
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Continuous Diffusive Prediction Network for Multi-Station Weather Prediction
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Abstract
Multi-station weather prediction provides weather
forecasts for specific geographical locations, play-
ing an important role in various aspects of daily
life. Existing methods consider the relationships
between individual stations discretely, making it
difficult to model the continuous spatiotemporal
processes of atmospheric motion, which results
in suboptimal prediction outcomes. This paper
proposes the Continuous Diffusive Prediction Net-
work (CDPNet) to model the real-world contin-
uous weather change process from discrete sta-
tion observation data. CDPNet consists of two
core modules: the Continuous Calibrated Initial-
ization (CCI) and the Diffusive Difference Esti-
mation (DDE). The CCI module interpolates data
between observation stations to construct a spa-
tially continuous physical field and ensures tempo-
ral continuity by integrating directional information
from a global perspective. It accurately represents
the current physical state and provides a founda-
tion for future weather prediction. Moreover, the
DDE module explicitly captures the spatial diffu-
sion process and estimates the diffusive differences
between consecutive time steps, effectively model-
ing spatio-temporally continuous atmospheric mo-
tion. Likewise, directional information on weather
changes is introduced from the entire historical
series to mitigate estimation uncertainty and im-
prove the performance of weather prediction. Ex-
tensive experiments on the Weather2K and Global
Wind/Temp datasets demonstrate that CDPNet out-
performs state-of-the-art models.

1 Introduction
Weather prediction plays a vital role in our life by provid-
ing crucial information for disaster preparedness [Mao et al.,
2024], agricultural planning [Tabar et al., 2022], transporta-
tion safety [Zheng et al., 2023], energy management [Sale-
hizadeh et al., 2024], and environmental protection [Bhat-
tacharyya et al., 2022], etc. Multi-station weather prediction

∗Corresponding Author

incorporates spatial correlations across regional stations, pro-
viding enhanced forecasting accuracy and regional flexibility,
making it an important focus in modern meteorological re-
search [Wu et al., 2023]. Traditional multi-station weather
prediction typically relies on Numerical Weather Predic-
tion (NWP) methods [Bauer et al., 2015; Yan et al., 2023;
Wu et al., 2024], which use mathematical models to simu-
late atmospheric processes based on fundamental principles
of physics and fluid dynamics. While NWP methods can pro-
duce regularly updated forecasts by solving complex equa-
tions, they require substantial computational resources and
are constrained by the quality and coverage of observational
data. In recent years, deep learning based weather prediction
methods [Lin et al., 2022; Ma et al., 2023; Han et al., 2023;
Chen et al., 2024; Bi et al., 2023; Kochkov et al., 2024] have
demonstrated significant potential and advantages, due to
their exceptional ability to uncover patterns from large-scale,
high-dimensional, and even irregular observational data.

Existing deep learning based multi-station weather predic-
tion methods can be divided into two categories, including
time series prediction and spatio-temporal prediction. Time-
series prediction considers weather stations individually and
focuses on analyzing the temporal dependence of meteoro-
logical variables within a single station [Zhou et al., 2021;
Wu et al., 2021; Zhou et al., 2024; Wang et al., 2024b].
Zhou et al. [Zhou et al., 2022] proposed fourier enhanced
blocks and wavelet enhanced blocks to capture temporal re-
lationships through frequency domain mapping. Liu et al.
[Liu et al., 2024] used fourier filtering to separate the time-
variant and time-invariant components from complex non-
stationary series and designed a Koopman predictor to ad-
vance respective dynamics forward. Spatio-temporal predic-
tion considers multiple weather stations simultaneously and
focuses on analyzing the spatial correlation between the sta-
tions [Lin et al., 2022; Wu et al., 2023; Xu et al., 2024;
Feng et al., 2024]. Wu et al. [Wu et al., 2023] con-
structed a tree-based multiscale structure that considers cross-
correlation between stations. Lin et al. [Lin et al., 2022] con-
structed graph neural networks that consider conditional local
convolutional modeling of correlation between stations. Xu
et al. [Xu et al., 2024] proposed a physics-guided dynamic
graph neural network, which inserts the superposition princi-
ple to capture the climate pattern.

Although previous studies achieved promising perfor-
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Figure 1: Comparison of the proposed method with existing work.

mance, they failed to accurately model the continuous phys-
ical process of atmospheric motion, leading to sub-optimal
performance in weather forecasting. Since real world atmo-
spheric motion is a complex physical process that is both spa-
tially and temporally continuous, relying solely on the rela-
tions among discrete stations inevitably results in informa-
tion loss [He et al., 2020]. Several works [Chen et al., 2018;
Schirmer et al., 2022; Wang et al., 2024a; Gravina et al.,
2024] also adopt the neural ordinary differential equations
(ODE) methods to simulate the temporal continuity, over-
looking the spatial continuity of atmospheric diffusion. In
fact, modeling the spatial and temporal continuity of atmo-
spheric processes is essential in weather prediction. Specifi-
cally, as shown in Figure 1, for one thing, the continuity could
accurately characterize the physical states of observation sta-
tions at the current time step, resulting in a more precise ini-
tial physical field. For another, it enhances the model’s abil-
ity to capture the physical motion of the atmosphere, thereby
improving the accuracy of weather predictions for the subse-
quent time step. However, inferring the missing continuity is
challenging without densely spaced observations.

To address the above challenges, this paper introduces the
Continuous Diffusive Prediction Network (CDPNet), which
models atmospheric motion continuity from both spatial and
temporal perspectives. The proposed model contains a Con-
tinuous Calibrated Initialization (CCI) module and a Diffu-
sive Difference Estimation (DDE) module, respectively rep-
resenting the continuous initial physical field and the evolv-
ing atmospheric process. Specifically, the CCI module begins
by interpolating data between observation stations to create
a coarse spatially continuous physical field. It then refines
this field by incorporating densely predicted results from the
previous time step and the global directional information of
the overall trend. The previous time step’s predictions en-
hance the temporal dependence, while the directional infor-
mation ensures the continuity from a global perspective. Af-
ter the precise continuous representation, the DDE module
explicitly models the spatial diffusion process and estimates
the diffusive difference between the current time step and the
subsequent one. This approach, simulating the atmospheric

motion process, effectively captures motion continuity both
spatially and temporally, and reflects the variations at individ-
ual stations across time steps. Similarly, we also incorporate
the directional information on weather changes from the en-
tire historical sequence to mitigate the estimation uncertainty,
thereby further constraining the temporal continuity and en-
hancing the weather prediction performance. Extensive ex-
periments show that the proposed model outperforms exist-
ing state-of-the-art approaches on the Weather2K and Global
Wind/Temp datasets. Especially on the Weather2K dataset,
the proposed model can bring at least a 4.48% improvement
in Mean Absolute Error (MAE) compared to other models.

In summary, the main contributions of this paper are as
follows:

• We propose the CDPNet, which models the real-world
continuous weather change process from discrete station
observation data, enhancing the accuracy of weather pre-
diction.

• We propose the CCI module to construct the initial phys-
ical field through spatial interpolation and directional in-
formation calibration. It accurately represents the cur-
rent physical state and provides a foundation for future
weather prediction.

• We propose the DDE module to explicitly model contin-
uous atmospheric motion through spatial diffusion pro-
cess and directional information correction. It infers the
evolution of the physical field and accurately predicts the
weather at the next time step.

• Extensive experiments show that the proposed model
significantly outperforms existing state-of-the-art mod-
els. Especially on the Weather2K dataset, the proposed
CDPNet can bring at least a 4.48% improvement in
MAE compared to other models.

2 Methodology
Previous studies fail to accurately model the continuous phys-
ical process of atmospheric motion, resulting in unsatisfac-
tory weather prediction results. Therefore, we propose a
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Figure 2: The network architecture details of CDPNet.

weather prediction model called the Continuous Diffusive
Prediction Network (CDPNet) with a Continuous Calibrated
Initialization (CCI) module and a Diffusive Difference Esti-
mation (DDE) module.

2.1 Overall Architecture
Given the historical observations X1:L =
{x1,x2, · · · ,xL} ∈ RN×L×C (including N weather
stations, C weather variables such as temperature and wind
speed over the past L time steps) and auxiliary variables
Xaux (including station coordinates and time information),
the goal of multi-station weather prediction is to forecast the
weather conditions for the future P time steps,

{x̂L+1, x̂L+2, · · · , x̂L+P } = F({x1,x2, · · · ,xL}), (1)
where F is the mapping function to be learned, and
X̂L+1:L+P = {x̂L+1, x̂L+2, · · · , x̂L+P } ∈ RN×P×C rep-
resents the predicted future weather conditions.

We propose the CDPNet which takes into account the con-
tinuous physical process of atmospheric motion to realize
multi-station weather prediction. The network structure of
CDPNet is based on Recurrent Neural Networks (RNN). For
each time step t, the observation xt is input to the CDPNet to
predict the weather x̂t+1 at the next time step t + 1, and this
process can be expressed as x̂t+1 = FCDPNet(xt). Specifi-
cally, CDPNet contains two key modules: the CCI module
FCCI and the DDE module FDDE. The CCI module is used
to construct a continuous initial physical field zt, while the
DDE module models the spatial diffusion process of atmo-
spheric motion to predict the physical field ht+1 at the next
time step. After obtaining the predicted physical field at the
moment t+ 1, we can map the physical field back to the sta-
tion weather results x̂t+1 by a convolutional decoder D. This
process can be described as

x̂t+1 = FCDPNet (xt) = D

(
FDDE

(
FCCI (xt)︸ ︷︷ ︸

zt

)
︸ ︷︷ ︸

ht+1

)
. (2)

The network architecture details of CDPNet is illustrated in
Figure 2.

2.2 Continuous Calibrated Initialization (CCI)
Module

Constructing an accurate continuous initialization of phys-
ical fields is challenging due to the sparse distribution of
weather stations across large geographic areas. Therefore, the
proposed Continuous Calibration Initialization module first
coarsely models the continuous physical fields through the In-
verse Distance Weighted (IDW) interpolation method [Shep-
ard, 1968], and then calibrates the coarse representation by
using the predicted physical field from the previous time step
as well as the weather evolution direction information from
the entire observational sequence.

Specifically, to model the spatial relations among sparse
weather stations, we first project these stations onto a two-
dimensional grid representation based on their physical loca-
tions. Therefore, each grid could indicate the physical co-
ordinates of a weather station, and display its observational
data. For locations without actual weather stations, we use the
widely-used IDW interpolation method to estimate the poten-
tial weather variable values. This process yields a coarse spa-
tial continuous initialization of physical field st ∈ RH×W×C ,
where H and W are hyperparameters representing the dimen-
sions of the physical field.

Distance-based interpolation of observational data cannot
capture the spatial and temporal complexity of the weather
systems. Therefore, we deploy the classical Kalman filter
Kt to calibrate the coarse interpolation results. The Kalman
filter is traditionally used for estimating the state of a lin-
ear dynamic system from a series of noisy measurements.
It typically assumes that the system dynamics and measure-
ment noise are both Gaussian and linear, though variations of
the Kalman filter are used to handle non-linear systems. In
this paper, we adopt a learnable convolution to approximate
the non-linear Kalman filter, and consider both the predicted
physical information ht derived from the previous time step
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and the current direction information et extracted from the
entire history sequence as the measurements. Incorporating
ht and et, rt could reflect the predicted continuous physical
states of the current weather stations, and thus help capture
the uncertainty related to the coarse interpolation. The learn-
able Kalman filter determines the weight given to rt in up-
dating the coarse interpolation results. The calibrated process
can be formulated as:

zt = st +Kt ⊙ (rt − st) , Kt = σ (fconv (st||rt)) , (3)

rt = tanh (wh ∗ ht +we ∗ et + b) , (4)
where || indicates the concatenate operation, σ, tanh are the
sigmoid and hyperbolic tangent activation function, and fconv
is the convolutional layer. wh, we and b are learnable pa-
rameters, to incorporate the predicted physical information
ht and the direction information et.

The predicted physical field ht is derived from previous
observational data xt−1, encompassing both predicted spatial
and temporal continuity for current observations,

ht = FDDE(zt−1). (5)

Incorporating ht also helps optimize the entire weather
prediction model to generate accurate weather forecasting,
thereby offering an informative representation for each time
step.

For the direction information et, we adopt a multi-layer
perceptron fMLP to capture the direction of the weather
change at each moment from the entire historical sequence
X1:L to constrain the temporal continuity:

et = fMLP (X1:L||Xaux
1:L) , (6)

where the auxiliary features Xaux can also be combined with
historical observations, such as the latitude and longitude
coordinates of the station and the time at each time step.
We replicate Xaux to match the dimensions of the multi-
station historical observations X1:L ∈ RN×L×C to obtain
Xaux

1:L ∈ RN×L×C .
Through the coarse spatial interpolation and the learnable

Kalman calibration, the CCI module extracts comprehen-
sive information from the observational data and constructs
a spatio-temporally continuous initial physical field, which
enhances the representation of current physical states and im-
proves future weather predictions.

2.3 Diffusive Difference Estimation (DDE) Module
Accurately modeling the temporal evolution of the continu-
ous physical field is highly challenging due to the differences
in atmospheric motion across regions. To address this, the
proposed DDE module predicts atmospheric motion direc-
tions at various locations and explicitly models the continu-
ous spatial diffusion process, thereby enabling effective fore-
casting of future weather changes.

The constructed initial physical field takes into account the
dense prediction results of the previous time step as well as
the global directional information of the overall trend. There-
fore, we can estimate the future atmospheric motion from the
initial physical field. Specifically, we utilize a small convolu-
tional neural network M to estimate the displacement [ui, uj ]

Algorithm 1 CDPNet training process
Require: Training dataset T ;
1: while not converged do
2: Sample batch of sequences {X1:L,XL+1:L+P } ∼ T
3: Computing directional information from a global perspective

{eL+1, eL+2, · · · , eL+P } = fMLP (cat [X1:L;X
aux
1:L ])

4: for t ∈ [1, L+ P ] do
5: // CCI Module
6: Spatial interpolation st = IDW (xt)
7: Construct the refined physical field rt =

tanh (wh ∗ ht +we ∗ et + b)
8: Kalman calibration zt = st +Kt ⊙ (rt − st)
9: // DDE Module

10: Motion estimation ut = M (zt)
11: Calculating diffusive difference ∆h = z′t − zt
12: Predict the physical field for the next time step ht+1 =

zt + G (et+1)⊙∆h
13: // Decoding module
14: Decoding prediction results x̂t+1 = D(ĥt+1)
15: end for
16: Update the model parameters based on the loss function L =

∥X1:L − X̂1:L∥+ ∥XL+1:L+P − X̂L+1:L+P ∥
17: end while

of the atmospheric motion at any position [pi, pj ] in continu-
ous space from the initial physical field zt. This process can
be expressed as [ui, uj ] = M(zt[pi, pj ]).

Based on the estimation of atmospheric motion, the spa-
tial diffusion process between different geographical loca-
tions can be modeled. The diffusive difference ∆h can be
expressed as:

∆h = z′t − zt, (7)
z′t[pi, pj ] = zt [pi − ui, pj − uj ] , (8)

where z′t denotes the diffused physical field. We consider the
impact of atmospheric motion. For each geographical loca-
tion [pi, pj ] in the diffused physical field z′t, it is obtained by
diffusing the initial physical field features zt from the loca-
tion [pi−ui, pj −uj ]. The atmospheric motion displacement
ui, uj are obtained from the motion estimation network M
described above.

However, the diffusion process of a single time step is dif-
ficult to ensure the continuity of the weather change from a
global perspective. Therefore, we consider inferring the di-
rection information of the weather change at the current mo-
ment from the whole historical weather series to correct the
diffusion difference. The complete diffusive difference esti-
mation process can be written in the following form:

ht+1 = zt + G (et+1)⊙∆h, (9)

where ht+1 is the physical field at time step t + 1 estimated
from the initial physical field zt. The G (·) is a simple convo-
lutional network, and the direction information et+1 is com-
puted in the same way as in Eq. (6).

Therefore, the DDE module considers the atmospheric mo-
tion and explicitly simulates the spatial diffusion process,
while the weather change direction information extracted
based on the whole historical sequence is used to constrain
the time continuity and improve the weather prediction per-
formance.
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Methods Air Temperature Relative Humidity Wind Speed Air Pressure Avg.
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Autoformer 1.7205 2.3498 9.6201 12.8131 0.9705 1.3365 1.4546 2.0618 3.4414 4.6403
FEDformer 1.6015 2.2255 8.1413 11.3160 0.9095 1.2782 1.1972 1.7509 2.9624 4.1427
ASTGCN 2.6942 3.6386 12.0332 15.9847 1.0130 1.4293 2.7041 3.6992 4.6111 6.1879
MSTGCN 3.6827 4.9195 14.4780 18.7188 0.9979 1.4102 2.8912 3.6243 5.5124 7.1682
DCRNN 5.0457 6.4070 16.3467 21.2517 0.8757 1.2514 1.9716 2.8879 6.0599 7.9495
GCGRU 1.8823 2.7491 7.7008 10.9422 0.8738 1.2424 1.8463 2.6466 3.0758 4.3951

Corrformer 1.8269 2.4493 9.0081 12.3344 0.9391 1.3226 2.1183 2.6525 3.4731 4.6897
EasyST 2.1142 2.7935 8.9515 12.0980 0.8672 1.2052 1.9149 2.5392 3.4620 4.6590

PhyDNet 1.6186 2.1265 7.8897 10.4605 0.9186 1.2883 1.8719 2.5740 3.0747 4.1123
NowcastNet 1.4544 1.9263 7.4994 10.0036 0.8868 1.2777 1.6216 2.2074 2.8656 3.8538

CDPNet (Ours) 1.3927 1.8576 7.2596 9.7500 0.8713 1.2334 1.4251 1.9771 2.7372 3.7045

Table 1: Performance comparison on the Weather2k dataset.

Factors Metrics Autoformer FEDformer DCRNN Corrformer EasyST PhyDNet NowcastNet CDPNet (Ours)

Wind MSE 4.687 4.750 3.475 3.889 4.769 3.552 3.607 3.538
MAE 1.465 1.503 1.282 1.304 1.513 1.301 1.314 1.281

Temp MSE 10.142 11.054 8.401 7.709 9.177 7.234 7.495 6.949
MAE 2.250 2.405 1.941 1.888 2.213 1.895 1.931 1.843

Avg. MSE 7.415 7.902 5.938 5.799 6.973 5.393 5.551 5.244
MAE 1.858 1.954 1.612 1.596 1.863 1.598 1.623 1.562

Table 2: Performance comparison on the Global Wind/Temp dataset.

2.4 Optimization
The overall training flow is shown in Algorithm 1, and we use
an iterative generation approach to predict the weather at the
next time step based on the information at the current time
step, which is consistent with the RNN architecture. Specif-
ically, for historical moments, we reconstruct the entire his-
torical sequence X1:L, this is to ensure that the evolution of
the weather field is consistent with the variation of the real
weather. For future moments, the model generates the final
result X̂L+1:L+P .

The optimization objective during training is two-fold: to
minimize the reconstruction error of the historical sequence
and the prediction error of the future sequence. This is for-
malized as follows:

L = ∥X1:L − X̂1:L∥+ ∥XL+1:L+P − X̂L+1:L+P ∥, (10)

where both parts of the loss are optimized using l1 loss.

3 Experiments
In this section, extensive experiments were conducted to val-
idate the effectiveness of the proposed CDPNet.

3.1 Experimental Settings
Data description
In this paper, experiments are carried out on two real datasets,
including the Weather2K dataset [Zhu et al., 2023] and the
Global Wind/Temp dataset [Wu et al., 2023].

Weather2K: It covers 31 provinces in China and contains
1,866 ground weather stations. The time scale is from Jan-
uary 1, 2017 to December 31, 2019. Based on meteorolog-
ical consideration, 20 important near-surface meteorological
factors and 3 time-invariant constants for position informa-
tion are provided in the Weather2K. Like the setup in other

papers, the data for training, validation, and testing are all
one-year time. The task is set to predict 12 hours in the future
based on the past 12 hours, where the input length is 12 steps
and the prediction length is 12 steps.

Global Wind/Temp: It is from the National Centers for
Environmental Information. This dataset contains the hourly
averaged wind speed and hourly temperature of 3,850 sta-
tions around the world from January 1, 2019 to December
31, 2020. Like the setup in other papers, we split the dataset
into training, validation, and test sets in chronological order
by a ratio of 7:1:2. The task is set to predict one day in the
future based on the past 2 days, where the input length is 48
steps and the prediction length is 24 steps.

Implementation details

Our model is implemented using PyTorch 2.1.0 and trained
on an NVIDIA GeForce RTX 2080 Ti GPU. We employ the
Adam optimizer with a batch size of 1 to accommodate the
large number of stations in our dataset. The training process
consists of two distinct phases: first, we initialize the direc-
tion information by training for one epoch with a learning
rate of 0.001, followed by training the entire network with a
reduced learning rate of 0.00001. The model undergoes train-
ing for up to 100 epochs, with an early stopping mechanism
implemented to prevent overfitting. The implementation code
is publicly available at https://github.com/ChujieXu/CDPNet.

Evaluation metrics

We measure our model and other methods by three com-
mon deviation-based evaluation metrics: Mean Squared Er-
ror (MSE), Mean Absolute Error (MAE), and Root Mean
Squared Error (RMSE).
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Air Temperature Relative Humidity Wind Speed Air Pressure Avg.
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Baseline 3.5391 4.5073 12.4065 15.4771 1.1013 1.5426 4.8061 6.2843 5.4633 6.9528
+ CCI Module 1.4793 1.9506 7.8748 10.3929 0.8956 1.3515 1.5663 2.1602 2.9540 3.9638
+ DDE Module 1.4635 1.9324 7.6587 10.1423 0.8751 1.2768 1.3796 1.9397 2.8442 3.8228
CDPNet (Ours) 1.3927 1.8576 7.2596 9.7500 0.8713 1.2334 1.4251 1.9771 2.7372 3.7045

Table 3: Ablation study on the Weather2K dataset.

Figure 3: Comparison of errors as the prediction length increases.

Figure 4: Sensitivity experiment of physical field size. (‘Temp.’ de-
notes air temperature, ‘Hum.’ denotes relative humidity, ‘Wind.’
denotes wind speed, and ‘Press.’ denotes air pressure.)

3.2 Performance Comparison
To comprehensively demonstrate the effectiveness of the pro-
posed CDPNet model, we compared it with various predic-
tion models based on different motivations, which can be
roughly classified into two categories: time series predic-
tion models, such as Autoformer [Wu et al., 2021] and FED-
former [Zhou et al., 2022], focusing on the time dependence
of meteorological variables at individual stations; and spatio-
temporal predictive models, such as ASTGCN [Guo et al.,
2019], MSTGCN [Guo et al., 2019], DCRNN [Li et al.,
2018], GCGRU [Seo et al., 2018], Corrformer [Wu et al.,
2023] and EasyST [Tang et al., 2024], which focus on spatial
correlations between multiple stations. Additionally, we con-
sidered other methods incorporating physical information,
such as PhyDNet [Guen and Thome, 2020] and NowcastNet
[Zhang et al., 2023]. Based on the proposed CDPNet, we
compared the key physical modules of these methods with

our proposed DDE module.
As can be seen from Table 1, our model outperforms other

comparison methods using both MAE and RMSE metrics
on the Weather2K dataset, which indicates the superiority of
CDPNet. For the four most common meteorological variables
of air temperature, relative humidity, wind speed, and air
pressure, CDPNet obtained an average MAE of 2.7372 and
an average RMSE of 3.7045, which are 4.48% and 3.87% im-
provement compared to the suboptimal method, respectively.
As shown in Table 2, we similarly validated on the Global
Wind/Temp dataset with a wider range and a larger number
of stations. From Table 2, we can see the performance gain
is also evident, demonstrating the practicability of our model.
For the two variables of temperature and wind speed, CDP-
Net obtained an average MSE of 5.244 and an average MAE
of 1.562, which obtained the best performance.

Besides the overall performance evaluation, we also
compared the prediction errors across different forecasting
lengths, as shown in Figure 3. The prediction errors of
the proposed CDPNet consistently remain lower than that of
NowcastNet. On the other hand, Corrformer achieves higher
accuracy in the short term but experiences a sharp decline in
performance as the forecasting length increases. This indi-
cates that the proposed CDPNet is better at capturing long-
term weather trends.

3.3 Ablation Study
In this section, we conduct ablation studies to analyze the
effectiveness of the designed components in the proposed
model. Table 3 outlines the findings of the baseline model,
baseline model with the proposed CCI module, baseline
model with the proposed DDE module, and baseline model
with CCI module and DDE module (our CDPNet). The base-
line model with CCI module means that this approach does
not perform complex diffusive difference estimation. Instead,
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Figure 5: Visualization of local area weather change prediction. (Taking the temperature variation in the region between 33°–43°N and
110°–125°E on November 24, 2019, as an example.)

it uses a simple convolutional network to map the constructed
initial physical field to future time steps for prediction. The
baseline model with DDE module means that instead of per-
forming continuous calibrated initialization, it employs sim-
ple reshaping and convolution operations to transform dis-
crete stations into a two-dimensional space. As shown in
Table 3, CCI module helps real-world modeling to predict
weather conditions due to its ability to construct a continu-
ous initial physical field. The MAE decreases from 5.4633
to 2.9540, and the RMSE decreases from 6.9528 to 3.9638.
After adding the DDE module to estimate the atmospheric
motion considering the weather evolution, a more significant
performance improvement is observed. The MAE of the pro-
posed model decreases from 5.4633 to 2.8442 and the RMSE
decreases from 6.9528 to 3.8228. When both CCI module and
DDE module are applied to the baseline model, the model
structure is the same as the proposed CDPNet model. The
model achieves an optimal MAE of 2.7372, as well as an op-
timal RMSE of 3.7045. All these results indicate that each
component of our model contributes significantly to the final
CDPNet model, resulting in the best performance.

3.4 Parameter Sensitivity

The core of the proposed CDPNet method lies in the ini-
tialization and diffusion of the physical field. Therefore, we
conducted experiments to explore the impact of the physical
field size on prediction performance. As shown in Figure 4,
we compared the effects of the physical field sizes of 48×48,
64×64, and 80×80 on the final prediction performance. The
experiments revealed that the size of the physical field had lit-
tle overall impact on the results. This is because the physical
field features already exhibit strong spatio-temporal continu-
ity, and changes in resolution have a limited effect on extract-
ing key information. Even at lower resolutions, the primary
physical trends can still be captured effectively.

3.5 Visual Analysis
To validate the effectiveness of the proposed CDPNet
method, we visualize the prediction results in a local area of
northern China. As shown in Figure 5, a comparison is pre-
sented between the temperature predictions of CDPNet (our
model) and Corrformer (comparison method) with the ground
truth for the next 3, 6, 9, and 12 hours. Each row represents a
different model, and each column corresponds to the predic-
tions at different times. Redder colors indicate higher temper-
atures, with the color bar on the right displaying the tempera-
ture range. Additionally, there are error maps below the pre-
dictions of CDPNet and Corrformer, where color intensity re-
flects the prediction error, allowing for a visual comparison of
each model’s accuracy at different times. The figure reveals
that CDPNet has smaller errors in temperature predictions for
the next 3, 6, 9, and 12 hours, with wider low-error regions. In
contrast, Corrformer has larger errors, particularly at 9 and 12
hours. This indicates that CDPNet, through continuous mod-
eling, effectively captures the spatiotemporal dependencies of
temperature variations, enabling it to more accurately reflect
the dynamic temperature changes, thus achieving higher pre-
diction accuracy across different periods.

4 Conclusion
In this paper, the CDPNet is proposed to improve the ac-
curacy of multi-station weather prediction by capturing the
continuity of atmospheric motions in both space and time.
CDPNet simulates the initial physical field and the atmo-
spheric diffusion process of the weather station through the
CCI module and the DDE module. Experimental results show
that CDPNet can effectively capture the continuity of atmo-
spheric motion in space and time, and outperforms previous
deep learning methods on multiple datasets. In particular, on
the Weather2K dataset, CDPNet demonstrates a significant
advantage in terms of MAE.
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et al. Neural general circulation models for weather and
climate. Nature, pages 1–7, 2024.

[Li et al., 2018] Yaguang Li, Rose Yu, Cyrus Shahabi, and
Yan Liu. Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. In International
Conference on Learning Representations, 2018.

[Lin et al., 2022] Haitao Lin, Zhangyang Gao, Yongjie Xu,
Lirong Wu, Ling Li, and Stan Z Li. Conditional local
convolution for spatio-temporal meteorological forecast-
ing. In Proceedings of the AAAI conference on artificial
intelligence, volume 36, pages 7470–7478, 2022.

[Liu et al., 2024] Yong Liu, Chenyu Li, Jianmin Wang, and
Mingsheng Long. Koopa: Learning non-stationary time
series dynamics with koopman predictors. Advances in
Neural Information Processing Systems, 36, 2024.

[Ma et al., 2023] Minbo Ma, Peng Xie, Fei Teng, Bin Wang,
Shenggong Ji, Junbo Zhang, and Tianrui Li. Histgnn:
Hierarchical spatio-temporal graph neural network for
weather forecasting. Information Sciences, 648:119580,
2023.

[Mao et al., 2024] Rui Mao, Qika Lin, Qiawen Liu, Gian-
marco Mengaldo, and Erik Cambria. Understanding pub-
lic perception towards weather disasters through the lens
of metaphor. In Proceedings of the thirty-third interna-
tional joint conference on artificial intelligence, 2024.

[Salehizadeh et al., 2024] Mohammad Reza Sale-
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