
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Beyond the Known: Decision Making with Counterfactual Reasoning Decision
Transformer

Minh Hoang Nguyen1 , Linh Le Pham Van1 , Thommen George Karimpanal2 , Sunil
Gupta1 and Hung Le1

1Applied AI Initiative, Deakin University, Australia
2School of IT, Deakin University, Australia

{s223669184, l.le, thommen.karimpanalgeorge, sunil.gupta, thai.le}@deakin.edu.au

Abstract
Decision Transformers (DT) play a crucial role in
modern reinforcement learning, leveraging offline
datasets to achieve impressive results across vari-
ous domains. However, DT requires high-quality,
comprehensive data to perform optimally. In real-
world applications, the lack of training data and
the scarcity of optimal behaviours make training
on offline datasets challenging, as suboptimal data
can hinder performance. To address this, we pro-
pose the Counterfactual Reasoning Decision Trans-
former (CRDT), a novel framework inspired by
counterfactual reasoning. CRDT enhances DT’s
ability to reason beyond known data by generating
and utilizing counterfactual experiences, enabling
improved decision-making in unseen scenarios.
Experiments across Atari and D4RL benchmarks,
including scenarios with limited data and altered
dynamics, demonstrate that CRDT outperforms
conventional DT approaches. Additionally, reason-
ing counterfactually allows the DT agent to obtain
stitching abilities, combining suboptimal trajecto-
ries, without architectural modifications. These re-
sults highlight the potential of counterfactual rea-
soning to enhance reinforcement learning agents’
performance and generalization capabilities.

1 Introduction
In the pursuit of achieving artificial general intelligence
(AGI), reinforcement learning (RL) has been a widely
adopted approach. Conventional RL methods have shown
impressive success in training AI agents to perform tasks
across various domains, such as gaming [Silver et al., 2017]
and robotics [van Hoof et al., 2015; Le Pham Van et al.,
2024]. When referring to conventional RL approaches, we
mean methods that train agents to discover an optimal policy
that maximizes returns, either through value function estima-
tion or policy gradient derivation [Sutton and Barto, 2018].
However, recent advances, such as Decision Transformers
(DT) [Chen et al., 2021], introduce a paradigm shift by lever-
aging supervised learning (SL) on offline RL datasets, of-
fering a more practical and scalable alternative to the online

learning traditionally required in RL. This shift highlights the
growing importance of SL on offline RL, which can be effi-
cient in environments where data collection is expensive and
impractical [Chen et al., 2021].

In its original form, the DT agent is trained to maximize the
likelihood of actions conditioned on past experiences [Chen
et al., 2021]. Numerous follow-up studies have tried to im-
prove DT, such as through online fine-tuning [Zheng et al.,
2022], pre-training [Xie et al., 2023], or improving its stitch-
ing capabilities [Wu et al., 2023; Zhuang et al., 2024]. These
works have shown that DT techniques can match or even
outperform state-of-the-art conventional RL approaches on
certain tasks. However, these improvements focus solely
on maximizing the use of available data, raising the ques-
tion: What if the optimal data is underrepresented in the
given dataset? This scenario is illustrated in Fig. 1 of a toy
navigation environment, wherein the good (blue) trajectories
are underrepresented compared to the bad (green) trajecto-
ries. DT is expected to underperform in this environment be-
cause it simply maximizes the likelihood of the training data,
which can be problematic when optimal data is lacking. Ad-
ditionally, it lacks effective stitching capabilities—the ability
to combine suboptimal trajectories. This leads us to a key
question: Can we improve DT’s performance by enabling the
agent to reason about what lies beyond the known?

Our Counterfactual Reasoning Decision Transformer
(CRDT) approach is inspired by the potential outcome frame-
work, specifically, the ability to reason counterfactually [Ney-
man, 1923; Rubin, 1978]. The core idea behind CRDT is that
by reasoning about hypothetical—imagining better outcomes
that didn’t happen— the agent must evaluate how alternative
actions could have influenced outcomes. This process reveals
causal relationships between states, actions, and rewards, en-
hancing its understanding and improving generalization. This
mirrors how humans imagine alternative scenarios from past
experiences to inform better decisions in the future.

The CRDT framework has three key steps. The first step
involves training the agent to reason counterfactually. We in-
troduce two models: the Treatment model T and the Out-
come model O. The model T is trained to estimate the condi-
tional distribution of actions given the historical experiences,
i.e., the probability of selecting actions based on past tra-
jectories. This differs from the original DT, which directly
predicts the action itself rather than modeling the underly-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Counterfactual
Action Filtering

Counterfactual
Action Selection 

Learning to
Reason

Counterfactually

Step 1

Optimize
Decision Making

Step 3

(a) (c)

(b)

Counterfactual
Reasoning

Step 2

Figure 1: (a): A toy environment where the goal of the agent is to move from the green circle position to the red circle position given
that data is biased toward moving from bottom-left to top-right (green trajectory/diagonal line) over top-left to bottom-right (blue trajectory/
diagonal line). When using traditional DT, the agent will most likely follow the green trajectory and fail to reach the goal. (b): The empirical
result of the counterfactual reasoning process following CRDT on the toy environment, with the green and blue trajectories forming an
intersection. At the intersection, notice that turning right yields a higher potential outcome/return, CRDT generates counterfactual experience
accordingly. As shown by the bold yellow, blue, and green dots, none of the counterfactual experiences followed the green trajectory after the
crossing point; they all show a clear right turn. Training DT with these counterfactual experiences improved the overall performance (refer
to Sect. 5.1 for performance results). (c) Top: The CRDT framework follows three steps: first, learning to reason counterfactually with the
CRDT agent; second, perform counterfactual reasoning to generate counterfactual experiences; and third, use these experiences to improve
decision-making. Bottom: A single step in the iterative counterfactual reasoning process of a trajectory. The outcomes of one-step reasoning
are the counterfactual action ât, the next state ŝt+1 and returns-to-go ĝt+1 will replace the original values at, st+1, gt+1 and the generated
data will be used in next iteration.

ing distribution. The model O is trained to predict the fu-
ture state and return as outcomes of taking an action. Once
these two models are trained using the given offline dataset,
we proceed to the second step. We aim to utilize the action
selection probabilities and the inferred outcomes to generate
counterfactual experiences. Unlike prior approaches that gen-
erate counterfactual data simply by perturbing the actions or
states [Pitis et al., 2022; Sun et al., 2023; Zhao et al., 2024;
Sun et al., 2024] with small noise, we argue that an ac-
tion should be considered as counterfactual if only it has
a low probability of being selected. We employ a mecha-
nism known as Counterfactual Action Selection mechanism
to identify such actions. However, extreme counterfactual
actions may introduce excessive noise or lead to states that
are not beneficial for the agent’s learning. To mitigate this,
we implement a mechanism called Counterfactual Action Fil-
tering to eliminate irrelevant actions. The actions that pass
the filtering process will be used as inputs for the Outcome
model, which predicts the outcomes of these actions. In the
final step, we integrate these counterfactual experiences with
the offline dataset to train the underlying DT agent. Fig. 1(c)

provides an overview of our CRDT framework.1

Our experiments in continuous action space environments
(Locomotion, Ant, Maze2d benchmarks) and discrete action
space environments (Atari games), show that our framework
improves the performance of the underlying DT agent. An
interesting side effect of CRDT is that the DT agent acquires
the ”stitching” ability without requiring any modifications to
the underlying architecture. Thus, our key contributions are:

1. We propose the CRDT framework, a novel Decision
Transformer architecture that enables agents to reason
counterfactually, allowing them to explore alternative
outcomes and generalize to novel scenarios.

2. Through extensive experiments, we demonstrate that
CRDT consistently enhances the performance of the un-
derlying DT agent in standard, smaller datasets, and
modified environment settings that require robust gener-
alization. It also provides DT with the stitching ability.

1Source code: https://github.com/mhngu23/Beyond-the-Known-
Decision-Making-with-Counterfactual1-Reasoning-Decision-
Transformer

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

2 Related Work
2.1 Offline Reinforcement Learning and Sequence

Modeling
Offline RL [Levine et al., 2020] refers to the task of learn-
ing policies from a static dataset Denv of pre-collected tra-
jectories. Traditional methods used to solve offline RL can
be classified into model-free offline RL and model-based
RL approaches. Model-free methods aim to constrain the
learned policy close to the behaviour policy [Levine et al.,
2020], through techniques such as learning conservative Q-
values [Xie et al., 2021; Kostrikov et al., 2021a], applying un-
certainty quantification to the predicted Q-values [Agarwal et
al., 2020; Levine et al., 2020]. Model-based methods [Yu et
al., 2020; Kidambi et al., 2020], involve learning the dynamic
model of the environment, then, generating rollouts from the
model to optimize the policy. Our method is more aligned
with model-based, as we use a model to generate samples.
The difference is that we only sample low-distribution action.

Before DT, upside-down reinforcement learning [Schmid-
huber, 2019] applied supervised learning techniques to ad-
dress RL tasks. In 2021, Chen [2021] introduced DT and
the concept of incorporating returns into the sequential mod-
eling process to predict optimal actions. Inspired by both
DT, numerous methods have since been proposed to enhance
performance, focusing on areas such as architecture [Kim
et al., 2023], pretraining [Xie et al., 2023], online fine-
tuning [Zheng et al., 2022], dynamic programming [Yama-
gata et al., 2023], and trajectory stitching [Wu et al., 2023;
Zhuang et al., 2024]. To our knowledge, no work has inte-
grated counterfactual reasoning with DT.

2.2 Counterfactual Reasoning in Conventional
Reinforcement Learning

Several methods have explored the application of counterfac-
tual reasoning in RL [Pitis et al., 2020; Pitis et al., 2022;
Killian et al., 2022] and imitation learning (IL) [Sun et al.,
2023]. These methods are not directly comparable to CRDT
as they rely on a predefined or the learning of a structure
causal model (SCM) [Pearl and Mackenzie, 2018]. In con-
trast, our approach is rooted in the PO framework [Rubin,
1978; Robins and Hernan, 2008], which focuses on estimat-
ing the effects without the need for a specified SCM. Avoid-
ing learning the SCM reduces computational costs. Our ap-
proach aligns more closely with works that estimate coun-
terfactual outcomes for treatments in sequential data [Mel-
nychuk et al., 2022; Frauen et al., 2023; Wang et al., 2018;
Li et al., 2020]. The main contribution of our work lies in in-
tegrating these estimated outcomes to enhance the underlying
DT agent (refer to Appendix G for the relation of CRDT to
causal inference).

3 Preliminaries
3.1 Offline Reinforcement Learning and Decision

Transformer
We consider learning in a Markov decision process (MDP)
represented by the tuple (S,A, r, P, γ, ρ0), where S is the
state space, A is the action space, reward function r : S ×

A → R, γ is the discount factor, and the initial distribution
ρ0. At each timestep t, the agent observes a state st ∈ S,
takes an action at ∈ A and receives a reward rt = R(st, at).
The transition to the next state st+1 ∈ S follows the probabil-
ity transition function P (st+1 | st, at). The goal of reinforce-
ment learning is to find a policy π(a|s) that can maximize the
expected return Eπ,P,ρ0

[
∑∞

t=0 γ
tR(st, at)].

In offline RL, the agent is not allowed to inter-
act with the environment until test time [Levine et al.,
2020]. Instead, it is given a static dataset Denv =

{(s(i)0 , a
(i)
0 , r

(i)
0 , s

(i)
1 , . . . , s

(i)
t , a

(i)
t , r

(i)
t , . . . )}Ni=1, collected

from one or more behaviour policies πβ , to learn from. Gen-
erally, learning the optimal policy from a static dataset is chal-
lenging or even impossible [Kidambi et al., 2020]. Conse-
quently, the objective is to create algorithms that reduce sub-
optimality to the greatest extent possible.

DT [Chen et al., 2021] is a pioneering work that frames
RL as a sequential modeling problem. The authors intro-
duce a transformer-based agent, denoted as M with train-
able parameters δ, to tackle offline RL environments. While
substantial research has built upon this work (see Sect. 2
for a comprehensive review), DT, in its original form, ap-
plies minimal modifications to the underlying transformer ar-
chitecture [Vaswani et al., 2017]. Similar to traditional of-
fline RL approaches, the agent M in DT is given an offline
dataset Denv, which contains multiple trajectories. Each tra-
jectory consists of sequences of states, actions, and rewards.
However, rather than simply using past rewards from Denv
as input into M, the authors introduce returns-to-go, de-
noted as gt and computed as gt =

∑T
t′=t rt′ . The agent

M is fed this returns-to-go gt instead of the immediate re-
ward rt, allowing it to predict actions based on future desired
returns. In Chen [2021], a trajectory τ (i) is represented as:
τ (i) = (g

(i)
1 , s

(i)
1 , a

(i)
1 , . . . , g

(i)
T , s

(i)
T , a

(i)
T ). Agent M with pa-

rameter δ is trained on a next action prediction task. This
involves using the experience ht = (g1, s1, a1, ..., gt, st, at),
returns-to-go gt+1 and state st+1 as inputs and the next action
at+1 as output. This can be formalized as:

p(at+1 | ht, st+1, gt+1; δ) = M(ht, st+1, gt+1; δ), (1)

for discrete action space. And:

at+1 = M(ht, st+1, gt+1; δ), (2)

for continuous action space. This action prediction ability is
then utilized during the inference and evaluation phases on
downstream RL tasks. In addition to the aforementioned pro-
cess, the authors investigated the potential benefits of inte-
grating additional tasks to predict the next state and returns-
to-go into the agent’s training to enhance its understanding of
the environment’s structure, however, it was concluded that
such methods do not improve the agent’s performance [Chen
et al., 2021]. Further, they suggested that this “would be an
interesting study for future research” [Chen et al., 2021]. Our
method, while not explicitly incorporating such predictions,
demonstrates an alternative approach that can effectively use
these predictions to improve the agent’s performance.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

3.2 Potential Outcome and Counterfactual
Reasoning

Our work is inspired by the potential outcomes (PO) frame-
work [Neyman, 1923; Rubin, 1978] and its extension to
time-varying treatments and outcomes [Robins and Hernan,
2008]. The PO framework estimates causal effects by con-
sidering the outcomes for each variable under different treat-
ments [Robins and Hernan, 2008]. Counterfactual reason-
ing involves imagining what might have happened under al-
ternative conditions that did not occur [Pearl and Macken-
zie, 2018]. Under the potential outcome framework, at each
timestep t ∈ {1, ..., T}, we observe time-varying covari-
ates Xt, treatments At, and the outcomes Yt+1. The treat-
ment At influences the outcome Yt+1, and all Xt, At, and
Yt+1 affect future treatment. A history at timestep t is de-
noted as H̄t = {X̄t, Āt−1, Ȳt}, where X̄t = (X1, . . . , Xt),
Ȳt = (Y1, . . . , Yt), and Āt−1 = (A1, . . . , At−1). The
estimated potential outcome for a trajectory of treatment
āt = (at, ..., at+ξ−1) is expressed as E[Yt+ξ(āt:t+ξ−1) | H̄t]
where ξ ≥ 1 is the treatment horizon for ξ steps prediction.

Mapping to this paper, the time-varying covariates cor-
respond to the agent’s past observations and the returns-to-
go it has received. The treatment corresponds to the action
taken, and the outcome is the subsequent observation and re-
turns. A counterfactual treatment refers to an action ât the
agent could have taken but did not. For each timestep t, we
aim to estimate the outcome of counterfactual action ât or
E[ŝt+1, ĝt+1 | ĥt], where ŝt+1 and ĝt+1 denote the coun-
terfactual state and returns-to-go corresponding to taking ât.
ĥt is the new historical experience (g1, s1, a1, . . . , gt, st, ât),
given that we have taken an action ât that is different from
the original action at in Denv.

Our framework satisfies the three key assumptions—(1)
consistency, (2) sequential ignorability, and (3) sequential
overlap—ensuring the identifiability of counterfactual out-
comes from the factual observational data Denv. In the con-
text of reinforcement learning, the assumption of consistency
implies that for any given action at, the observed next state
st+1 and returns-to-go gt+1 accurately represent the true out-
come of the action. This assumption holds since Denv is col-
lected from behaviour policies πβ trained within the same
environment, ensuring that the data faithfully captures the
environment’s true dynamics. The assumption of sequential
overlap states that for any observed history ht, every action
at has a non-zero probability of being selected. If the be-
havior policy πβ used to collect the data explores a diverse
range of actions across different histories, this assumption is
likely to hold. Furthermore, sequential ignorability implies
that the history ht contains all relevant information that in-
fluences the agent’s actions and future outcomes. This as-
sumption rests on the premise that the dataset sufficiently
captures the key factors affecting the treatments and their re-
sulting outcomes. In prior works, these assumptions have
been used in both environments with discrete or continuous
treatments [Melnychuk et al., 2022; Bahadori et al., 2022;
Frauen et al., 2023].

Although CRDT is inspired by causal inference and coun-
terfactual reasoning, the method did not explicitly establish

a formal causal structure learning process, such as construct-
ing a causal graph or a Structural Causal Model (SCM) [Pearl
and Mackenzie, 2018]. The PO framework did not explicitly
require a causal graph [Pearl and Mackenzie, 2018]. The pro-
posed counterfactual reasoning process in CRDT also differs
from “Pearl-style counterfactual reasoning”, which requires
the inference of the posterior distribution of exogenous noise
variable and intervention on the parental variables. In CRDT,
we assume that the noise is implicit in the dynamic model.

4 Methodology
This section introduces the Counterfactual Reasoning Deci-
sion Transformer framework, our approach to empowering
the DT agent with counterfactual reasoning capability.2 The
framework follows three steps: first, we train the Treatment
and Outcome Networks to reason counterfactually; then, we
use these two networks to generate counterfactual experi-
ences and add these to a buffer Dcrdt; and finally, we train
the underlying agent with these new experiences.

4.1 Learning to Reason Counterfactually
As mentioned in Sect. 3.2, counterfactual reasoning involves
estimating how outcomes would differ under unobserved
treatments [Pearl and Mackenzie, 2018]. This process is of-
ten broken down into learning the selection probability of the
agent’s treatment and learning the outcomes of the treatments.
This means that we must be able to estimate the probability
of selecting actions at, at timestep t, given historical experi-
ences ht−1 = (g1, s1, a1, . . . , gt−1, st−1, at−1), the current
outcome state st, and returns-to-go gt. Knowing the distribu-
tion enables exploration of counterfactual actions ât (actions
with low selection probability). By using these counterfactual
actions as new treatment, we can estimate their correspond-
ing counterfactual outcomes, the next state ŝt+1 and the next
returns-to-go ĝt+1. To address these steps, we introduce two
separate transformer models: the Treatment model (T ) and
the Outcome model (O). The model T , parameterized by θ,
learns the probability of selecting treatments (i.e., the agent’s
action). The model O, with parameters η, estimates the out-
comes of actions. Together, these models enable the agent to
reason counterfactually, by learning the probability of select-
ing actions and the potential outcomes of unchosen actions.

Treatment Model Training. We want to use the model T
to estimate the probability of selecting a specific action. In
discrete action space environment, this can be formalized as:

p(at | ht−1, st, gt; θ) = T (ht−1, st, gt; θ). (3)

The model can be trained using a cross-entropy (CE) loss:

LT (θ) = − 1

N

N∑
i=1

a
∗(i)
t log

(
p(a

(i)
t | h(i)

t−1, s
(i)
t , g

(i)
t ; δ)

)
,

(4)

2From this point forward, we will use the notations a∗
t , s

∗
t , g

∗
t for

the factual values and notations at, st, gt for the predicted values.
ât, ŝt, ĝt will be used to denote counterfactual related values.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

where a
∗(i)
t is the encoded true label for action of the i-

th instance of N samples, and p(a
(i)
t | h

(i)
t−1, s

(i)
t , g

(i)
t ; δ)

is the predicted probability of action a
(i)
t . For continu-

ous action space, following PO practices [Zhu et al., 2015;
Bahadori et al., 2022], we assume that actions follow a Gaus-
sian distribution and estimate its mean and variance using
a neural network, thus, at ∼ N (µt, σ

2
t ), where µt, σ

2
t =

T (ht−1, st, gt; θ). Model T is trained to minimize:

LT (θ) =
1

N

N∑
i=1

(
(a

∗(i)
t − µ

(i)
t )2

2σ
2(i)
t

+
1

2
log(2πσ

2(i)
t )

)
. (5)

Outcome Model Training. To predict outcome of taking
an action, the O model is trained to minimize the loss be-
tween predicted state st+1 and returns-to-go gt+1 and their
factual values. This objective can be achieved using the Mean
Squared Error (MSE) loss.

LO(η) =
1

N

N∑
i=1

(
∥s∗(i)t+1 − s

(i)
t+1∥2 + ∥g∗(i)t+1 − g

(i)
t+1∥2

)
.

(6)
Here, st+1, gt+1 = O(ht; η) with input trajectory ht =

(g1, s1, a1, ..., gt, st, at).

4.2 Counterfactual Reasoning with CRDT
This section describes the agent’s iterative counterfactual rea-
soning process using model T and O. At each timestep t,
model T is provided with (ht−1, st, gt) to compute the action
distribution. Using this distribution, a counterfactual action
ât is drawn according to the Counterfactual Action Selection
(See sub-section below). Next, model O is used to gener-
ate the counterfactual state ŝt+1 and returns-to-go ĝt+1. The
trajectory is then updated with the counterfactual experience,
forming new input (ht−1, st, gt, ât, ŝt+1, ĝt+1) for the next
iteration. Counterfactual reasoning for a trajectory is deemed
successful if the iterative process proceeds to the end of the
trajectory without violating the Counterfactual Action Filter-
ing mechanism (See sub-section below). Successful reason-
ing trajectories are added to counterfactual experience buffer,
denoted as Dcrdt, if the number of experiences in Dcrdt is less
than a hyperparameter ne.

Counterfactual Action Selection. Our goal is to sample
na actions that can be classified as counterfactual actions,
which are passed to the filtering process. Rather than just
adding small noise, we aim to identify counterfactual actions
as outliers, thereby, encouraging the exploration of less sup-
ported outcomes. In a discrete action space, as the output
of the Treatment model is the probability of the action, we
can simply select all actions whose probability of being se-
lected is less than a threshold γ. For continuous action spaces,
we draw inspiration from the maximum of Gaussian random
variables, as discussed in Kamath [2015], to derive our bound
to identify counterfactual actions. The upper bound of the ex-
pectation of the maximum of Gaussian random variables is
used. Applying to action at, this is written as:

E [max(at)] ≤ µt +
√
2σt

√
ln(nenc). (7)

Here, nenc denotes the number of times the model has en-
countered an input (ht, st+1, gt+1). This bound indicates the
expected range for the action, and any action that exceeds
this bound is considered a counterfactual action. Based on
this, we derive the formula to search for potential actions in
the counterfactual action set:

a
(j)
t = µt − Φ−1 (0.08− j · β)σt

√
ln(nenc),

for j = 0, 1, . . . , na,
(8)

where β is the step size and j indicates the index of the j-th
action from the total na sampled actions. Φ−1 is the quantile
function of the standard normal distribution. When j = 0,
Φ−1 (0.08− j · β) = Φ−1 (0.08) ≈ −

√
2, thus, Eq. 8 is ap-

proximately equal to the RHS of Eq. 7. By using Eq. 8, we
ensure that at each time step t, we can explore a diverse range
of candidate counterfactual actions.

Counterfactual Action Filtering. This mechanism is pro-
posed to filter counterfactual actions that are not beneficial to
the agent. For each candidate action, we generate subsequent
outcomes using O to construct candidate counterfactual tra-
jectories. The trajectories are then filtered based on 2 crite-
ria: (1) high accumulated return and (2) high prediction con-
fidence. The motivation behind sampling high return actions
is because DT improves with higher return data [Bhargava
et al., 2024; Zhao et al., 2024], aligning with our approach
to introduce counterfactual experiences that can lead to bet-
ter outcomes. Therefore, we look for actions that resulted in
the lowest counterfactual returns-to-go (equivalent to higher
return), ĝt+1, lower than returns-to-go gt+1 in Denv .

Regarding the second criterion, we introduce an uncer-
tainty estimator function to determine low prediction confi-
dence states and exclude actions that lead to these states, stop-
ping and discarding the counterfactual trajectory if the uncer-
tainty is too high. In our framework, the model O is trained
with dropout regularization layers. This allows us to run
multiple forward passes through the model, with the dropout
layer activated, to check the uncertainty of the output state.
The output of m forward passes, at timestep t, is the ma-
trix of state predictions, St+1 =

[
s
(1)
t+1 s

(2)
t+1 · · · s

(m)
t+1

]
.

St+1 ∈ Rm×d, where d is the state dimension. We denote
Var(Sk) ∈ R, where k is a timestep, as the function that cal-
culates the maximum variance across all dimensions j′ of sk,
where j′ = 1, 2, . . . , d. This can be obtained from the covari-
ance matrix of Sk (see derivation in Appendix D). The maxi-
mum variance across all dimensions is used as the variance of
the predictions and the uncertainty value. Our uncertainty fil-
tering mechanism, checking the accumulated maximum vari-
ance, can be written as:

Uα(St+1) =

{
TRUE (Unfamiliar), if

∑t+1
k=t0

Var(Sk) > α,

FALSE (Familiar), otherwise.
(9)

Here,
∑t+1

k=t0
(Var(Sk)) is the accumulated maximum vari-

ances of state prediction from a timestep t0 that we start the
reasoning process to current timestep t + 1. The function
Uα(St+1) returns TRUE if the state st+1 is unfamiliar. If the

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

uncertainty is low, we will run a final forward pass through
the model, with the dropout layer deactivated, to get the de-
terministic state and returns-to-go output. This helps avoid
noisy trajectories and benefits counterfactual reasoning.

4.3 Optimizing Decision-Making with
Counterfactual Experience

In this section, we describe how our counterfactual reasoning
capability has been applied to improve the agent’s decision-
making. To demonstrate the effectiveness, we have selected
the original DT model introduced by Chen [2021] as the main
backbone for the experiment. The learning agent in this pa-
per, denoted as M, is trained following Eq. 1 to minimize
either CE loss for discrete action space environments or Eq. 2
with MSE loss for continuous action space environments. For
discrete action space, the loss function is defined as:

LM(δ) = − 1

N

N∑
i=1

a
∗(i)
t+1 log

(
p(a

(i)
t+1 | h(i)

t , s
(i)
t+1, g

(i)
t+1; δ)

)
,

(10)
where a

∗(i)
t+1 is encoded true label for the action of the i-th

instance of N samples, and p(a
(i)
t+1 | h(i)

t , s
(i)
t+1, g

(i)
t+1; δ) is the

probability outputed from the model. For continuous actions,
the loss is:

LM(δ) =
1

N

N∑
i=1

(
∥a∗(i)t+1 − a

(i)
t+1∥2

)
. (11)

At each training step, we sample equal batches of trajec-
tories from both the environment dataset Denv and the coun-
terfactual experience buffer Dcrdt. The agent M is trained on
both data sources, with the total loss calculated as the combi-
nation of the two losses LM(δ) = Lenv

M(δ) + Lcrdt
M(δ).

5 Experiments
We conducted experiments on both continuous action space
environments (Locomotion, Ant, and Maze2d [Fu et al.,
2020]) and discrete action space environments (Atari [Belle-
mare et al., 2013]) to address several key research questions.

We compare against several baselines, including sequential
modeling techniques and conventional RL. Sequential mod-
eling baselines include simple DT [Chen et al., 2021], which
also serves as the backbone, EDT [Wu et al., 2023] and state-
of-the-art (SOTA) approach Reinformer (REINF) [Zhuang et
al., 2024]. Conventional methods include Behavior Cloning
(BC) [Pomerleau, 1988], model-free offline methods, such as
CQL [Kumar et al., 2020] and IQL [Kostrikov et al., 2021b]
and model-based offline methods, such as MOPO [Yu et al.,
2020] and MOReL [Kidambi et al., 2020].

Does CRDT enhance the DT in continuous action space
environments? In Table 1, we summarize the total scores
of experimental results for CRDT and baseline methods on
the Locomotion and Ant tasks from the D4RL dataset. The
D4RL dataset serves as a standard benchmark for offline RL,
with Locomotion comprising three environments (walker2d,

hopper, and halfcheetah) and Ant consisting of a single envi-
ronment (ant). For the Locomotion tasks, we evaluate perfor-
mance using three Denv dataset: medium-replay, medium, and
medium-expert, while for the Ant task, we use two: medium-
replay and medium. CRDT consistently improves upon the
simple backbone DT model across all datasets, achieving
an average performance gain of 3.5% on Locomotion tasks
and 2.7% on the Ant task. Notably, the largest improve-
ment is observed on the walker2d-med-rep dataset, with a
significant 16.1% increase. Overall, CRDT emerges as the
best-performing method on average, outperforming other ap-
proaches on Locomotion tasks and achieving performance
comparable to the state-of-the-art RL method, IQL, and the
sequential modeling method, REINF, on the Ant task.

Can CRDT improve DT’s performances given limited
training dataset? To evaluate the generalizability improve-
ments of CRDT over DT, we conducted experiments using
only a limited subset of the Denv dataset. The experiments
were carried out on Locomotion and Maze2d (more challeng-
ing environments as they required the ability to stitch sub-
optimal trajectories [Zhuang et al., 2024]). We compared
CRDT’s performance against the backbone DT model and
REINF, the second-best DT method according to Table 1. The
results are in Fig. 2. Our method experiences the smallest per-
formance degradation in this setting. In hopper and halfchee-
tah environments, while all three methods exhibit similar per-
formance at 100% dataset size, our method demonstrates only
about a 15% drop when trained on 10% of the dataset. In con-
trast, both REINF and DT degrade by over 21%, with extreme
cases of 40%. On the Maze2d tasks, CRDT performances
drop approximately 25% on umaze and 3% on large dataset.
While DT cannot learn these environments (drop more than
90%) and REINF performance drops approximately 45%.

Does CRDT enhance the DT in discrete action space
environments? We conducted experiments on Atari games
(Breakout, Qbert, Pong, and Seaquest), which feature dis-
crete action spaces and more complex observation spaces.
The normalized scores are shown in Table 2. Given the in-
creased difficulty of the observation space, we expected that
CRDT might not always outperform DT, as it could intro-
duce noise, even with mechanisms in place to prevent noise
accumulation. Nevertheless, CRDT improved DT in 3 out of
the 4 games (highest improvement of 25% on Breakout). We
believe that for these complex environments, a larger neural
network could lead to greater performance gains.

5.1 Model Analysis and Ablation Study
Comparing CRDT with Varying Action Selection Meth-
ods. We conduct an ablation study on the two mechanisms
that define our method: Counterfactual Action Filtering and
Counterfactual Action Selection. In Table 3, we compare the
performance of the full CRDT against several variations: the
version that does not compare the returns-to-go (W/o com-
paring g), the version that does not utilize the uncertainty
quantifier Uα(Sk), the variation that simply samples an ac-
tion a without considering whether a is low distribution, and
the variation that samples an action a + ϵ, where ϵ is ran-
dom Gaussian noise sampled from the range [0.01, 0.05].
The results show that simply adding data will still improve

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Dataset Traditional Methods Sequence Modeling Methods
BC CQL IQL MOPO MOReL DT EDT REINF CRDT (Ours)

Locomotion 466.7 698.5 692.6 378.0 656.5 677.0 621.4 698.0 701.38±1.5
Ant - - 186 - - 181.5 175.7 184.3 186.86±8.5

Table 1: Performance comparison on Locomotion (9 tasks) and Ant (2 tasks). We report the total score across all environments within each
category. Results are averaged over 5 seeds, with evaluation conducted over 100 episodes per seed. The best result is highlighted in bold, and
the second-best in italic.

Sc
or

e

(a) Hopper-medium-replay (b) Maze2d-umaze

DT CRDT (Our) REINF

(c) Maze2d-large

Figure 2: Performance comparison on limited subset of Denv. The results are over 5 seeds. For each seed, evaluation is conducted over 100
episodes. The X-axis represents the percentage of the dataset used in the experiment.

Game BC DT CRDT (Ours)
Breakout 138.9±54.6 198.6±1.8 248.9±58.9♠

Qbert 17.4±13.4 7.2±0.2 7.5±0.6♠

Pong 85.2±78.3 140.2±63.6 102.2±67.6
Seaquest 2.1±0.2 5.7±6.3 7.4±0.5♠

Average 60.9±36.6 87.9±17.9 91.5±31.9♠

Table 2: Performance comparison on Atari games (1% DQN-replay
dataset). We report the human-normalized scores over 3 seeds. For
each seed, evaluation is conducted over 10 episodes. The best result
is shown in bold. ♠ indicates games in which CRDT improves the
backbone DT approach.

Variations Score
DT 62.1±2.2
W/o comparing g 67.4±2.1
W/o Uα(Sk) 69.6±2.8
a 68.4±3.45
a+ noise ϵ 69.3±4.4
CRDT (Ours) 72.3±0.1

Table 3: Performance comparison with different action selection
methods on walker2d-med-rep.

the performance DT, however, the improvement is less sig-
nificant than when CRDT is used. Full CRDT improves the
performance by 16%, while the closet variations, do not uti-
lize Uα(Sk), achieving only 12.0%.

Can CRDT enable DT to stitch trajectories? Table 4
presents results of the experiment conducted in environment
in Fig. 1. In this environment, all states, apart from the goal,
receive a reward of 0. Reaching the goal state receives a re-
ward of +1. We expect that, if traditional DT is used, the agent
would struggle to learn this environment due to the lack of

Dataset Ratio DT CRDT (Ours)
10:1 0.37±0.30 0.83±0.14
20:1 0.41±0.36 0.90±0.07
50:1 0.39±0.18 0.92±0.15

Table 4: Performance comparison on the toy environment in Fig. 1.
The dataset ratio is between the number of bad (green) trajectories
versus good (blue) trajectories.

stitching ability. The results support this, showing that the tra-
ditional DT achieves only around a 40% success rate, whereas
our CRDT approach achieves nearly 90%. Although our ap-
proach is not specifically designed to achieve stitching ability
during training, as seen in Wu [2023] and Zhuang [2024], our
agent interestingly acquires this ability. This occurs because
the generated training data is effectively stitched through the
ongoing process of seeking higher returns. This also explains
the performance in Ant in Table 1 and Maze2d in Fig. 2, both
of which require stitching.

6 Discussion
We present the CRDT framework, which integrates counter-
factual reasoning with DT. Our experiments show that CRDT
improves DT and its variants on standard benchmarks and in
scenarios with small datasets or wit modified evaluation envi-
ronments. Additionally, the agent achieves trajectory stitch-
ing without architectural changes. However, training sepa-
rate Transformer models adds complexity. Future work could
explore combining these models, as they share inputs, or
training in an iterative manner using generated counterfac-
tual samples as training data. Another potential approach is
to used an weighted approach instead of a hard cut-off for the
uncerainty filter, which might lead to better results.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

References
[Agarwal et al., 2020] Rishabh Agarwal, Dale Schuurmans,

and Mohammad Norouzi. An optimistic perspective on
offline reinforcement learning. In Proceedings of the 37th
International Conference on Machine Learning, 2020.

[Bahadori et al., 2022] Taha Bahadori, Eric Tchetgen Tch-
etgen, and David Heckerman. End-to-end balancing for
causal continuous treatment-effect estimation. In Kama-
lika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepes-
vari, Gang Niu, and Sivan Sabato, editors, Proceedings
of the 39th International Conference on Machine Learn-
ing, volume 162 of Proceedings of Machine Learning Re-
search, pages 1313–1326. PMLR, 17–23 Jul 2022.

[Bellemare et al., 2013] Marc G Bellemare, Yavar Naddaf,
Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents.
Journal of Artificial Intelligence Research, 47:253–279,
2013.

[Bhargava et al., 2024] Prajjwal Bhargava, Rohan Chitnis,
Alborz Geramifard, Shagun Sodhani, and Amy Zhang.
When should we prefer decision transformers for offline
reinforcement learning? In The Twelfth International Con-
ference on Learning Representations, 2024.

[Chen et al., 2021] Lili Chen, Kevin Lu, Aravind Ra-
jeswaran, Kimin Lee, Aditya Grover, Michael Laskin,
Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. De-
cision transformer: reinforcement learning via sequence
modeling. In Proceedings of the 35th International Con-
ference on Neural Information Processing Systems, pages
15084–15097, 2021.

[Frauen et al., 2023] Dennis Frauen, Tobias Hatt, Valentyn
Melnychuk, and Stefan Feuerriegel. Estimating average
causal effects from patient trajectories. In Proceedings of
the Thirty-Seventh AAAI Conference on Artificial Intelli-
gence. AAAI Press, 2023.

[Fu et al., 2020] Justin Fu, Aviral Kumar, Ofir Nachum,
George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning. arXiv preprint
arXiv:2004.07219, 2020.

[Kamath, 2015] Gautam Kamath. Bounds on the expecta-
tion of the maximum of samples from a gaussian. URL
http://www. gautamkamath. com/writings/gaussian max.
pdf, 10(20-30):31, 2015.

[Kidambi et al., 2020] Rahul Kidambi, Aravind Rajeswaran,
Praneeth Netrapalli, and Thorsten Joachims. Morel:
model-based offline reinforcement learning. In Proceed-
ings of the 34th International Conference on Neural Infor-
mation Processing Systems, pages 21810–21823, 2020.

[Killian et al., 2022] Taylor W Killian, Marzyeh Ghassemi,
and Shalmali Joshi. Counterfactually guided policy trans-
fer in clinical settings. In Conference on Health, Inference,
and Learning, pages 5–31. PMLR, 2022.

[Kim et al., 2023] Jeonghye Kim, Suyoung Lee, Woojun
Kim, and Youngchul Sung. Decision convformer: Local
filtering in metaformer is sufficient for decision making.
arXiv preprint arXiv:2310.03022, 2023.

[Kostrikov et al., 2021a] Ilya Kostrikov, Rob Fergus,
Jonathan Tompson, and Ofir Nachum. Offline reinforce-
ment learning with fisher divergence critic regularization.
In Marina Meila and Tong Zhang, editors, Proceedings
of the 38th International Conference on Machine Learn-
ing, volume 139 of Proceedings of Machine Learning
Research, pages 5774–5783. PMLR, 18–24 Jul 2021.

[Kostrikov et al., 2021b] Ilya Kostrikov, Ashvin Nair, and
Sergey Levine. Offline reinforcement learning with im-
plicit q-learning. arXiv preprint arXiv:2110.06169, 2021.

[Kumar et al., 2020] Aviral Kumar, Aurick Zhou, George
Tucker, and Sergey Levine. Conservative q-learning for
offline reinforcement learning. In Proceedings of the 34th
International Conference on Neural Information Process-
ing Systems, NIPS ’20, 2020.

[Le Pham Van et al., 2024] Linh Le Pham Van, Hung
The Tran, and Sunil Gupta. Policy learning for off-
dynamics RL with deficient support. In Proceedings of
the International Conference on Autonomous Agents and
Multiagent Systems, pages 1093–1100, 2024.

[Levine et al., 2020] Sergey Levine, Aviral Kumar, George
Tucker, and Justin Fu. Offline reinforcement learning: Tu-
torial, review, and perspectives on open problems. arXiv
preprint arXiv:2005.01643, 2020.

[Li et al., 2020] Rui Li, Zach Shahn, Jun Li, Mingyu Lu,
Prithwish Chakraborty, Daby Sow, Mohamed Ghalwash,
and Li-wei H Lehman. G-net: a deep learning ap-
proach to g-computation for counterfactual outcome pre-
diction under dynamic treatment regimes. arXiv preprint
arXiv:2003.10551, 2020.

[Melnychuk et al., 2022] Valentyn Melnychuk, Dennis
Frauen, and Stefan Feuerriegel. Causal transformer for
estimating counterfactual outcomes. In Kamalika Chaud-
huri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang
Niu, and Sivan Sabato, editors, Proceedings of the 39th
International Conference on Machine Learning, volume
162 of Proceedings of Machine Learning Research, pages
15293–15329. PMLR, 17–23 Jul 2022.

[Neyman, 1923] Jerzy Neyman. On the application of prob-
ability theory to agricultural experiments. essay on princi-
ples. Ann. Agricultural Sciences, pages 1–51, 1923.

[Pearl and Mackenzie, 2018] Judea Pearl and Dana Macken-
zie. The book of why: The new science of cause and effect,
2018.

[Pitis et al., 2020] Silviu Pitis, Elliot Creager, and Animesh
Garg. Counterfactual data augmentation using locally fac-
tored dynamics. In Proceedings of the 34th International
Conference on Neural Information Processing Systems,
NIPS ’20, Red Hook, NY, USA, 2020.

[Pitis et al., 2022] Silviu Pitis, Elliot Creager, Ajay Man-
dlekar, and Animesh Garg. Mocoda: model-based coun-
terfactual data augmentation. In Proceedings of the 36th
International Conference on Neural Information Process-
ing Systems, NIPS ’22, Red Hook, NY, USA, 2022.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Pomerleau, 1988] Dean A. Pomerleau. Alvinn: an au-
tonomous land vehicle in a neural network. In Proceedings
of the 2nd International Conference on Neural Information
Processing Systems, NIPS’88, page 305–313, Cambridge,
MA, USA, 1988. MIT Press.

[Robins and Hernan, 2008] James Robins and Miguel Her-
nan. Estimation of the causal effects of time-varying ex-
posures. Chapman & Hall/CRC Handbooks of Modern
Statistical Methods, pages 553–599, 2008.

[Rubin, 1978] Donald B Rubin. Bayesian inference for
causal effects: The role of randomization. The Annals of
statistics, pages 34–58, 1978.

[Schmidhuber, 2019] Juergen Schmidhuber. Reinforcement
learning upside down: Don’t predict rewards–just map
them to actions. arXiv preprint arXiv:1912.02875, 2019.

[Silver et al., 2017] David Silver, Julian Schrittwieser,
Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. Mastering the game of go without human
knowledge. nature, 550(7676):354–359, 2017.

[Sun et al., 2023] Zexu Sun, Bowei He, Jinxin Liu, Xu Chen,
Chen Ma, and Shuai Zhang. Offline imitation learning
with variational counterfactual reasoning. In Proceedings
of the 37th International Conference on Neural Informa-
tion Processing Systems, NIPS ’23, 2023.

[Sun et al., 2024] Yuewen Sun, Erli Wang, Biwei Huang,
Chaochao Lu, Lu Feng, Changyin Sun, and Kun Zhang.
Acamda: improving data efficiency in reinforcement
learning through guided counterfactual data augmentation.
In Proceedings of the Thirty-Eighth AAAI Conference on
Artificial Intelligence. AAAI Press, 2024.

[Sutton and Barto, 2018] Richard S. Sutton and Andrew G.
Barto. Reinforcement Learning: An Introduction. A Brad-
ford Book, Cambridge, MA, USA, 2018.

[van Hoof et al., 2015] Herke van Hoof, Tucker Hermans,
Gerhard Neumann, and Jan Peters. Learning robot in-
hand manipulation with tactile features. In 2015 IEEE-
RAS 15th International Conference on Humanoid Robots
(Humanoids), pages 121–127. IEEE, 2015.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems, vol-
ume 30, 2017.

[Wang et al., 2018] Lu Wang, Wei Zhang, Xiaofeng He, and
Hongyuan Zha. Supervised reinforcement learning with
recurrent neural network for dynamic treatment recom-
mendation. In Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data
mining, pages 2447–2456, 2018.

[Wu et al., 2023] Yueh-Hua Wu, Xiaolong Wang, and
Masashi Hamaya. Elastic decision transformer. In Pro-
ceedings of the International Conference on Neural Infor-
mation Processing Systems, pages 18532–18550, 2023.

[Xie et al., 2021] Tengyang Xie, Ching-An Cheng, Nan
Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-
consistent pessimism for offine reinforcement learning. In
Proceedings of the 35th International Conference on Neu-
ral Information Processing Systems, NIPS ’21, 2021.

[Xie et al., 2023] Zhihui Xie, Zichuan Lin, Deheng Ye,
Qiang Fu, Wei Yang, and Shuai Li. Future-conditioned
unsupervised pretraining for decision transformer. In Pro-
ceedings of the 40th International Conference on Machine
Learning, ICML’23. JMLR.org, 2023.

[Yamagata et al., 2023] Taku Yamagata, Ahmed Khalil, and
Raul Santos-Rodriguez. Q-learning decision transformer:
Leveraging dynamic programming for conditional se-
quence modelling in offline RL. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett, editors, Proceedings of the
40th International Conference on Machine Learning, vol-
ume 202 of Proceedings of Machine Learning Research,
pages 38989–39007. PMLR, 23–29 Jul 2023.

[Yu et al., 2020] Tianhe Yu, Garrett Thomas, Lantao Yu, Ste-
fano Ermon, James Zou, Sergey Levine, Chelsea Finn, and
Tengyu Ma. Mopo: model-based offline policy optimiza-
tion. In Proceedings of the 34th International Conference
on Neural Information Processing Systems, pages 14129–
14142, 2020.

[Zhao et al., 2024] Ziqi Zhao, Zhaochun Ren, Liu Yang, Fa-
jie Yuan, Pengjie Ren, Zhumin Chen, Xin Xin, et al.
Offline trajectory generalization for offline reinforcement
learning. arXiv preprint arXiv:2404.10393, 2024.

[Zheng et al., 2022] Qinqing Zheng, Amy Zhang, and
Aditya Grover. Online decision transformer. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato, editors, Proceedings of the
39th International Conference on Machine Learning, vol-
ume 162 of Proceedings of Machine Learning Research,
pages 27042–27059. PMLR, 17–23 Jul 2022.

[Zhu et al., 2015] Yeying Zhu, Donna L Coffman, and De-
bashis Ghosh. A boosting algorithm for estimating gener-
alized propensity scores with continuous treatments. Jour-
nal of causal inference, 3(1):25–40, 2015.

[Zhuang et al., 2024] Zifeng Zhuang, Dengyun Peng, Jinxin
Liu, Ziqi Zhang, and Donglin Wang. Reinformer: max-
return sequence modeling for offline rl. In Proceedings of
the 41st International Conference on Machine Learning,
pages 62707–62722, 2024.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


