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Abstract
Static malware detectors based on machine learn-
ing are integral to contemporary antivirus sys-
tems, but they are vulnerable to adversarial at-
tacks. While existing research has demonstrated
success with adversarial attacks in black-box hard-
label scenarios, challenges such as high perturba-
tion rates and incomplete retention of functional
integrity remain. To address these issues, we pro-
pose a novel black-box hard-label attack method,
MiniMal. MiniMal begins with initialized adver-
sarial examples and utilizes binary search and par-
ticle swarm optimization algorithms to streamline
the perturbation content, significantly reducing the
perturbation rate of the adversarial examples. Fur-
thermore, we propose a functionality verification
method grounded in file format parsing and control
flow graph comparisons to ensure the functional
integrity of the adversarial examples. Experimen-
tal results indicate that MiniMal achieves an attack
success rate of over 98% against three leading ma-
chine learning detectors, improving performance
by approximately 4.8% to 7.1% compared to state-
of-the-art methods. MiniMal reduces perturbation
rates to below 40%, making them 9 to 11 times
lower than those of previous methods. Addition-
ally, functional verification via Cuckoo Sandbox re-
vealed that the adversarial examples generated by
MiniMal retained 100% functional integrity, even
with various modifications applied.

1 Introduction
Malware refers to applications utilized by attackers to execute
malicious actions, frequently serving as a tool to gain control
over victims and inflict damage. Signature-based static de-
tection methods are efficient and low-cost, making them the
primary approach for current malware detection [Zhan et al.,
2023a]. This method relies on malware signature databases;
however, unknown or obfuscated malware often lacks cor-
responding signatures in these databases, resulting in iden-
tification failures that allow attackers to evade detection. In
light of the rapid advancements in machine learning (ML)

technology, researchers have introduced numerous ML-based
methods for malware detection to tackle the vulnerability of
static malware signatures being readily circumvented [Ander-
son and Roth, 2018; Raff et al., 2021b]. These methods ex-
tract multi-dimensional features from malware and learn their
behavioral patterns, enabling detection without fixed signa-
tures and exhibiting strong generalization capabilities in iden-
tifying unknown or obfuscated samples [Ling et al., 2023].
Consequently, an increasing number of security vendors are
integrating ML-based malware detection techniques into their
security products.

While ML methods offer significant advantages in malware
detection, they are inherently susceptible to adversarial exam-
ple attacks [Goodfellow et al., 2014]. Adversarial examples
are inputs generated by intentionally adding subtle perturba-
tions to the data, which can induce neural network models to
generate incorrect predictions. Although adversarial example
attacks have been extensively researched in computer vision
[Cheng et al., 2018; Chen et al., 2023b] and natural language
processing [Peng et al., 2023; Zhu et al., 2024], their explo-
ration in malware has only recently begun [Song et al., 2022].
Based on the attacker’s capabilities, adversarial example at-
tacks against malware detection can be classified into white-
box and black-box attacks [Zhu et al., 2024]. In a white-box
scenario, the attacker has access to the ML model’s internal
parameters and gradients. Black-box attacks can be further
divided into two categories: (1) soft-label attacks, where the
attacker can access the model’s confidence scores (indicating
probabilities of malicious or benign). (2) hard-label attacks,
where the attacker only receives the model’s final predicted
label (malicious or benign). In real-world scenarios, white-
box attacks and black-box soft label attacks are challenging
to execute; attackers typically get the final label result via up-
loading malware through an API [Zhan et al., 2023b]. Conse-
quently, this paper focuses on investigating adversarial exam-
ple attacks on malware within black-box hard-label scenarios.

Given that malware typically disseminates in Windows
environments as Portable Executable (PE) file format [AV-
TEST, 2024b], researchers are prompted to concentrate on
attacks targeting this format. To date, a variety of methods
for modifying PE files have been proposed, including those
based on heuristic algorithms [Zhan et al., 2023b; Demetrio
et al., 2021; Yuste et al., 2022], reinforcement learning (RL)
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[Anderson et al., 2018; He et al., 2024; Song et al., 2022], and
generative adversarial networks (GAN) [Hu and Tan, 2022;
Yuan et al., 2020]. For instance, Demetrio et al. [Demetrio
et al., 2021]employed genetic algorithms to select appropri-
ate perturbation bytes and inject them into specific sections
or the tail of PE files. Additionally, Song et al. [Song et al.,
2022]designed a series of actions for modifying malware and
used a multi-armed bandit approach to select appropriate ac-
tions for generating adversarial examples.

Although current black-box attack methods have success-
fully generated adversarial examples with effective evasion,
several limitations persist (1) Excessive perturbation: Ex-
isting research attempts to add numerous perturbation bytes
to malware to evade detection. However, adding excessive
perturbations often makes malware unusable in real-world
scenarios. For instance, when attackers exploit file upload
vulnerabilities, they are limited by the maximum file size
[Group, 2024]; excessive modifications can dramatically in-
crease the size of the malware, resulting in upload failures.
Moreover, too many perturbations may render files unexe-
cutable [Song et al., 2022], as modifications to the PE file
header beyond a certain threshold—such as exceeding six
times the original file size may fail to run properly [He et
al., 2024]. (2) Incomplete functional integrity of adver-
sarial examples: Researchers aiming to evade detection of-
ten apply aggressive modifications to PE files [Etter et al.,
2023]. Additionally, during adversarial example generation,
functional verification of the PE file is often neglected [Hu
and Tan, 2022], or handled manually post hoc using sandbox
environments [Song et al., 2022].

To address the issues mentioned above, we propose a
minimal perturbation adversarial malware examples gener-
ation method named MiniMal. This method effectively min-
imizes perturbation by targeting both the actions and content
involved. Initially, we implemented a decremental loop for
each action, reducing the maximum call count to zero to iden-
tify key perturbation actions. Then, we used binary search
and particle swarm optimization (PSO) algorithms to filter
critical content. Finally, we ensured the functional integrity
of the adversarial examples by extracting their format features
and control flow graph (CFG) information.

We evaluated MiniMal on three state-of-the-art ML detec-
tors and compared it with other state-of-the-art adversarial at-
tack methods regarding attack success rate, perturbation rate,
and functionality. The results show that the success rates of
MiniMal attacks on the three detectors are 99.96%, 98.56%,
and 99.62%, while the average perturbation rates are 38.91%,
32.18%, and 33.92%. These results consistently outperform
existing methods and retain the functional integrity of adver-
sarial examples.

In summary, We summarize our contribution as follows:

• We propose a method for reducing perturbation content
using binary search and particle swarm optimization,
which eliminates redundant elements by determining the
minimal perturbation ratio in multi-dimensional space.
This addresses the problem of excessive perturbation in
generated adversarial examples.

• We propose a functional verification method based on

file format parsing and CFG comparison. This method
evaluates the functional consistency of adversarial ex-
amples with their originals by extracting file format fea-
tures and calculating CFG similarity, thus ensuring the
functional integrity of the adversarial examples.

• We implemented a prototype system of MiniMal and
validated its effectiveness through comprehensive ex-
periments. The results demonstrate that our method
achieves over 98% attack success against three advanced
ML detection models, outperforming existing methods
by approximately 4.8% to 7.1%. The perturbation rate
consistently remains below 40%, with the minimum rate
being 11 times lower than state-of-the-art methods.

Our source code and experimental data are available at
https://github.com/2002lcy0401/MiniMal.

2 Related Work
This section reviews existing work on hard-label attacks. Cur-
rent hard-label attacks primarily use heuristic algorithms, RL,
and GANs to generate adversarial examples.
Heuristic algorithm-based methods. Demetrio et al.
[Demetrio et al., 2021] proposed a black-box attack method
called GAMMA, which generates adversarial examples by
adding benign content produced by a genetic algorithm to
the sections or end of a PE file. Wang et al. [Wang et al.,
2022] introduced an adversarial example generation method
based on a co-evolutionary algorithm. This approach frames
the tasks of injecting minimal content and being classified as
benign by the target model as two populations that cooperate
during co-evolution to minimize the fitness function. Zhan et
al. [Zhan et al., 2023b] introduced the concept of adversarial
patches with the MalPatch method, which generates universal
content via a genetic algorithm and injects it into the end of
PE files to create adversarial examples.
Reinforcement Learning-based methods. Anderson et al.
[Anderson et al., 2018] proposed gym-malware in a black-
box setting, which collects a series of modification techniques
and was the first to apply reinforcement learning to find the
optimal attack sequence. Song et al. [Song et al., 2022]
developed MAB-malware, transforming the adversarial ex-
ample generation problem into a multi-armed bandit prob-
lem and proposing the use of micro-actions instead of macro-
actions to minimize the adversarial example. He et al. [He et
al., 2024] introduced MalwareTotal, which focuses on evad-
ing antivirus software in real-world scenarios while preserv-
ing malware functionality.
Generative Adversarial Networks-based methods. Hu et
al. [Hu and Tan, 2022] introduced MalGAN, the first to ap-
ply the GAN concept to modify API sequences in the mal-
ware feature space, generating adversarial examples. Yuan
et al. [Yuan et al., 2020] proposed GAPGAN, a method for
performing byte-level black-box attacks by generating adver-
sarial payloads using GANs and appending them to the end
of PE files. Gibert et al. [Gibert et al., 2023] developed a
query-free method for crafting adversarial malware examples
and designed a GAN-based framework specifically targeting
detectors that use byte, API, and string features.
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3 Methodology
3.1 Problem Definition
Let X be a dataset containing n malware samples, and let
xi be a sample in X . Let f be the malware detector that
produces the classification result (0 or 1) for xi and xi +Θi.
Θ represents the perturbation applied. Equation 1 defines the
objective function for generating adversarial examples:

argmax
Θ

n∑
i=1

f(xi +Θi)⊕ f(xi) (1)

s.t. Θi ≤ r ∗ xi, q ≤ Q, F(xi +Θi) = F(xi)

Here, r represents the upper limit of the perturbation rate,
which quantifies the maximum allowable perturbation. The
symbol⊕ represents the XOR operation. Q denotes the max-
imum number of queries, indicating the limit on interactions
with the target model. F is the functionality verification func-
tion. Our goal is to generate as many fully functional adver-
sarial examples as possible under the constraints of maximum
perturbation and query limits.

3.2 Design Overview
Figure 1 outlines the overview of MiniMal: (1) Initialize
Adversarial Examples : The roulette wheel selection algo-
rithm is employed to iteratively select perturbation actions
and contents until the target detector is successfully bypassed.
(2) Optimize Adversarial Examples: Redundant actions
are eliminated through action minimization, followed by the
removal of redundant perturbation content using the binary
search method and particle swarm optimization algorithm.
Differences between the original and adversarial examples
are analyzed to update the weights of perturbation actions
and contents. (3) Functionality Verification: Throughout
the generation process, the functionality verification module
is invoked repeatedly to ensure the complete functional in-
tegrity of the adversarial examples.

3.3 Step 1: Initialize Adversarial Examples
Perturbation Actions and Contents. We review the file per-
turbation actions reported in previous studies [Anderson et
al., 2018; He et al., 2024] and build the perturbation action
set used in this paper. As shown in Table 1, the modifica-
tions to the files are categorized into four categories: Header,
Section, Overlay, and Overall.

We finally selected four actions: MD, AS, SA, and OA.
The reasons for choosing these actions are as follows:

• They cover all parts of the PE file. Since the detector’s
features may be derived from any part of the PE file, we
require the ability to modify every part of the file.

• These actions are relatively independent and safe, mean-
ing they do not depend on the order in which they are
applied, thereby simplifying the process.

• These actions allow for significant perturbation, provid-
ing a greater capacity for modifications.

Besides the selected actions, the injected contents are also
critical. According to Suciu et al. [Suciu et al., 2019], benign

byte features from benign files assist malware in crossing the
decision boundary. Therefore, we extract benign segments
from benign file samples to construct the content set.
Initialization of Adversarial Examples. After establishing
the action and content sets, we need to choose suitable per-
turbation actions and contents to modify the PE file, thereby
generating adversarial examples. We assume that the weak-
nesses of the target detector can be exploited repeatedly. To
this end, we create weight tables for both the action set and
the benign content set, which track the frequency of actions
and content used in previously generated adversarial exam-
ples. The roulette wheel selection algorithm [Lipowski and
Lipowska, 2012] is employed to select actions and contents.
The selection probability of each individual is proportional to
its weight, meaning that individuals with greater weights have
a higher chance of being selected. During the initialization
process, the weight table serves as the basis for roulette wheel
selection, increasing the likelihood of selecting effective ac-
tions and contents. By continuously modifying the malware
samples, once an adversarial example successfully evades de-
tection, it proceeds to Step 2 for optimization.

3.4 Step 2: Optimize Adversarial Examples
Action Minimizer. We designed an action minimization
module to select critical actions. Since the four selected ac-
tions are independent and do not influence each other, we im-
plement a decremental loop mechanism for each action Ai,
reducing its call count step-by-step from Ti (The maximum
number of times Ai can be used) down to 0. Specifically,
we begin by removing all calls of Ai. If the adversarial ex-
ample still evades the target model’s detection after removal,
this reduced state is retained; otherwise, the loop continues to
gradually decrease the call count of Ai. This approach effec-
tively eliminates redundant actions at a coarse-grained level,
facilitating the subsequent removal of redundant content.
Binary Deletion. Once the action minimization process is
complete and only one action remains, we employ a binary
deletion method to refine the redundant perturbation content.
We treat the perturbation content as a byte array, which al-
lows us to reframe the optimization problem of the adversarial
example as the challenge of removing non-critical segments
from this array. Binary deletion serves as an effective strategy
for efficiently searching and removing unnecessary perturba-
tion bytes. We begin by dividing the array into left and right
halves, attempting to delete each half separately to determine
if the adversarial example still evades detection. If successful,
the removed segment is deemed redundant and can be dis-
carded; if not, the binary search process continues within that
segment, repeating this step until either the maximum query
limit is reached or further division is no longer feasible.
Particle Swarm Optimization Deletion. When multiple ac-
tions remain after the action minimization, optimizing ad-
versarial examples becomes a combinatorial optimization
problem involving multiple perturbation contents. PSO is a
population-based optimization algorithm often employed to
address such optimization problems [Kennedy and Eberhart,
1995]. The fundamental idea is to transform the optimization
problem into a search problem in a multi-dimensional space,
where each particle represents a potential solution. Since the
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Figure 1: Overview of MiniMal.

Location Abbr Name Description

Header

BC Break Checksum Set the checksum member variable to 0.
RC Remove Certificate Clear the certification flag in the optional header.
MT Modify Timestamp Change the PE file’s timestamp.
MD Modify DOS Header Fill bytes between the ”MZ” file flag and PE header.
AI Add Imports Import new functions into the PE file from a library.

Section
AS Add Section Add a new section to the PE file.
RS Rename Section Rename the sections of the file.
SA Slack Append Fill bytes in the slack space between sections.

Overlay OA Overlay Append Add bytes to the end of the PE file.

Overall UP UPX Pack Pack the PE file using the UPX tool.
OB Obfuscation Obfuscate the PE file.

Table 1: Action set for modifying PE files.

actions we employ are relatively independent, the particle up-
date process in PSO is also conducted independently, making
this algorithm particularly suitable for our needs.

Algorithm 1 outlines the complete process of using the
PSO algorithm to optimize the perturbation content. First,
we treat the perturbation content used by each action Ai as an
array Ci. Each particle’s value ranges from 0 to 1, represent-
ing the usage ratio of the array for each action. For example,
if ri = 0.3, this indicates that 30% of the perturbation con-
tent Ci is utilized by action Ai. Thus, the problem is further
transformed into finding a set of decimal solutions between 0
and 1, which represent the percentage of perturbation content
used for each action.

In PSO, the design of the fitness function is crucial, as it
guides the search direction of the particles. We use the size of
the perturbation as the optimization objective and introduce
two penalty terms to ensure that the adversarial example suc-
cessfully evades the target detector while retaining functional
integrity. The specific design is presented in Equation 2.

fitness =
n∑

i=1

(ri ∗ Ci) + w1 ∗ f(x′) + w2 ∗ F (x′) (2)

The fitness function is the objective function. The term∑n
i=1(ri∗Ci) measures the size of the perturbation. w1 is the

penalty term for evading the detector f , and w2 is the penalty
term for the functionality verification function F , where x′

represents the adversarial example with added perturbation.

Algorithm 1: PSO Deletion
Input: Malware: X , Perturbation content list: C, Max

iterations: n, Penalty term: w1, w2

Output: Optimized adversarial example: Xfinal

1: begin
2: Initialize particle swarm P ← Random values

between [0,1] for each perturbation in C ;
3: Initialize best solution Pbest ← 0 ;
4: Initialize global best solution Gbest ← 0 ;
5: for i← 1 to n do
6: foreach particle p ∈ P do
7: P1←

∑
(p * Len(C)) ;

8: Xtemp ←Modify(X, p ∗ C);
9: P2← 0 if f (Xtemp) == Benign, else w1;

10: P3← 0 if F (Xtemp) == True, else w2;
11: fitness(p)← P1+P2+P3;
12: if fitness(p) <fitness(Pbest) then
13: Pbest ← p;
14: if fitness(p) <fitness(Gbest) then
15: Gbest ← p;

16: Update each particle’s velocity and position;
17: Xfinal ←Modify(X,Gbest ∗ C);
18: return Xfinal ;
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3.5 Functionality Verification
Inspired by the work of Tian et al.[Tian et al., 2024], we de-
signed an efficient, automated functional verification method.
We begin by extracting the structural features of the PE file
to ensure the integrity of its core structure and execution
logic. Key features, such as the DOS header, PE signature,
section table, and import table, are examined to verify the
file’s integrity and standard format, preventing execution er-
rors caused by format corruption or inconsistencies.

A control flow graph represents a program’s control flow,
where nodes correspond to basic blocks, and edges denote po-
tential control paths between them. By comparing the CFGs
of the original PE file and the adversarial example, we can as-
sess whether their functionalities are consistent [Yuan et al.,
2024]. Once the adversarial example is generated, we use the
Jaccard similarity to measure the overlap of nodes and edges
between the two CFGs. Based on a predefined threshold, we
determine whether the adversarial example retains the same
functionality as the original.

4 Experiments
4.1 Experimental Setup
Datasets
For this study, we primarily sourced data from the publicly
available Malware Detection PE-Based Dataset [Tuan et al.,
2018], which has been widely used in previous work [Zhan et
al., 2023b]. It includes five malware types: Locker, Mediyes,
Winwebsec, Zbot, and Zeroaccess, as well as 1,000 benign
software samples. Additionally, we downloaded other com-
mon malware types from the MalwareBazaar website[Mal-
wareBazaar, 2024], including Trojan, Backdoor, and Ran-
somware. To ensure compatibility with all target detectors,
we select 2,642 malware samples and 473 benign samples
that are correctly classified by the target detectors.

Target Detectors
We evaluated MiniMal using two types of malware detectors:
machine learning-based malware detection models and real-
world antivirus products. Their characteristics are as follows:

• Detectors 1-3: We selected three state-of-the-art ML
models that have been frequently used in previous work:
MalConv [Raff et al., 2018], Ember [Anderson and
Roth, 2018], and MalGCG [Raff et al., 2021b]. Mal-
Conv and MalGCG are deep learning models and Ember
is based on the LightGBM model. Moreover, we used
the pre-trained models provided by the official sources
[Anderson, 2019; Raff et al., 2021a].

• Detectors 4-5: We selected ClamAV and Avast. Cla-
mAV is an antivirus engine that detects files based on an
up-to-date malware signature database [ClamAV, 2024].
Avast ranked first in AV-Test’s Best Windows Antivirus
Software for Home Users [AV-TEST, 2024a]. Due to
their powerful detection capabilities, they have been
widely studied in both industry and academia.

Evaluation Metrics
We evaluate MiniMal’s performance using four metrics: At-
tack Success Rate (ASR), Query Budget (Q), Perturbation

Rate (Pert), and Functionality. ASR indicates the percentage
of original malware samples where adversarial examples suc-
cessfully evade the target detector. Query Budget specifies
the maximum number of interactions with the target model
permitted during adversarial example generation. The Pertur-
bation Rate measures the degree of modifications applied to
the adversarial example relative to the original sample. Func-
tionality evaluates whether the generated adversarial exam-
ples remain executable and retain their malicious behavior.

Baseline
We compare MiniMal against several state-of-the-art meth-
ods for generating adversarial malware examples: BIA [Su-
ciu et al., 2019], GAMMA [Demetrio et al., 2021], and MAB
[Song et al., 2022], which represent the most advanced tech-
niques in hard-label scenarios.

Although recent years have seen the proposal of several
new methods, such as MalwareTotal [He et al., 2024], AMG-
mal [Zhan et al., 2023c], PSP-Mal [Zhan et al., 2023a],
MalAder [Chen et al., 2023a], and MalGuise [Ling et al.,
2024], they are not suitable for the comparison presented
in this paper. For instance, AMGmal generates adversarial
samples in a white-box scenario; MalwareTotal and PSP-Mal
train RL models based on known features used by the de-
tector, whereas our scenario assumes no prior knowledge of
the features used by the target detector; MalGuise focuses
on bypassing detectors based on CFG features, and MalAder
focuses on evading detectors relying on API Call sequence
features, while we focus on evading static detectors.

Implementation Detail
We developed the prototype implementation of MiniMal us-
ing Python. All experiments were conducted on a computer
equipped with an NVIDIA GeForce RTX 4070 and a Linux
server featuring an AMD EPYC 9654 96-core processor.

4.2 Comparison With State-of-the-Arts
To ensure a fair comparison, we used the original settings
from the official source code for baseline, with all compar-
isons conducted on the same test set. Moreover, to reduce the
impact of randomness, we run each method three times and
take the average of the results. Following prior work [He et
al., 2024], we set the query budget to 500 and the maximum
perturbation rate to 1000% for each method to fully utilize
their performance.

As shown in Table 2, MiniMal outperforms existing meth-
ods in terms of attack success rate and perturbation rate across
the three machine learning-based models. MiniMal achieved
attack success rates of 99.96%, 98.56%, and 99.62% on the
three detectors, with all rates above 98%, representing an
improvement of about 4.8% to 7.1% over the best existing
methods. Additionally, We found that the average perturba-
tion rates of adversarial examples generated by MiniMal were
38.91%, 32.18%, and 33.92%, all below 40%, and reduced
by 9 to 11 times compared to state-of-the-art methods. From
Table 2, we observe that all attack methods are least effec-
tive against the Ember model. This may be because Ember
utilizes diverse PE file features, providing it with greater ro-
bustness compared to detectors that rely on byte features.
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Figure 2: Comparison of the attack success rates by increasing the limited query.
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Figure 3: Comparison of the attack success rates by increasing the limited perturbation rate.

MalConv Ember MalGCG

Methods ASR ↑ Pert ↓ ASR ↑ Pert ↓ ASR ↑ Pert ↓
MAB 95.08% 386.44% 91.41% 376.03% 94.93% 327.50%
GAMMA 91.07% 282.90% 43.01% 371.58% * *
BIA 91.52% 403.23% 89.40% 416.38% 90.39% 389.47%
MiniMal 99.96% 38.91% 98.56% 32.18% 99.62% 33.92%

Table 2: The attack success rate (ASR,%) and perturbation rate (Pert,%) of different hard-label attack algorithms on three models.

To further evaluate the effectiveness of various attack al-
gorithms under different constraints, we tested with the num-
ber of queries ranging from 100 to 500 and maximum pertur-
bation limits from 100% to 1000%. As shown in Figure 2,
MiniMal maintains an attack success rate above 98% across
different query constraints, outperforming the baseline meth-
ods. Figure 3 illustrates the attack success rates of various
algorithms under different perturbation constraints. Notably,
MiniMal achieves over 80% success even under a strict 100%
perturbation limit, whereas baseline methods average below
15%. This highlights the significant advantage of our ap-
proach under low perturbation conditions.

4.3 Functionality Preservation
We tested the functional integrity of adversarial examples
generated by the MiniMal. We used the Cuckoo Sandbox
[Cuckoo, 2024], following the previous method [Zhan et al.,

2023b], to further verify the effectiveness of our approach.
We selected 100 adversarial examples for testing. We sub-
mitted the samples to an online sandbox platform for dy-
namic execution and extracted their API sequences. Using
histogram analysis, we checked for significant changes in API
calls. The results showed that the API sequences of the ad-
versarial examples closely matched those of the original sam-
ples, confirming that the adversarial behavior remained intact.
This validates the robustness of our functionality verification.

4.4 Ablation Study
Effect of the Roulette Wheel Selection. During the initial-
ization phase (Step 1), the roulette wheel selection (RWS)
was used to select actions and contents iteratively. To ex-
amine whether this improves attack success, we included a
control group that used random selection (RS). We randomly
selected 200 samples and applied the top fifty action-content
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pairs with the highest weights from the roulette wheel selec-
tion algorithm, as well as fifty randomly chosen pairs, to eval-
uate their attack performance. From Figure 4, we observe that
our method achieved attack success rates of 77.02%, 76.76%,
and 89.52% under single modification conditions, signifi-
cantly outperforming the random selection method, which
recorded success rates of 42.58%, 14.96%, and 41.58%.
Therefore, we infer that the roulette wheel selection method
can effectively select beneficial perturbation actions and con-
tents, and reusing these actions helps increase the ASR.
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Figure 4: Comparison of the ASR between the top 50 highest-
weighted action-content pairs and randomly selected pairs.

Effect of Action Minimization. To evaluate Action Mini-
mization (AM), we created a control group (No AM) by ex-
cluding this module and measured the average action count
on three malware detectors, both with and without AM. As
shown in Table 3, without action minimization, the average
action count ranges from 1.3 to 1.5. With action minimiza-
tion introduced, the average action count decreased by ap-
proximately 0.3. Although the reduction is modest, this mod-
ule effectively reduces the influence of non-critical actions on
weight table updates.

Methods MalConv Ember MalGCG

No AM 1.3028 1.2945 1.4484
AM 1.0386 1.0465 1.0752

Table 3: Average number of actions used before and after AM.

Effect of Binary Deletion and PSO Deletion. To evaluate
their effectiveness, we recorded the file sizes of the original
samples (Original), and adversarial examples after initializa-
tion (Step 1), and after optimization (Step 2). Figure 5 shows
that after optimizing the adversarial examples, the average file
sizes are 344.08 KB and 337.93 KB. The perturbation added
in Step 1 averaged 953.04 KB, whereas, after optimization,
this was reduced to just 76.53 KB on average. Thus, we con-
clude that binary deletion and PSO deletion significantly re-
duced the perturbation size.

4.5 Real-world Performance
We evaluated MiniMal’s effectiveness on real-world commer-
cial antivirus software. We randomly selected 200 samples
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Figure 5: Comparison of file size at different stages.

and set a maximum of 100 queries. We also included the UPX
[UPX, 2024] method, a well-known tool for compressing PE
files that is widely used by attackers in real-world scenarios.

The results, shown in Table 4, indicate that MiniMal
achieved a 79% success rate against ClamAV and a 35% suc-
cess rate against Avast, outperforming the baseline methods.
UPX achieved success rates of 37% and 29.5%, respectively.
We infer that the widespread use of UPX for packing mal-
ware has led to many UPX-packed signatures being incorpo-
rated into ClamAV’s virus databases. MiniMal demonstrates
effective performance against ClamAV, as introducing pertur-
bations in various regions of the PE file influences the com-
putation of the malware signature. However, MiniMal per-
formed poorly against Avast. Although Avast has not dis-
closed the specifics of its virus engine architecture, we sus-
pect that Avast incorporates dynamic behavioral analysis of
malware in memory, which diminishes the effectiveness of
our static modification approach.

BIA UPX MiniMal

Models ASR ↑ Pert ↓ ASR ↑ ASR ↑ Pert ↓
ClamAV 15% 2537.77% 37% 79% 3.77%
Avast 3.5% 232.71% 29.5% 35% 25.27%

Table 4: The attack success rate results on Antivirus.

5 Conclusion
This paper introduces MiniMal, a hard-label adversarial at-
tack method specifically designed for static malware detec-
tors. Initially, we employ a roulette wheel algorithm to sys-
tematically select actions and content for generating adversar-
ial examples. We then apply action minimization, along with
binary search and particle swarm optimization algorithms, to
effectively reduce the perturbation rate of these samples. Fur-
thermore, we ensure the functional integrity of adversarial ex-
amples through file format parsing and CFG comparison. We
conducted a series of experiments to demonstrate the effec-
tiveness of our approach. The results indicate that MiniMal
achieves an attack success rate exceeding 98% against three
ML-based detection models, with a perturbation rate below
40%, surpassing existing hard-label attack methods. Notably,
MiniMal achieves over 80% of attack success even under low
perturbation rate limits. Finally, We validated that the adver-
sarial examples generated by MiniMal retain their malicious
functionality through testing with Cuckoo Sandbox.
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