
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Responsibility Anticipation and Attribution in LTLf

Giuseppe De Giacomo1,2 , Emiliano Lorini3 , Timothy Parker3 and Gianmarco Parretti2
1University of Oxford

2University of Rome “La Sapienza”
3IRIT, CNRS, Toulouse University, France

giuseppe.degiacomo@cs.ox.ac.uk, Emiliano.Lorini@irit.fr, icetimp@gmail.com
parretti@diag.uniroma1.it

Abstract

Responsibility is one of the key notions in machine
ethics and in the area of autonomous systems. It
is a multi-faceted notion involving counterfactual
reasoning about actions and strategies. In this pa-
per, we study different variants of responsibility for
LTLf outcomes based on strategic reasoning. We
show a connection with notions in reactive synthe-
sis, including the synthesis of winning, dominant,
and best-effort strategies. This connection provides
a strong computational grounding of responsibility,
allowing us to characterize the worst-case computa-
tional complexity and devise sound, complete, and
optimal algorithms for anticipating and attributing
responsibility.

1 Introduction
Responsibility is a key notion in the areas of machine ethics
and multi-agent systems. In recent times, there have been
several and diverse attempts to formalize it, using various
approaches such as game-theoretic tools [Baier et al., 2021;
Braham and van Hees, 2012; Lorini and Mühlenbernd, 2018]
and logical tools including STIT logic [Lorini et al., 2014;
Abarca and Broersen, 2022; Baltag et al., 2021; Lorini and
Schwarzentruber, 2011], LTLf [Parker et al., 2023], ATL
[Yazdanpanah et al., 2019; Bulling and Dastani, 2013], log-
ics of strategic and extensive games [Shi, 2024; Naumov and
Tao, 2021; Naumov and Tao, 2023], structural equation mod-
els [Chockler and Halpern, 2004]. However, the overall pic-
ture on the conceptual and computational aspects of responsi-
bility remains rather fragmented. This is due to its polysemic
nature and to its many dimensions (e.g., forward-looking vs
backward-looking, active vs passive, direct vs indirect, causal
vs moral, attributed vs anticipated).

In this paper we provide (i) a comprehensive analysis of
the complexity of reasoning about strategic responsibility,
namely, the responsibility of an agent due to its choice of a
given strategy, and (ii) a number of algorithms that can be
used to automate reasoning about strategic responsibility.

We limit ourselves to analyzing causal responsibility [Vin-
cent, 2011], which considers whether or not an agent caused
a certain state of affairs to occur by making a certain choice.

It is a general notion of responsibility that is a necessary con-
dition for both legal [Jansen, 2014] and moral [Talbert, 2023]
responsibility. We consider the two main forms of responsi-
bility that exist in the literature, active responsibility and pas-
sive responsibility. Active responsibility captures the notion
of an agent making φ happen, while passive responsibility
consists in the agent merely letting φ happen. The distinc-
tion between the two notions was proposed in [Lorini et al.,
2014] in an action-based setting. Active responsibility corre-
sponds to the notion of deliberative stit studied in STIT logic
[Belnap et al., 2001] while passive responsibility corresponds
to the counterfactual notion of (something) could have been
prevented (CHP), a fundamental component of the notion of
regret as highlighted in [Lorini and Schwarzentruber, 2011].
More recently, a plan-based analysis of active and passive re-
sponsibility was proposed in [Parker et al., 2023]. In line
with their work we distinguish the concepts of responsibility
anticipation and responsibility attribution. Responsibility an-
ticipation is an ex ante notion: it is the responsibility that an
agent could incur by making a certain choice. Responsibility
attribution is an ex post notion: it is ascribed to a given agent
after the agent and the environment have made their choices
and the result of their choices has been revealed.

Passive responsibility for φ, as defined in [Lorini et al.,
2014], is a notion of responsibility in a weak sense. As
pointed out in [Braham and van Hees, 2012], to strengthen
it one could add the requirement that the alternative option
the agent could have chosen was preferred by some rational-
ity requirement, implying that the agent has no excuse for
letting φ happen. A simple and universal rationality require-
ment is dominance: there was an alternative recommended
option that dominates its actual choice, which is equivalent to
saying that the agent’s actual choice was not best-effort.

Since the notions of dominance and best-effort are been
well-studied in the field of strategy synthesis, it is natural to
combine the theory of responsibility with existing work on
best-effort synthesis, which is the focus of the present paper.
By doing this we gain a better understanding of the computa-
tional complexity of reasoning about strategic responsibility
and novel algorithms for it. It also leads to the novel notion
of strong passive responsibility, which is particularly useful
for agents who use responsibility to evaluate their options.

Our formal analysis of responsibility relies on LTL on fi-
nite traces (LTLf), a popular temporal logic which we have

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

chosen due to its popularity in strategy synthesis, as well as
normative specifications in multi-agent systems and AI more
broadly. We formally specify various notions of responsibil-
ity and relate them to combinations of forms of LTLf synthe-
sis studied in the literature [De Giacomo and Vardi, 2015;
Aminof et al., 2019; Aminof et al., 2021; Aminof et al.,
2023]. This allows us to give a computational grounding
to such notions of responsibility and devise algorithms and
computational complexity characterization to assess them.
We also contribute to the LTLf strategy reasoning by devis-
ing algorithms for and proving the computational complex-
ity of checking strategic properties, like winning, dominant,
and best-effort (vs. synthesizing strategies with these prop-
erties [De Giacomo and Vardi, 2015; Aminof et al., 2019;
Aminof et al., 2021; Aminof et al., 2023]).

2 Preliminaries
A trace over an alphabet of symbols Σ is a finite or infinite
sequence of elements from Σ. The empty trace is λ. The
length of a trace is |π|. Traces are indexed starting at zero,
and we write π = π0π1 · · · . For a finite trace π, we denote
by lst(π) the index of its last element, i.e., |π|−1. We denote
by πk = π0 · · ·πk the prefix of π up to the k-th index.

Linear Temporal Logic on finite traces (LTLf) is a specifi-
cation language for expressing temporal properties over finite
traces [De Giacomo and Vardi, 2013]. LTLf has the same
syntax as LTL [Pnueli, 1977], which is instead interpreted
over infinite traces. Given a set AP of atomic propositions
(aka atoms), the LTLf formulas over AP are: φ ::= a |
¬φ | φ ∧ φ | ◦φ | φU φ, where a ∈ AP , and ◦ (Next)
and U (Until) are temporal operators. Additional operators
are defined as abbreviations and include: standard Boolean
operators of propositional logic; •φ ≡ ¬◦¬φ (Weak Next);
✸φ ≡ true U φ (Eventually); and ✷φ ≡ ¬✸¬φ (Always).
The size of φ, written |φ|, is the number of its subformulas.

LTLf formulas are interpreted over finite traces π over the
alphabet Σ = 2AP , i.e., consisting of propositional interpre-
tations of atoms. For i ≤ lst(π), we have that πi ∈ 2AP is
the i-th interpretation of π. That an LTLf formula φ holds at
instant i of trace π, written π, i |= φ, is defined inductively:

• π, i |= a iff a ∈ πi (for a ∈ AP);
• π, i |= ¬φ iff π, i ̸|= φ;
• π, i |= φ1 ∧ φ2 iff π, i |= φ1 and π, i |= φ2;
• π, i |= ◦φ iff i < lst(π) and π, i+ 1 |= φ;
• π, i |= φ1 U φ2 iff ∃j such that i ≤ j ≤ lst(π) and
π, j |= φ2, and ∀k, i ≤ k < j we have that π, k |= φ1.

We say that π satisfies φ, written π |= φ, if π, 0 |= φ.
We consider LTLf formulas over AP = Y ∪ X , where Y

and X are disjoint sets of atoms under control of agent and
environment, respectively, as in LTLf reactive synthesis [De
Giacomo and Vardi, 2015]. Traces over Σ = 2Y∪X will be
denoted π = (Y0 ∪ X0)(Y1 ∪ X1) · · · where Yi ⊆ Y and
Xi ⊆ X for every i ≥ 0. Such finite traces are sometimes
also called histories.

An agent strategy is a function σag : (2X)∗ → 2Y mapping
sequences of environment choices to an agent choice. We re-
quire σag to be stopping [De Giacomo et al., 2021], i.e., the
agent stops the execution of any action at some point of the

trace, written stop. Formally, an agent strategy σag is stop-
ping if for every trace π ∈ (2Y∪X)ω there exists k ∈ N such
that, for every j ≥ k, we have that σag(πj) = stop and, for
every i < k, we have that σag(πi) ̸= stop. An environment
strategy is a function σenv : (2Y)+ → 2X mapping non-
empty sequences of agent choices to an environment choice.
The domain of σag includes the empty sequence λ as we as-
sume that the agent moves first.

A trace π = (Y0∪X0) · · · (Yn∪Xn) is consistent with σag
if: (i) Y0 = σ(λ); (ii) Yi = σag(X0 · · ·Xi−1) for every i > 0;
and (iii) σag(X0 · · ·Xn) = stop. Similarly, π is consistent
with σenv if Xj = σenv(Y0 · · ·Yj) for every j ≥ 0. We
denote by Play(σag, σenv) the shortest trace that is consistent
with both σag and σenv .

Let ψ be an LTLf formula over Y ∪ X . An agent strategy
σag is winning for (aka enforces) ψ if Play(σag, σenv) |= ψ
for every environment strategy σenv . Conversely, an environ-
ment strategy σenv is winning (aka enforces) for ψ if every
finite prefix of Play(σag, σenv) satisfies ψ for every agent
strategy σag . An environment specification E is an LTLf for-
mula that is environment enforceable [Aminof et al., 2019]
and ΣE is the set of environment strategies that enforce E .
An agent strategy σag is winning for (aka enforces) φ under
E if Play(σag, σenv) |= φ for every environment strategy
σenv ∈ ΣE . We may omit φ and/or E when they are clear
from the context and say, e.g., σag is winning for φ.

In this paper, we are interested in the result that every LTLf

formula φ can be transformed into a finite automaton that ac-
cepts exactly the traces that satisfy φ [De Giacomo and Vardi,
2015]. A nondeterministic finite automaton (NFA) is a tuple
N = (Σ, S, s0, δ, F), where: Σ is a finite input alphabet; S is
a finite set of states; s0 ∈ S is the initial state; δ : S×Σ → 2S

is the transition function; and F ⊆ S is the set of final states.
The size of N is |S|. Given a word π = π0 · · ·πn ∈ Σ∗, a
run of N in π is a sequence of states s0 · · · sn+1 starting in
the initial state of N and such that si+1 ∈ δ(si, πi) for every
i ≥ 0. A word π is accepted by N if it has a run whose last
reached state is final. The language of N , written L(N), is
the set of words accepted by N . An automaton N is a de-
terministic finite automaton (DFA) if |δ(s, a)| ≤ 1 for every
(s, a) ∈ S × Σ. Checking non-emptiness of L(N), written
NONEMPTY(N), can be done by checking the existence of
a path from the initial state of N to some final state. Given
the NFAs N1 and N2 with languages L(N1) and L(N2), re-
spectively, we can build in polynomial time the product NFA
N = N1×N2 such that L(N) = L(N1)∩L(N2). We denote
nondeterministic and deterministic automata by N and A, re-
spectively. Every LTLf formula φ can be transformed into an
NFA Nφ = TONFA(φ) (resp. DFA Aφ = TODFA(φ)) with
size at most exponential (resp. doubly-exponential) in |φ| and
whose language is exactly the set of traces satisfying φ [De
Giacomo and Vardi, 2015].

A DFA game is a DFA G with input alphabet 2Y∪X , where
Y and X are two disjoint sets under control of agent and en-
vironment, respectively. The notions of strategy and play
also apply DFA games. An agent strategy is winning if
Play(σag, σenv) is accepted by G for every environment strat-
egy σenv . Conversely, an environment strategy is winning if

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Play(σag, σenv) is not accepted by G for every agent strategy
σag . The agent winning region is the set of states s ∈ S
for which the agent has a winning strategy in the game
G′ = (2Y∪X , S, s, δ, F), i.e., the same game as G, but with
initial state s. The environment winning region is defined
analogously. Solving a DFA game is the problem of comput-
ing the agent winning region, writtenW = WINREGION(G).
Games played over DFAs are determined, meaning that the
agent winning region and the environment winning region
partition the state space [Gale and Stewart, 1953]. The envi-
ronment winning region is denoted ENVWIN(G). DFA games
can be solved in polynomial time in the size of the game via
a least-fixpoint computation [Apt and Grädel, 2011].

We will need to restrict transitions in a DFA to those that
do not allow leaving a given set of states. Given a DFA A and
a set of states Q ⊆ S, the restriction of A to Q can be built in
polynomial time and is denoted A′ = RESTR(A, Q).

We represent agent strategies as terminating transduc-
ers [Bansal et al., 2023] σag = (2X , 2Y , S, s0, η, κ, F),
where: 2X is the input alphabet; 2Y is the output alphabet;
S is a finite set of states; s0 ∈ S is the initial state; η :
S×2X → S is the transition function; κ : S → 2Y is the out-
put function; and F ⊆ S is the set of terminating states. The
size of σag , denoted |σag|, is |S|. Given an input sequence
X0 · · ·Xn ∈ (2X)∗, the output sequence is κ(s0) · · ·κ(sn),
where s0 is the initial state of σag and si+1 = η(si, Xi) for
every i ≥ 0. A transducer σag can be transformed in polyno-
mial time into a DFA Aσag

= TODFA(σag) whose language
is the set of traces consistent with σag .

3 Active Responsibility
The first notion of responsibility that we consider is active re-
sponsibility, which captures: (i) that the agent selected a strat-
egy that forced a certain outcome, while (ii) having the possi-
bility of selecting an alternative strategy that would have not
forced that outcome for at least some environment response.
In the context of LTLf , we formalize this notion as follows:
Definition 1. [Active Responsibility] The agent has active re-
sponsibility for φ under σag and E if: (i) Play(σag, σenv) |=
φ for every environment strategy σenv ∈ ΣE ; and (ii) there
exists a pair of strategies (σ′

ag, σ
′
env) such that σ′

env ∈ ΣE
and Play(σ′

ag, σ
′
env) ̸|= φ.

By condition (i), active responsibility is related to winning
strategies used in reactive synthesis [De Giacomo and Vardi,
2015; Aminof et al., 2019] (see Preliminaries); by condi-
tion (ii), active responsibility is related to a form of strategies
called weak [Cimatti et al., 2003], which only ensure the exis-
tence of an environment strategy for which a certain outcome
occurs. Formally, an agent strategy σ′

ag is weak for ¬φ under
E if there exists an environment strategy σ′

env ∈ ΣE such that
Play(σ′

ag, σ
′
env) |= ¬φ. The following shows the relation

between active responsibility, winning, and weak strategies.
Theorem 1. The agent has active responsibility for φ under
σag and E iff σag is winning for φ under E and there exists
some agent strategy σ′

ag that is weak for ¬φ under E .
We now illustrate how these notions can be applied to as-

sess active responsibility using a relatively simple example.

Example 1. An agent is assigned the task to take care of a
plant. In doing so, the agent must consider the possibility that
the environment could also water the plan by raining.
Consider the following outcomes:

• φ = “The plant is watered at least once”;
• ¬φ = “The plan is never watered”.

Furthermore, consider the following agent strategies:
• σ1 = “Water the plant in the morning”;
• σ2 = “Never water the plant”.

Finally, consider the following environment specifications:
• E1 = “The weather can rain”;
• E2 = “The weather surely rains”.

We have the following:
1. The agent has active responsibility for φ under σ1 and

E1. In fact, σ1 is winning for φ under E1 and a weak
strategy for ¬φ under E1 exists. One such a weak strat-
egy is σ2, since it satisfies ¬φ together with the environ-
ment strategy that the weather never rains.

2. The agent does not have active responsibility forφ under
σ2 and E1, since σ2 is not winning for φ under E1.

3. The agent does not have active responsibility forφ under
σ1 and E2. In fact, no weak strategy for ¬φ under E2
exists, i.e., regardless of which strategy the agent selects,
the plant will be watered.

In what follows, we study the decision problem of check-
ing if the agent has active responsibility. That is: given an
LTLf formula φ, an LTLf environment specification E , and
an agent strategy σag , we want to decide whether the agent
has active responsibility for φ under σag and E . The follow-
ing establishes the computational complexity of the problem.
Theorem 2. Checking if the agent has active responsi-
bility for φ under σag and E is: PSPACE-complete wrt φ;
2EXPTIME-complete wrt E; and polynomial wrt σag .

We prove membership of checking active responsibility by
exhibiting a sound and complete algorithm to solve it. Based
on Theorem 1, this algorithm checks that σag is winning for
φ under E and that there exists a weak strategy for ¬φ under
E . First, we give an algorithm for each such check.

We begin by giving an algorithm to check if a strategy σag
is winning for φ under E , denoted CHECKWIN(φ, E , σag):
1. Construct the NFA N¬φ of ¬φ, the DFA AE of E , and the
DFA Aσag

of σag; 2. Restrict AE to the environment win-
ning region and obtain DFA A′

E ; and 3. Check language non-
emptiness of the product N = N¬φ × A′

E × Aσag
. Intu-

itively, CHECKWIN(φ, E , σag) checks whether there exists a
trace consistent with σag that satisfies ¬φ, i.e., that witnesses
that σag is not winning for φ. By the notion of product of au-
tomata, we have that the language of N is exactly the set of
traces that satisfy ¬φ and are consistent with σag and some
environment strategy enforcing E . As a result, we have that
σag is winning for φ under E iff L(N) is empty.

The complexity of CHECKWIN(φ, E , σag) wrt φ is dom-
inated by checking language non-emptiness of the product
N = N¬φ × A′

E × Aσag . That can be done on-the-fly
while building the product [Vardi and Wolper, 1986]. Be-
ing N¬φ exponential in |φ|, we get PSPACE membership wrt
φ. The complexity wrt E is dominated by computing and
restricting the automaton AE , which is doubly-exponential

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

in |E|, and gives 2EXPTIME membership wrt E . Finally,
the product automaton N is polynomial in |σag|, which
gives polynomial complexity wrt σag . The complexity of
CHECKWIN(φ, E , σag) establishes membership of checking
if a strategy is winning for φ under E .

Note that CHECKWIN(φ, E , σag) constructs the DFA of E ,
which involves a doubly-exponential blowup, while it con-
structs the NFA of ¬φ, which involves a singly-exponential
blowup instead. This is because in order to reason about
traces consistent with environment strategies enforcing an en-
vironment specification E , we must restrict its DFA AE to
the environment winning region WE = ENVWIN(AE). That
is, we have that A′

E = RESTR(AE ,WE) accepts exactly the
traces π that satisfy E and are consistent with some environ-
ment strategy enforcing E . Such construction, which leads to
a doubly-exponential blowup wrt E , is unavoidable, as also
confirmed by the computational complexity of checking if a
strategy is winning, established in the following.

Lemma 1. Checking if σag is winning for φ under E is:
PSPACE-complete wrt φ; 2EXPTIME-complete wrt E; and
polynomial wrt σag .

We now give an algorithm to check if a weak strategy
for ¬φ under E exists, denoted EXISTSWEAK(¬φ, E): 1.
Construct the NFA N¬φ of ¬φ and DFA AE of E ; 2. Re-
strict AE to the environment winning region and obtain DFA
A′

E ; and 3. Check language non-emptiness of the prod-
uct N = N¬φ ×A′

E . EXISTSWEAK(¬φ, E) is similar to
CHECKWIN(φ, E). It checks whether there exists a trace sat-
isfying ¬φ and consistent with some environment strategy
enforcing E , i.e., that witnesses that a weak strategy for ¬φ
under E exists. Its complexity analysis establishes PSPACE
and 2EXPTIME membership wrt φ and E , respectively, of
checking the existence of a weak strategy. The following es-
tablishes the computational complexity of checking the exis-
tence of a weak strategy for an arbitrary LTLf formula.

Lemma 2. Checking the existence of a weak strat-
egy for φ under E is: PSPACE-complete wrt φ; and
2EXPTIME-complete wrt E .

The algorithm for checking if the agent has ac-
tive responsibility for φ under σag and E checks both
CHECKWIN(φ, E , σag) and EXISTSWEAK(¬φ, E). Such al-
gorithm is sound and complete by Theorem 1. Its complex-
ity establishes membership of checking active responsibil-
ity. Hardness of checking active responsibility follows by a
polynomial-time reduction from checking if a strategy σag is
winning for φ under E , whose hardness is shown in Lemma 1.
The reduction shows that σag is winning for φ under E iff the
agent has active responsibility for φ ∧ ¬y under E and σag ,
where y is a new atom under agent’s control. Putting together
membership and hardness of checking active responsibility,
we obtain the complexity characterization in Theorem 2.

4 Passive Responsibility Anticipation
While active responsibility captures the notion of an agent
forcing φ to occur, passive responsibility consists in the agent
merely letting φ occur. In this context, we distinguish be-
tween responsibility anticipation and attribution. The first is

an “ex ante” notion, we want to check whether the currently
selected agent strategy allows for φ to occur; the latter is an
“ex post” notion, in the actual history, generated by the cur-
rently selected agent strategy, φ occurred, and we want to
check if the agent let it happen. Note that this distinction is
not meaningful for active responsibility: to decide whether
the agent has active responsibility for φ we need to check all
histories consistent with its strategy, so looking at a specific
history is not relevant. In other words, the definitions of antic-
ipation and attribution for active responsibility are equivalent.

In the context of passive responsibility, we also distinguish
between weak and strong responsibility. The former cap-
tures that, given the environment response, there exists an-
other agent strategy which would have falsified φ; this is the
“classical” notion of passive responsibility and is widely stud-
ied in the literature [Lorini et al., 2014; Parker et al., 2023].
The latter captures that there exists another agent strategy that
would have been better at falsifying φ, considering all possi-
ble environment responses. As emphasized in Section 1, if
an agent has strong passive responsibility for φ, then it can-
not give an “excuse” for letting φ occur. To the best of our
knowledge, this notion is novel to our work.
Definition 2 (Weak Passive Responsibility Anticipation).
The agent anticipates weak passive responsibility for φ un-
der σag and E if: (i) there exists an environment strategy
σenv ∈ ΣE such that Play(σag, σenv) |= φ; and (ii) there
exists an agent strategy σ′

ag such that Play(σ′
ag, σenv) ̸|= φ.

The definition of strong passive responsibility is based on
the game-theoretic notion of dominance [Apt and Grädel,
2011; Aminof et al., 2021]. Let σ1 and σ2 be agent strate-
gies. We say that σ1 dominates σ2 for φ under E , written
σ1 ≥φ|E σ2, if Play(σ2, σenv) |= φ then Play(σ1, σenv) |=
φ for every environment strategy σenv ∈ ΣE . Furthermore,
we say that σ1 strictly dominates σ2, written σ1 >φ|E σ2, if
σ1 ≥φ|E σ2 and σ2 ̸≥φ|E σ1. Intuitively: σ1 ≥φ|E σ2 means
that σ1 is at least as good as σ2 (wrt φ and E); σ1 >φ|E σ2
means that σ1 is strictly better than σ2 (wrt φ and E).
Definition 3 (Strong Passive Responsibility Anticipation).
The agent anticipates strong passive responsibility for φ un-
der σag and E if: (i) there exists an environment strategy
σenv ∈ ΣE such that Play(σag, σenv) |= φ; and (ii) there
exists an agent strategy σ′

ag such that σ′
ag ≥¬φ|E σag and

Play(σ′
ag, σenv) ̸|= φ.

Weak and strong passive responsibility anticipation are
related to a form of strategies called dominant and best-
effort, respectively, which have been recently investigated
in the literature on reactive synthesis [Aminof et al., 2021;
Aminof et al., 2023]. In what follows, we briefly review dom-
inant and best-effort strategies in the context of LTLf .

Formally, an agent strategy σag is dominant for φ under
E if σag ≥φ|E σ′

ag for every agent strategy σ′
ag . An agent

strategy is best-effort for φ under E if there does not exist an-
other agent strategy σ′

ag such that σ′
ag >φ|E σag . Best-effort

strategies always exist and capture the game-theoretic ratio-
nality principle that the agent should not use a strategy that
is strictly dominated [Aminof et al., 2021]. If the agent uses
a strictly dominated strategy σ1, say σ2 >φ|E σ1, then it is
not doing its best wrt φ: if it used σ2 instead, it would have

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

satisfied φ against a strictly larger set of environment strate-
gies. Dominant strategies [Aminof et al., 2023] are slightly
stronger than best-effort strategies, but do not always exist.
Intuitively, a dominant strategy satisfies φ against every envi-
ronment strategy for which it is possible to do so. Winning,
dominant, and best-effort strategies are related [Aminof et al.,
2023]. Specifically: if a winning strategy exists, the winning
strategies are exactly the dominant strategies; and if a dom-
inant strategy exists, the dominant strategies are exactly the
best-effort strategies. The following establishes the relation
between weak (resp. strong) passive responsibility anticipa-
tion and dominant (resp. best-effort) strategies.

Theorem 3. The agent anticipates weak (resp. strong) pas-
sive responsibility for φ under σag and E iff σag is not domi-
nant (resp. is not best-effort) for ¬φ under E .

Theorem 3 leads to the following observations.
1. If no dominant strategy for ¬φ exists, the agent an-

ticipates weak passive responsibility for φ regardless of the
strategy it selects. In the context of LTLf , dominant strate-
gies rarely exists [Aminof et al., 2023], i.e., that the agent
anticipates weak passive responsibility is often unavoidable;

2. A best-effort strategy for ¬φ always exists, meaning
that the agent can always avoid to anticipate strong passive
responsibility for φ by selecting one such a strategy.

Putting such observations together with the relation be-
tween dominant and best-effort strategies, we can observe the
following. The agent should always select a strategy σag that
is best-effort for ¬φ. On one hand, we have that σag avoids
strong passive responsibility anticipation for φ. On the other
hand, if a dominant strategy for ¬φ exists, we have that σag
is also dominant for ¬φ, and the agent does not anticipate
neither weak nor strong passive responsibility for φ.

In other words, best-effort strategies unify under one strat-
egy concept weak and strong passive responsibility anticipa-
tion. Given the relation between best-effort strategies and
strong passive responsibility anticipation established in The-
orem 3, we argue that strong passive responsibility is strictly
more useful than classical weak passive responsibility to de-
velop and evaluate responsibility-aware autonomous agents.
This makes our notion of strong passive responsibility a sig-
nificant contribution to the field of responsibility analysis.

We now illustrate such notions using the example of the
autonomous agent that has to water a plant.

Example 2. Consider the same outcomes, agent strategies,
and environment specification in Example 1.

1. The agent does not anticipate neither weak nor strong
passive responsibility for φ under σ2 and E1. In fact,
σ2 is dominant (and hence, best-effort) for ¬φ under E1.
To see this, observe that σ2 is the unique agent strategy
for which ¬φ is satisfied together with the environment
strategy that the weather never rains.

2. The agent anticipates weak and strong passive responsi-
bility for φ under σ1 and E1. In fact, σ1 is not dominant
(and hence, not best-effort) for ¬φ under E1.

Consider the following outcomes and agent strategy
• φ′ = “The plant is either never watered or watered more

than once”
• ¬φ′ = “The water is watered exactly once”

• σ3 = “Water the plant day and night”.
We have the following.

3. The agent does not anticipate strong passive responsi-
bility for φ′ under σ2 and E1. In fact, σ2 is best-effort
for ¬φ′ under E1. However, the agent anticipates weak
passive responsibility for φ′ under σ2 and E1. This is
because σ2 not dominate σ1 wrt ¬φ′: σ2 does not sat-
isfy ¬φ′ together with the environment strategy that the
weather never rains, whereas σ1 does.

4. The agent anticipates both weak and strong passive re-
sponsibility for φ′ under σ3 and E1. In fact, σ3 is not
best-effort for ¬φ′ under E1. To see this, observe that
σ3 never satisfies ¬φ′ for every environment strategy.
On the other hand, σ2 satisfies ¬φ′ together with the
environment strategy that the weather rains only in the
morning, i.e., σ2 strictly dominates σ3 wrt ¬φ′ and E1.

We now study the decision problem of checking if the
agent anticipates weak (resp. strong) passive responsibility.
That is: given an LTLf formula φ, an LTLf environment spec-
ification E , and an agent strategy σag , we want to decide
whether the agent anticipates weak (resp. strong) passive re-
sponsibility for φ under σag and E . The following establish
the computational complexity of the problems.
Theorem 4. Checking if the agent anticipates weak passive
responsibility for φ under σag and E is: PSPACE-complete
wrt φ; 2EXPTIME-complete wrt E; and polynomial wrt σag .
Theorem 5. Checking if the agent anticipates strong passive
responsibility for φ under σag and E is: 2EXPTIME-complete
wrt φ and E; and polynomial wrt σag .

We prove membership in Theorems 4 and 5 constructively
by exhibiting a sound and complete algorithm for checking
their corresponding responsibility notion.

We consider weak passive responsibility first. Based on
Theorem 3, checking weak passive responsibility anticipation
can be reduced to checking if a strategy is (not) dominant. In
what follows, we give an algorithm to check if a strategy σag
is dominant for φ under E , denoted CHECKDOM(φ, E , σag):

1. Let Y ′ = {y′ s.t. y ∈ Y} and X ′ = {x′ s.t. x ∈ X};
2. Define φ′ and E ′ as copies of φ and E over Y ′ ∪ X ′;
3. N¬φ = TONFA(¬φ) and Nφ′ = TONFA(φ′)
4. AE = TODFA(E) and AE′ = TODFA(E ′)
5. WE = ENVWIN(AE) and WE′ = ENVWIN(AE′)
6. A′

E = RESTR(AE ,WE) and A′
E′ = RESTR(AE′ ,W ′

E)
7. Aσag

= TODFA(σag)
8. N = AY̸=Y′ × (N¬φ ×A′

E ×Aσag
)× (Nφ′ ×A′

E′)
9. if NONEMPTY(N) return false; else return true
Intuitively, CHECKDOM(φ, E , σag) checks the existence

of a pair of traces (π, π′) such that, for some en-
vironment strategy σenv enforcing E , we have that
π = Play(σag, σenv) |= ¬φ, and, for some agent strategy
σ′
ag distinct from the currently selected agent strategy σag ,

we have that π′ = Play(σ′
ag, σenv) |= φ, i.e., π and π′ wit-

ness that σag is not dominant for φ, as it does not dominate
σ′
ag . To do so, CHECKDOM(φ, E , σag) checks language non-

emptiness of an automaton N obtained by product of several
automata, including:

• AY̸=Y′ , whose language is the set of pairs of traces
(π, π′) such that, if the agent makes the same choices

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 1: DFA AY̸=Y′ . Final states are in bold. y = y′ (resp.
y ̸= y′) denotes equal (resp. distinct) assignments of atoms in Y
and Y ′. Similarly for x = x′ (resp. x ̸= x′).

in both π and π′, then the environment does the same
(see Figure 1);

• (N¬φ×A′
E ×Aσag

), whose language is the set of traces
π = Play(σag, σenv) |= ¬φ, where σag is the input
strategy and σenv is some environment strategy enforc-
ing E ;

• (Nφ′ × A′
E′), whose language is the set of traces π′ =

Play(σ′
ag, σenv) |= φ for some agent strategy σ′

ag and
some environment strategy σenv enforcing E .

By the notion of product of automata, the language of N is
the set of pairs of traces (π, π′) mentioned above. It follows
that σag is dominant for φ under E iff L(N) is empty.

The complexity of CHECKDOM(φ, E , σag) gives PSPACE
and 2EXPTIME membership wrt φ and E , respectively, and
polynomial complexity wrt σag . Its analysis is similar to that
of CHECKWIN(φ, E , σag). The computational complexity of
checking if a strategy is dominant is the following:
Lemma 3. Checking if σag is dominant for φ under E is:
PSPACE-complete wrt φ; 2EXPTIME-complete wrt E; and
polynomial wrt σag .

The algorithm for checking if the agent anticipates
weak passive responsibility for φ under σag and E checks
whether σag is not dominant for ¬φ under E , written
¬CHECKDOM(¬φ, E , σag). Such algorithm is sound and
complete by Theorem 3 and its complexity establishes mem-
bership of checking weak passive responsibility anticipation.
Hardness of weak passive responsibility anticipation follows
by its relation with dominant strategies, established in The-
orem 3, and hardness of checking if a strategy is dominant,
established in Lemma 3. Putting together membership and
hardness of weak passive responsibility anticipation, we ob-
tain the complexity characterization in Theorem 4.

We now turn to the decision problem of checking strong
passive responsibility anticipation. Based on Theorem 3, this
problem is reducible to checking if a strategy is (not) best-
effort. In what follows, we give an algorithm to check if
a strategy σag is best-effort for φ under E . This algorithm
bases on solving a DFA game, using the notions of winning
and weak strategy. We reviewed winning strategies in DFA
games in Section 2. In the context of a DFA game G, an agent
strategy σag is weak if there exists an environment strategy
σenv such that Play(σag, σenv) is accepted by G. The weakly
winning region W ′ is defined analogously to the winning re-
gion, i.e., W ′ is the set of states of G where the agent has a
weak strategy. The weakly winning region W ′ can be com-
puted in polynomial time with a least fixpoint computation
over the state space of G, written W ′ = WEAKREGION(G).

The following is the algorithm for checking if a

strategy σag is best-effort for φ under E , denoted
CHECKBE(φ, E , σag).

1. Aφ = TODFA(φ) and AE = TODFA(E);
2. WE = ENVWIN(AE); and A′

E = RESTR(AE ,WE);
3. G = Aφ ×A′

E ;
4. W = WINREGION(G) and W ′ = WEAKREGION(G);
5. Aσag

= TODFA(σag)
6. Gσag = G × Aσag .Say: SG × Sσag is the state set of

Gσag ; s0 is the initial state of Gσag ; and F is the set of
final states of Gσag ;

7. Wσag = {(sG , sσag) ∈ SG × Sσag) | sG ∈W};
8. W ′

σag
= {(sG , sσag) ∈ SG × Sσag) | sG ∈W ′};

9. for every state s ∈ SG × Sσag
reachable from s0:

(A) if s ∈ Wσag and there exists a path ρ = s · · · s′
such that s′ ̸∈ F and ρ can’t be extended to reach
F return false;

(B) else if s ∈ W ′
σag

\Wσag
and no path from s to F

exists return false;
10. return true

CHECKBE(φ, E , σag) uses a characterization of best-effort
strategies based on the notion of value of a history, which we
sketch [Aminof et al., 2021]. Intuitively, the value of a his-
tory h is: +1 (“winning”) if the agent has a winning strategy
for φ under E starting from h; 0 (“pending”) if the agent has
a weak strategy for φ under E starting from h; and −1 (“los-
ing”) otherwise. A best-effort strategy is one that witness the
maximum value of each history consistent with it. The DFA
game G solved by CHECKBE(φ, E , σag) (Lines 1-4) satisfies
the following: histories whose runs lead to a state in the win-
ning region W are winning; among the remaining histories,
those whose runs lead to a state in the weakly winning region
W ′ are pending; and the remaining are losing [Aminof et al.,
2021]. By the notion of product of automata, the DFA Gσag

(Lines 6-8) satisfies the following: histories whose runs lead
toWσag

are winning and consistent with σag; and, among the
remaining histories, those whose runs lead to W ′

σag
are pend-

ing and consistent with σag . CHECKBE(φ, E , σag) checks
that the agent is able to: (A) reach a final state from every
state in Wσag

regardless of the environment response, so that
σag is winning in every winning history consistent with it; (B)
reach a final state from every state in W ′

σag
\Wσag for some

environment response, so that σag is weak in every pending
history consistent with it. By the history-based characteriza-
tion of best-effort strategies, σag is best-effort for φ under E
iff neither (A) nor (B) is violated.

The complexity of CHECKBE(φ, E , σag) is dominated by
constructing and solving games of doubly-exponential size in
|φ| and |E|, so that CHECKBE(φ, E , σag) establishes 2EXP-
TIME membership wrt φ and E . The size of Gσag is polyno-
mial in |σag|, which establishes polynomial complexity wrt
σag . Hardness and computational complexity of checking if
a strategy is best-effort are established in the following:
Lemma 4. Checking if σag is best-effort for φ under E is:
2EXPTIME-complete wrt φ and E; and polynomial wrt σag .

The algorithm for checking if the agent anticipates
strong passive responsibility for φ under σag and E checks
whether σag is not best-effort for ¬φ under E , written
¬CHECKBE(¬φ, E , σag). Such algorithm is sound and com-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

plete by Theorem 3 and its complexity establishes member-
ship of checking strong passive responsibility anticipation.
Hardness of strong passive responsibility anticipation follows
by its relation with best-effort strategies, established in The-
orem 3, and the complexity of checking if a strategy is best-
effort, established in Lemma 4. Putting together membership
and hardness of strong passive responsibility anticipation, we
get the complexity characterization in Theorem 5.

5 Passive Responsibility Attribution
We now consider passive responsibility attribution after a his-
tory where φ occurs. Passive responsibility on histories is at-
tributed “ex post” by counterfactually reasoning about what
could have happened in the past, “fixing” the environment re-
sponse to also comply with the history under consideration.

Definition 4 (Weak (resp. Strong) Passive Responsibility At-
tribution). The agent has weak (resp. strong) passive respon-
sibility for φ under σag , E , and h such that h |= φ if: (i)
there exists an environment strategy σenv ∈ ΣE such that h is
consistent with σenv and h = Play(σag, σenv); and (ii) there
exists another agent strategy σ′

ag (resp. σ′
ag ≥¬φ|E σag) such

that Play(σ′
ag, σenv) ̸|= φ.

As with passive responsibility anticipation, attribution of
strong passive responsibility implies attribution of weak pas-
sive responsibility, and weak and strong passive responsibility
attribution are related to dominant and best-effort strategies,
respectively. The relation follows by observing that we can
construct an LTLf environment specification Eh that captures
exactly the environment strategies consistent with h. For-
mally, let h = (Y0 ∪ X0) · · · (Yn ∪ Xn) be a history. That
h is consistent with an environment strategy σenv means that
Xi = σenv(Y0 · · ·Yi) for every i ≥ 0. Such behavior can be
captured by the following LTLf environment specification.

Eh = (Y0 ⊃ X0) ∧ ((Y0 ∧ •1Y1) ⊃ •1X1) ∧
· · · ∧ ((Y0 ∧ •1Y1 ∧ · · · ∧ •nYn) ⊃ •nXn)

It easy to see that h is consistent with σenv iff σenv enforces
Eh. It follows that E ∧ Eh captures exactly the set of environ-
ment strategies enforcing E and consistent with h. We then
derive the relation between passive responsibility attribution
and dominant and best-effort strategies.

Theorem 6. The agent is attributed weak (resp. strong) pas-
sive responsibility for φ under σag , E , and h iff σag is not
dominant (resp. best-effort) for ¬φ under E ∧ Eh.

Next. we turn to the decision problem of checking weak
(resp. strong) passive responsibility attribution on histories:
given an LTLf formula φ, an LTLf environment specification
E , an agent strategy σag , and an history h, we want to decide
whether the agent has weak (resp. strong) passive responsi-
bility for φ under E , σag and h or not. The computational
complexity of the problems is established in the following.

Theorem 7. Checking if the agent has weak passive respon-
sibility for φ under σag , E , and h is: PSPACE-complete wrt φ;
2EXPTIME-complete wrt E; polynomial wrt σag; and polyno-
mial wrt h.

Figure 2: DFA AEh of LTLf environment specification Eh that cap-
tures environment strategies σenv such that history h = (Y0 ∪
X0) · · · (Yn ∪Xn) is consistent with σenv .

Theorem 8. Checking if the agent has strong passive respon-
sibility for φ under σag , E , and h is: 2EXPTIME-complete wrt
φ and E; polynomial wrt σag; and polynomial wrt h.

Based on Theorem 6, we can reduce checking if the agent
has weak (resp. strong) passive responsibility for φ under E ,
σag , and h to checking whether σag is not dominant (resp.
best-effort) for ¬φ under E ∧ Eh. We can do so by adapting
the algorithms in Section 4, written ¬CHECKDOM(¬φ, E ∧
Eh, σag) (resp. ¬CHECKBE(¬φ, E∧Eh, σag)). The complex-
ity of such algorithms establish membership of weak (resp.
strong) passive responsibility attribution wrt φ, E , and σag .
To obtain polynomial polynomial complexity wrt h, observe
that DFA AE∧Eh

can be constructed in polynomial time as
the product AE × AEh

. In turn, AEh
can be constructed in

polynomial time in the length of h as in Figure 2. To see
why AEh

captures exactly the environment strategies consis-
tent with h = (Y0∪X0) · · · (Yn∪Xn), observe that transitions
of the form Yi∧¬Xi lead to a non-final sink state, as no envi-
ronment strategy σenv consistent with h plays ¬Xi when the
agent plays Y0 · · ·Yi. Hardness of weak (resp. strong) passive
responsibility attribution follows by its relation with domi-
nant (resp. best-effort) strategies, established in Theorem 6,
and hardness of checking if a strategy is dominant (resp. best-
effort), established in Lemma 3 (resp. Lemma 4). Putting to-
gether membership and hardness of weak (resp. strong) pas-
sive responsibility attribution, we get the complexity charac-
terization in Theorem 7 (resp. Theorem 8).

6 Conclusion

We observe that once these responsibility notions are charac-
terized, they can be used not only to assess responsibility but
also during strategy synthesis. This ensures the generation
of strategies that avoid unintended responsibility, opening a
research avenue into responsibility-aware strategy synthesis.

We focused on a single agent with a first-person perspec-
tive, examining responsibility from the agent’s viewpoint
rather than any third-person perspective. However, our work
could be extended to a multi-agent setting, where each agent
operates within an environment shaped by both the environ-
ment itself and the actions of other agents. We plan to explore
these directions further in the future.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgments
This work is supported in part by the ERC Advanced
Grant WhiteMech (No. 834228), the PRIN project RIPER
(No. 20203FFYLK), the PNRR MUR project FAIR
(No.PE0000013), and the UKRI Erlangen AI Hub on Math-
ematical and Computational Foundations of AI. Emiliano
Lorini is supported by the ANR projects EpiRL (grant num-
ber ANR-22-CE23-0029) and ALoRS (grant number ANR-
21-CE23-0018-01). Gianmarco Parretti is supported by the
Italian National Ph.D. on AI at “La Sapienza”.

References
[Abarca and Broersen, 2022] A. I. R. Abarca and J. M.

Broersen. A stit logic of responsibility. In AAMAS, pages
1717–1719. International Foundation for Autonomous
Agents and Multiagent Systems (IFAAMAS), 2022.

[Aminof et al., 2019] Benjamin Aminof, Giuseppe De Gia-
como, Aniello Murano, and Sasha Rubin. Planning under
LTL environment specifications. In ICAPS, pages 31–39,
2019.

[Aminof et al., 2021] Benjamin Aminof, Giuseppe De Gia-
como, and Sasha Rubin. Best-effort synthesis: Doing your
best is not harder than giving up. In IJCAI, pages 1766–
1772, 2021.

[Aminof et al., 2023] Benjamin Aminof, Giuseppe De Gia-
como, and Sasha Rubin. Reactive synthesis of dominant
strategies. In AAAI, pages 6228–6235, 2023.

[Apt and Grädel, 2011] Krzysztof R. Apt and Erich Grädel,
editors. Lectures in Game Theory for Computer Scientists.
Cambridge University Press, 2011.

[Baier et al., 2021] C. Baier, F. Funke, and R. Majumdar. A
game-theoretic account of responsibility allocation. In IJ-
CAI, pages 1773–1779, 2021.

[Baltag et al., 2021] A. Baltag, I. Canavotto, and S. Smets.
Causal agency and responsibility: A refinement of STIT
logic. In Alessandro Giordani and Jacek Malinowski, ed-
itors, Logic in High Definition, Trends in Logical Seman-
tics, pages 149–176. 2021.

[Bansal et al., 2023] Suguman Bansal, Yong Li, Lucas M.
Tabajara, Moshe Y. Vardi, and Andrew M. Wells. Model
checking strategies from synthesis over finite traces. In
ATVA (1), volume 14215 of Lecture Notes in Computer
Science, pages 227–247. Springer, 2023.

[Belnap et al., 2001] N. Belnap, M. Perloff, and M. Xu. Fac-
ing the Tuture: Agents and Choices in our Indeterminist
World. Oxford University Press, New York, 2001.

[Braham and van Hees, 2012] M. Braham and M. van Hees.
An anatomy of moral responsibility. Mind, 121(483):601–
634, 2012.

[Bulling and Dastani, 2013] N. Bulling and M. Dastani.
Coalitional responsibility in strategic settings. In CLIMA,
Lecture Notes in Computer Science, pages 172–189, 2013.

[Chockler and Halpern, 2004] H. Chockler and J. Halpern.
Responsibility and blame: A structural-model approach.

Journal of Artificial Intelligence Research, 22:93–115,
2004.

[Cimatti et al., 2003] Alessandro Cimatti, Marco Pistore,
Marco Roveri, and Paolo Traverso. Weak, strong, and
strong cyclic planning via symbolic model checking. AIJ,
1–2(147):35–84, 2003.

[De Giacomo and Vardi, 2013] Giuseppe De Giacomo and
Moshe Y. Vardi. Linear temporal logic and linear dynamic
logic on finite traces. In IJCAI, pages 854–860, 2013.

[De Giacomo and Vardi, 2015] Giuseppe De Giacomo and
Moshe Y. Vardi. Synthesis for LTL and LDL on finite
traces. In IJCAI, pages 854–860, 2015.

[De Giacomo et al., 2021] Giuseppe De Giacomo, Antonio
Di Stasio, Giuseppe Perelli, and Shufang Zhu. Synthe-
sis with mandatory stop actions. In KR, pages 237–246,
2021.

[Gale and Stewart, 1953] David Gale and Frank M Stewart.
Infinite games with perfect information. Contributions to
the Theory of Games, 2(245-266):2–16, 1953.

[Jansen, 2014] Nils Jansen. The idea of legal responsibility.
Oxford Journal of Legal Studies, 34(2):221–252, 2014.

[Lorini and Mühlenbernd, 2018] E. Lorini and
R. Mühlenbernd. The long-term benefits of follow-
ing fairness norms under dynamics of learning and
evolution. Fundamenta Informaticae, 158(1-3):121–148,
2018.

[Lorini and Schwarzentruber, 2011] E. Lorini and
F. Schwarzentruber. A logic for reasoning about
counterfactual emotions. Artificial Intelligence, 175(3-
4):814–847, 2011.

[Lorini et al., 2014] E. Lorini, D. Longin, and E. Mayor. A
logical analysis of responsibility attribution: Emotions, in-
dividuals and collectives. Journal of Logic and Computa-
tion, 24(6):1313–1339, 2014.

[Naumov and Tao, 2021] P. Naumov and J. Tao. Two forms
of responsibility in strategic games. In IJCAI, pages 1989–
1995, 2021.

[Naumov and Tao, 2023] P. Naumov and J. Tao. Counter-
factual and seeing-to-it responsibilities in strategic games.
Annals of Pure and Applied Logic, 174(10):103353, 2023.

[Parker et al., 2023] T. Parker, U. Grandi, and E. Lorini. An-
ticipating responsibility in multiagent planning. In ECAI,
pages 1859–1866, 2023.

[Pnueli, 1977] Amir Pnueli. The temporal logic of programs.
In FOCS, pages 46–57, 1977.

[Shi, 2024] Q. Shi. Responsibility in extensive form games.
In AAAI, pages 19920–19928, 2024.

[Talbert, 2023] Matthew Talbert. Moral Responsibility. In
Edward N. Zalta and Uri Nodelman, editors, The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab,
Stanford University, Fall 2023 edition, 2023.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Vardi and Wolper, 1986] Moshe Y. Vardi and Pierre Wolper.
An automata-theoretic approach to automatic program ver-
ification. In LICS, pages 332–344. IEEE Computer Soci-
ety, 1986.

[Vincent, 2011] Nicole A. Vincent. A Structured Taxonomy
of Responsibility Concepts, pages 15–35. Springer Nether-
lands, Dordrecht, 2011.

[Yazdanpanah et al., 2019] V. Yazdanpanah, M. Dastani,
W. Jamroga, N. Alechina, and B. Logan. Strategic re-
sponsibility under imperfect information. In AAMAS 2019,
pages 592–600, 2019.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

