Trainable \ WHU Inria Massachusetts
M Params ‘ I
oU F1 Pre. ToU F1 Pre. TIoU F1 Pre.

23 UNet 2015 24.71M | 8592 9239 91.78 7440 8532 8639 6848 8147 80.99
_§ Uniformer 2023 79.64M | 90.55 95.04 95.01 84.37 91.52 91.84 73.80 8492 87.60
2‘ FSAU-Net 2024 28.27M | 91.73 93.67 93.60 80.43 90.78 90.71 - - -

< UANet 2024 15.60M | 92.15 9591 9596 83.08 90.76 92.04 7641 86.63 §87.94
2 RSBuilding 2024 98.70M | 92.15 95.88 9593 82.68 90.52 91.40 - - -

:2 GLGFF-Net 2024 136.07M | 91.30 9545 9501 8494 91.85 91.59 7533 8593 85.03
S  SAM-PARSER,;,, 2024 3.96M 81.80 88.40 - - - - - - -

§ CAT-SAM 4oz 2024 1.90M 93.60 96.69* 96.70* 83.29* 90.64* 90.09* 80.75* 88.90* 89.38*
EI RSAM-Seg 2024 350.29M | 92.83* 96.22* 96.38* 84.24 83.37 83.90 80.16* 88.51* 89.30*
% DenseSAM (ours) 2.97TM \ 9523 9753 97.64 85.79 92.18 92.03 82.03 89.77 89.50

Table 2: Comparison with SOTA methods on remote sensing datasets. Bold indicates the best and underlined denotes the second-best. “-”

indicates missing data in original paper, while “*” denotes reproduced results. All values are in %.

SAM Our
decoder decoder - gpcal - Global - DH
Params| 3.63M 3.11M 048M 0.28M 0.14M
Dice 74.25 84.01 80.77 74.37 69.60
AJl 5756 71.62 66.84 5979 52.43
PQ 3930 66.12 6046 5575 23.67

Table 3: Ablation study on the CPM17 dataset. The SAM decoder
is retrained as the baseline. The proposed ESI module (including
local and global workflows) and Dual-Head (DH) are sequentially
removed to verify their effectiveness.

diverse cell segmentation domains. The proposed DenseSAM
demonstrated superior performance compared to expert mod-
els on the CoNIC.

Remote Sensing Semantic Segmentation. Table 2 shows
the comparison results on three remote sensing datasets.
UNet [Ronneberger et al., 2015] and Uniformer [Li et al.,
2023] are classic segmentation networks used in general do-
mains, and FSAU-Net [Hu et al., 2023], UANet [Li et al.,
2024], RSBuilding [Wang er al., 2024] and GLGFF-Net [Fu
et al., 2024] represent SOTA expert networks for building
extraction in recent years. Table 2 shows that DenseSAM,
which leverages SAM’s powerful capability while training
only 0.6% of its parameters, surpasses domain-specific mod-
els that require training a large number of parameters.

For SAM-based methods, SAM-PARSER [Peng er al.,
2024] and CAT-SAM [Xiao et al., 2024] require training a
small number of additional parameters but still relying on
manual location prompts. RSAM-Seg [Zhang er al., 2024a]
eliminates the need for location prompts but incurs significant
training costs. From Table 2, it can be observed that Dens-
eSAM surpasses these SAM-based methods without requir-
ing manual prompts or incurring significant training costs.

5.3 Qualitative Results

We visualized representative results of DenseSAM across
six datasets. Fig. 6 shown that DenseSAM can identify

Input Image GT DenseSAM

- Dual-Head

Figure 5: Visualization results of the ablation study on CPM17
dataset, with each module removed progressively.

most dense objects without location prompts, even for very
small areas, such as the small building in the Massachusetts.
However, the proposed method has limitations. In Fig. 6,
cases of poor performance, such as undifferentiated adhe-
sive cells, background misidentified as cells, and shadow-
obscured buildings, are highlighted with red circles.

5.4 Ablation Study

In this section, we conduct ablation studies on CPM17. By
sequentially removing each of the proposed modules, the ex-
perimental results clearly demonstrate their effectiveness. As
shown in Table 3, SAM exhibits strong object detection ca-
pabilities. However, even with full retraining, its decoder still
delivers subpar performance on instance segmentation met-
rics such as AJI and PQ. DenseSAM leverages SAM’s power-
ful edge detection and object-centric similarity capabilities to
achieve SOTA performance with minimal training cost. The
ablation visualization in Fig.5 further demonstrates the effec-
tiveness of the proposed modules. Red arrows indicate issues
caused by removing specific modules, including missed cell
detection and failure to separate adherent cells.
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Figure 6: Representative results of DenseSAM in MoNuSeg and Massachusetts Building datasets. The left three columns shows the GT and
prediction results for small objects, while the right three shows for large. Poor segmentation cases are highlighted with red circles.

Figure 7: Visualization of SAM encoder analysis results in both lo-
cal and global metrics for natural images (sampled from MSCOCO).

6 Limitations and Future Work

The proposed DenseSAM, while performing well across mul-
tiple datasets for automatic dense object segmentation, has
some limitations that warrant further exploration. Firstly,
DenseSAM relies on pixel-level annotated masks for super-
vised training. Given that homogeneous dense objects often
follow unified prior patterns, future research could investigate
the incorporation of domain-specific knowledge to mitigate
this dependency. Secondly, DenseSAM is limited to segment-
ing semantic masks for specific classes and does not handle
multi-class segmentation tasks. Future research could focus
on addressing this limitation.

Beyond specialized domains, the pattern analysis and po-
tential applications of SAM in natural images are worth ex-
ploring. The analysis results of MSCOCO [Lin et al., 2014]
samples are shown in Fig. 7. As shown, SAM demonstrates
strong edge detection ability in natural images, but object-
centric similarity patterns appear only in the densely packed
fruits in the fourth column. These characteristics highlight
the need for further investigation into maximizing SAM’s ca-
pabilities with minimal training costs.

7 Conclusion

In this paper, we present a novel, cost-effective, and efficient
solution for automatic dense object segmentation. Using the
introduced local and global metrics, we thoroughly analyzed
SAM’s mechanism and discovered that its strong generaliza-
tion ability stems from its precise edge detection capabilities.
Moreover, SAM exhibits robust object-centric feature simi-
larity in dense scenes, both of which are independent of object
semantics. This inspired us to replace positional cues with se-
mantic guidance for dense object segmentation, particularly
in scenarios involving numerous similar and homogeneous
objects. Therefore, we propose DenseSAM, which utilizes
the ESI module to effectively inject semantic information
into the decoding process, replacing the time-consuming and
labor-intensive manual location prompts. Through local and
global workflows, the ESI module effectively distinguishes
between foreground and background objects. Equipped with
a dual-head structure, DenseSAM enhances the differentia-
tion of overlapping object edges, enabling lightweight and au-
tomatic instance segmentation. Extensive experiments across
six datasets for pathology and remote sensing image analysis
demonstrate that DenseSAM achieves state-of-the-art perfor-
mance in both semantic segmentation and instance segmenta-
tion metrics, with only ~3M trainable parameters, making it
an economical and practical tool for dense object segmenta-
tion. In future research, it is anticipated that the in-depth ex-
ploration of the SAM mechanism and the efficient, low-cost
semantic injection method in DenseSAM will inspire more
innovative ideas.
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