
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

HiTuner: Hierarchical Semantic Fusion Model Fine-Tuning on Text-Attributed
Graphs

Zihan Fang1,2 , Zhiling Cai 3 , Yuxuan Zheng1,2 , Shide Du1,2 , Yanchao Tan1,2 , Shiping Wang1,2∗

1College of Computer and Data Science, Fuzhou University, Fuzhou, China
2Key Laboratory of Intelligent Metro, Fujian Province University, Fuzhou, China

3College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou,
China

fzihan11.com@163.com, zhilingcai@126.com, allison zyx@163.com, dushidems@gmail.com,
yctan@fzu.edu.cn, shipingwangphd@163.com

Abstract
Text-Attributed Graphs (TAGs) are vital for mod-
eling entity relationships across various domains.
Graph Neural Networks have become cornerstone
for processing graph structures, while the inte-
gration of text attributes remains a prominent re-
search. The development of Large Language Mod-
els (LLMs) provides new opportunities for advanc-
ing textual encoding in TAGs. However, LLMs
face challenges in specialized domains due to their
limited task-specific knowledge, and fine-tuning
them for specific tasks demands significant re-
sources. To cope with the above challenges, we
propose HiTuner, a novel framework that leverages
fine-tuned Pre-trained Language Models (PLMs)
with domain expertise as tuner to enhance the hi-
erarchical LLM contextualized representations for
modeling TAGs. Specifically, we first strategi-
cally select hierarchical hidden states of LLM to
form a set of diverse and complementary descrip-
tions as input for the sparse projection opera-
tor. Concurrently, a hybrid representation learn-
ing is developed to amalgamate the broad linguis-
tic comprehension of LLMs with task-specific in-
sights of the fine-tuned PLMs. Finally, HiTuner
employs a confidence network to adaptively fuse
the semantically-augmented representations. Em-
pirical results across benchmark datasets spanning
various domains validate the effectiveness of the
proposed framework. Our codes are available at:
https://github.com/ZihanFang11/HiTuner

1 Introduction
Many graphs in the real-world possess textual features, and
can be termed as Text-Attributed Graphs (TAGs). In TAGs,
nodes typically represent textual entities like documents or
sentences, while edges capture the relationships between
different entities. Graph Neural Networks (GNNs) have
emerged as a promising paradigm for TAG-related tasks due
to their ability to propagate messages between neighboring

∗Corresponding author
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Figure 1: Three training pipelines and HiTuner on TAGs.

nodes [Kipf and Welling, 2017; Luo et al., 2024]. This ca-
pability allows them to effectively utilize a small number of
labeled examples and generalize well to large-scale graph
tasks [Hamilton et al., 2017]. Typically, the text associ-
ated with each node must first be transformed into vector
compatible with GNNs. Traditional shallow text encoders,
such as skip-gram or bag-of-words models, are often em-
ployed for this purpose by converting text into numerical
node features. However, these non-contextualized embed-
dings limit the ability of TAG-related models to learn rich
semantic knowledge, as they lack contextual awareness to ex-
ploit textual attributions.

Recently, Large Language Models (LLMs), with cutting-
edge developments such as ChatGPT and LLaMA2 [Touvron
et al., 2023] excel in general language understanding, have in-
troduced new possibilities for processing TAGs. LLMs lever-
age attention-based transformers to adeptly capture the con-
textual semantics of text, demonstrating superior generaliza-
tion and zero-shot learning capabilities across diverse linguis-
tic scenarios [Wu et al., 2024; Pan et al., 2024]. However,
when used for specialized domain-specific tasks in TAGs,
e.g., citation graph categorization of papers in some spe-
cialized areas, these models may exhibit limitations due to
limited task-specific knowledge, in some cases, even pro-
duce erroneous or hallucinatory responses [Shen et al., 2024].
In order to narrow the semantic gap between pretrain and
downstream tasks, “pretrain-then-finetune” has become the
mainstream paradigm. Fine-tuning on task-specific labeled
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Figure 2: The HiTuner framework inputs text descriptions of TAGs into PLMs that leverage task-oriented knowledge and into LLMs to
generate context-specific hidden states. Training modules consist of threshold-based filters Pτ for distilling multi-level contextualized repre-
sentation, confidence network fCONF for contribution assessment, and graph neural networks fGNN for incorporating topological information.

TAGs data theoretically enhances performance significantly,
while the vast size of LLMs, which often includes billions
of parameters, necessitates considerable computational re-
sources [Tang et al., 2024; Perin et al., 2024]. In contrast,
prompting offers a more resource-efficient alternative by ad-
justing the inputs to tailor outputs for specific tasks [Yu et
al., 2024]. Nevertheless, crafting effective prompts still re-
quires extensive validation data to refine. A pertinent ques-
tion arises: How to design efficient fine-tuning methods to
address the resource-consumption issues of LLMs in specific
tasks within TAGs?

Conversely, smaller-scale Pre-trained Language Mod-
els (PLMs), such as BERT [Devlin et al., 2019] and
RoBERTa [Liu et al., 2019], can be flexibly fine-tuned for
downstream tasks to leverage the rich semantics encoded in
domain-specific textual features. In this work, we use PLMs
to refer to relatively small language models that can be trained
and fine-tuned under limited resources in the academic re-
search labs. Fine-tuning involves using labeled samples as
additional training signals in a task-specific manner, thus fine-
tuned PLMs can be adapted to domain-specific terminology.
Despite these advancements, the scarcity of labeled data in
specialized domains complicates the training and fine-tuning
of PLMs within TAGs, often leading to poor generalization
of unseen data. Thus, the primary challenge remains: How
to develop strategies that allow small-scale PLMs learn suffi-
ciently generalized representation from limited labeled sam-
ples within TAGs.

While initial LM-based training frameworks excel at cap-
turing semantic information, relying solely on textual at-
tributes may hinder the representation learning in TAGs due
to issues such as noise or incompleteness in the original text.
Modeling node relationships to enable message passing of-
fers a strategic solution, with a common approach being to
cascade LM-generated text representations into GNNs [Chen
et al., 2024]. To illustrate this concept further, the three train-
ing pipelines, as previously mentioned, are described in Fig-

ure 1. Non-contextualized shallow feature learning involves
using shallow text encoders to process text data without se-
mantic understanding. LLMs leverage the linguistic capabili-
ties to learn representation without task-specific optimization.
Fine-tuned PLMs for specific tasks allow better adaptation to
particular requirements, improving performance. As a result,
those context-aware representations are more flexible and ro-
bust than static, shallow features [Apidianaki, 2023].

Based on the above observations, the objective of this
research is to address the challenges of empowering text-
attributed graph learning by developing resource-efficient
methods for fine-tuning LLM-based representations. Toward
this goal, we propose HiTuner to enhance both performance
and scalability while addressing resource limitations. Ini-
tially, PLMs are fine-tuned on domain-specific datasets to
acquire detailed knowledge pertinent to the field. Then, we
extract different hidden states of LLM to aggregate versa-
tile hierarchical text representations, harnessing their capac-
ity to integrate extensive knowledge. To ensure diversity in
the learned representations, hidden representations of differ-
ent transformer layers in LLMs are selected for further pro-
cess. Subsequently, we propose a mixed approach to tailor
text representation processes to better align with the specific
needs of the domain represented in the TAGs. This targeted
approach can optimize computational efficiency by minimiz-
ing the computational overhead associated with LLMs. Fi-
nally, HiTuner employs a confidence network to adaptively
fuse these diverse representations, enhancing the accuracy
and reliability for subsequent analyses. An illustration of Hi-
Tuner is shown in Figure 2. The key contributions of this
paper are as follows.

• Distilling Hierarchical Contextualized Representa-
tions for Resource Efficiency: To harness the com-
plementary semantic information at different levels, we
strategically select and integrate hidden states from
LLMs without prohibitive computational demands.
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• Task-oriented Knowledge Infusion for Semantic
Comprehension: We develop a hybrid representation
that amalgamates the extensive knowledge of LLMs
with the targeted insights of fine-tuned PLMs, incorpo-
rating structure-related semantics related to TAGs.

• SOTA performance and Great Scalability: Exten-
sive experiments across various TAG benchmarks show
that HiTuner significantly boosts baseline performance,
while also demonstrating adaptability and generalization
capabilities.

2 Preliminaries
In this section, we establish some relevant notations and for-
malize the research problem of this work. Primarily, we in-
troduce the definition of TAGs and three popular learning
paradigms associated with them.

2.1 Text-Attributed Graphs
A general graph G = (V, E) consists of a set of nodes V ,
and a set of edges E connecting these nodes. While TAG
can be formally represented as GT = (V, E , T ), where T
is the document set. Each node v ∈ V is associated with a
sequential text tv ∈ T and the corresponding label yv . In
this work, we focus on node classification, aiming to predict
labels for unlabeled nodes VU based on a given set of labeled
nodes VL.

2.2 GNN-based Paradigm
GNNs are message-passing frameworks for graph-structured
data that aggregate information across neighboring nodes to
learn the vectorized representation. Mathematically, the up-
date process of GNNs for each node v can be expressed as:

x(l)
v = UPD

(
x(l−1)
v ,AGG

(
{x(l−1)

u : u ∈ N (v)}
))

, (1)

where u is the neighbor of node v, N (v) denotes the set of
neighbors of v, and AGG (·) and UPD (·) are aggregation and
update functions, respectively. The initial node feature vector
x
(0)
v is a numerical feature extracted from the text tv .

2.3 Pre-training of PLMs
PLMs encode the vector of a word by dynamically combining
it with surrounding words. A text document tv ∈ T can be
tokenized into a sequence of tokens Sv = {sv,i}|Sv|

i=0 , where
sv,i denotes a specific token-id. A PLM takes the sequence
of tokens Sv as input, and produces the hidden states of each
token:

{sv,0, . . . , sv,|Sv|} = PLM
(
{sv,0, . . . ,sv,|Sv|}

)
. (2)

Generally, the BERT-like language model can be fine-tuned
for various tasks by simply adding a classifier on top of the
[CLS] token, a special classification token placed at the
beginning of each sequence. This token utilizes the self-
attention mechanism to capture the contextual information
relevant to the specific task. Here, we denote the final hidden
state of the [CLS] token sv,0 as semantic-aware representa-
tion sv:

sv = fPLM (tv|ΘP ) ∈ RdP . (3)

                        

     

  

  

  

  

   

 
 
 
  
 
 

    

        

         

     

      

      

                        

     

  

  

  

  

   

 
 
 
  
 
 

    

        

         

     

      

      

Figure 3: Test accuracy of the MLP applied to the hidden states from
each transformer layer of LLaMA2.

To predict specific outputs for downstream tasks, one can
simply adopt a multilayer perceptron (MLP) as a predictor
and the model parameters are trained with

Lpre =
∑

v∈VL CrossEntropy (MLP (sv) ,yv) . (4)

2.4 LLMs with Prompt
LLMs are first pre-trained on large-scale text datasets to learn
common sense and then generate outputs based on a prompt
P to process the input without modifying the model param-
eters, rather than being fine-tuned for specific downstream
tasks. Specifically, prompting methods use templates con-
taining unfilled slots, which modify the original text into a
textual string prompt. For example, the task is to classify
the topics to which papers belong based on their abstracts
[ABSTRACT]. By inserting some prompts in the sentences, we
can create a template with placeholders for specific informa-
tion.

Here is the abstract of a paper : [ABSTRACT],
This paper belongs to the [TOPIC] category.

(5)

We denote this new sentence with the prompt [TOPIC] in-
serted as SP|v , where P represents the inserted prompt tokens.

LLMs are built with multi-layer transformer encoders that
use attention-based mechanisms to aggregate information in
the sequence of tokens SP|v . Thus, these hidden states can be
viewed as representations at different levels:

{h(l)
v,0, . . . ,h

(l)
v,|SP|v|} = ENC(l)

(
h
(l−1)
v,0 , . . . ,h

(l−1)
v,|SP|v|

)
,

(6)

where ENC(l)(·) denotes the l-th layer of LLM, and
{h(l)

v,i}
|SP|v|
i=0 means hidden state sequence in l-th layer for tar-

get node v. Note that |SP|v| indicates the length of the se-
quence. A readout function [Reimers and Gurevych, 2019]
can be applied to token-level representations:

h
(l)
v = POOL

(
h
(l)
v,1,h

(l)
v,2, . . . ,h

(l)
v,|SP|v|

)
∈ RDL . (7)

Here, h(l)
v denotes the resulting hidden state sequence from

the l-layer of LLM, and this work adopts mean pooling.
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Figure 4: Comparing node classification using different initial node
features generated from PLMs/LLMs, with a MLP classifier trained
under various labeling ratios (1%, 5%, 10%).

3 Proposed Framework
In this section, we begin by illustrating our motivation
through two experiments. Building upon these insights, we
then introduce the proposed framework, referred to as Hi-
Tuner, which uses fine-tuned PLMs with domain expertise as
tuners for hierarchical LLM contextualized representations.

3.1 Motivation
Hierarchical Insight from Contextual Layer
While the attention mechanism is applied uniformly across
all transformer layers of LLMs, previous research has shown
that different contextual layers retain lexical meaning at vary-
ing levels of abstraction [Yuan et al., 2023]. We revisit the
learning capabilities at varying levels of LLMs in Figure 3.
In this setup, the hidden state sequences from various lay-
ers of LLMs are then directly fed into an MLP trained for
classification tasks. The analysis indicates that deeper layers
capture richer semantics but may degrade beyond a certain
depth, and the optimal layer varies across datasets. This sug-
gests that the traditional method of extracting the last layer of
the LLMs as a representation may not be the optimal strat-
egy, because the information captured by different contextual
layers can be complementary. This observation inspires us to
exploit multiple hidden states from LLMs to better understand
hierarchical semantic information in text.

Leveraging Domain Expertise in Fine-Tuning PLMs
To validate the previously discussed concepts, Figure 4 illus-
trates experimental evidence comparing the performance of
fine-tuned PLMs with unfine-tuned LLMs across three dis-
tinct datasets from different domains. Remarkably, LLMs ex-
cel across diverse domains, even with a minimal labeling rate
of 1%, while the performance gains between 1% to 10% su-
pervision are modest. In contrast, fine-tuned PLMs fail at low
labeling rate settings, but show a significant improvement in
ACC from 1% to 5%, and maintain a slight edge over LLMs
at 10% supervision. These results not only confirm the limita-
tions of unfine-tuned LLMs in specific domains but also high-
light that fine-tuning may fail to transfer sufficient targeted
knowledge for downstream tasks under label-scarce scenar-
ios. This phenomenon inspires us to leverage task-specific
knowledge in fine-tuned PLMs to compensate for the domain
semantic gaps, while utilizing the linguistic capabilities of
LLMs to overcome label scarcity.

3.2 Distilling Hierarchical Contextualized
Representations

From various contextual layers of the frozen LLM, hidden
state sequences {h(m) ∈ RDL}Mm=1 are pre-computed in ad-
vance, where M<L. Each vector h(m) captures unique in-
formation pertinent to its respective context or level. Gen-
erally, handling such high-dimensional data often requires
dimensionality reduction techniques to focus on the most
informative features. We define a denoised projector P :
RDL → RDP to filter out noise and redundant information.
h(m) is first linearly transformed by specific weight matrix
W(m) ∈ RDL×DP , which maps the high-dimensional data
into a new space. The transformed data is then subjected to
a threshold-based filter, where higher values of τ result in a
greater proportion of the input being filtered out,

ĥ(m) ← Pτ

(
h(m)W(m)

)
, (8)

where Pτ (·) creates a differential response to distinguish be-
tween different types of feature activation, potentially adding
robustness against noise and providing additional contextual
information.

3.3 Semantic and Structure-aware Augmentation
Enhancing Task-oriented Semantic Understanding. The
unsupervised representations learned by LLMs capture the
language regularities in large-scale corpus, but may lack sen-
sitivity for specific tasks. Integrating fine-tuning processes
in deploying LLMs, such as updating parameters, requires a
lot of resources and time, so we choose to incorporate the
learned task-oriented knowledge by small-scale PLMs into
the semantic representation at a lower cost. Denoting s as the
fine-tuned PLM representation, we simply design the follow-
ing mixed strategy:

m(m) = λs+ (1− λ) ĥ(m), (9)
where λ is a trade-off parameter to balance the influence
of the fine-tuned and unsupervised representations. Overall,
m(m) encodes both general knowledge and task-specific re-
finements, enabling efficient task adaptation with lower fine-
tuning overhead.

Incorporating Global Structural Information. Incorpo-
rating topological information significantly boosts the capa-
bility of models to interpret structure-related semantics within
TAGs. This is beneficial in specialized domains like academic
research, where analyzing citation patterns can help catego-
rize papers. To effectively leverage the information from a
few labeled samples and extend their influence to more un-
labeled samples, HiTuner inputs the mixture representation
m(m) to GNNs for accurate comprehension of node seman-
tics from a global perspective. Each layer progressively en-
codes complex structural and contextual information into the
node representations. Formally, we denote the GNN-based
paradigm as

z(m) = fGNN
(
m(m), E|ΘG

)
∈ RC , (10)

where ΘG is the trainable parameters, and E provides the
structural context. The final node output z(m) encoded by
GNNs is better to meet downstream graph-related tasks such
as node classification and link prediction.
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3.4 Confidence-based Fusion
Subsequently, HiTuner integrates the enhanced representa-
tions {z(m)}Mm=1 to infer final predictions. To assess the reli-
ability of each representation, we compute its true class prob-
ability, i.e. the likelihood assigned to the correct label. There-
fore, higher true class probabilities indicate greater model re-
liability, thereby serving as a critical measure for assessing
confidence. In situations where only a limited subset of sam-
ples is labeled, confidence network is employed to estimate
the certainty of these predictions:

t
(m)
v = fCONF

(
z
(m)
v |ΘC

)
. (11)

Here, t(m)
v quantifies the predictive confidence of node v of

the m-th level contextualized representation and fCONF (·) is
achieved by MLP combined with a sigmoid function to nor-
malize the output between 0 and 1.

Furthermore, a relative confidence metric ψ is introduced
to dynamically adjust the influence of the m-th level by com-
paring to the aggregate confidence of other levels:

ψ
(m)
v =

log (
∏M

j ̸=m t(j)v )
log

(∏M
i=1 t

(i)
v

) . (12)

Then, fusion weights are derived using the softmax function
to ensure that contribution of each level is proportional to
both its assessed and relative confidence:

wv = softmax([ψ(1)
v · t(1)v , . . . , ψ

(M)
v · t(M)

v ]) ∈ RM .
(13)

Therefore, this weight can dynamically adjust according
to the confidence, preventing low-confidence representation
from affecting the final results, expressed as

ẑv = [z
(1)
v , · · · , z(M)

v ]wT
v . (14)

Finally, we define the loss function used to train the model
as the cross-entropy loss between predictions and true labels:

L =
∑

v∈VL CrossEntropy (ẑv,yv) . (15)

All trainable parameters in the proposed method are denoted
by Θ = {ΘG,ΘC , τ}. The entire training process only re-
quires training Θ, and the subsequent learning does not in-
volve the updating of LLM parameters. By leveraging the
knowledge from smaller PLMs, we can efficiently enhance
the semantic representation without incurring the high re-
source expenses caused by full-scale fine-tuning of LLMs.

4 Experiment
Our experimentation focuses on the following questions:
RQ1: Can HiTuner enhance the performance in modeling
TAGs compared with baselines?
RQ2: Are all components comprising of HiTuner valid?
RQ3: Is the HiTuner sensitive to the fusion of two kind of
semantic knowledge in different domains?
RQ4: Does HiTuner have excellent scalability?

Dataset #Nodes #Edges #Clusters Domain

CiteSeer 3,186 4,277 6 Academic
Cora 2,708 5,429 7 Academic

Instagram 11,339 144,010 2 Social
Photo 48,362 500,928 12 E-commerce

PubMed 19,717 44,338 3 Academic
WikiCS 11,701 216,123 10 Wikipedia

Table 1: Statistics of the TAG datasets.

4.1 Implementation Details
In this section, we perform node classification with low la-
beling ratio to valid the effectiveness of HiTuner. All exper-
iments are conducted on NVIDIA A100 GPUs with 80GB
memory. By default, we employ LLaMA2-7B [Touvron et
al., 2023] and BERT as the backbones, and SAGE as an in-
stance of GNNs. For a fair comparison, we run 5 times and
report the mean result and the standard deviation.

Datasets
We evaluate the proposed method on various types of
datasets, with the relevant statistics summarized in Table 1.
These datasets encompass three citation networks, including
CiteSeer, Cora and PubMed. Along with a social network
dataset (Instagram), an E-commerce dataset from Amazon
(Electronics-Photography, namely Photo) and a Wikipedia-
based dataset (WikiCS). Specifically, the ratio of nodes used
for the train/valid/test stage is 10%/10%/80%.

Comparison Methods
Following [Chen et al., 2024], we compare HiTuner with
three types of comparison methods:

(1) Benchmark models: For GNN-based method, we se-
lect GCN [Kipf and Welling, 2017] and SAGE [Hamilton et
al., 2017], while MLP as a baseline. We test 3-layer archi-
tectures with a hidden dimension of 256, and each layer is
accompanied by a batch operation. We also consider initial
node features with three textual feature extraction methods:

• Non-contextualized Shallow Embeddings (FS): Text
embeddings extracted using shallow methods, such as
BoW, TF-IDF, and word2vec.

• LLM Embeddings without Fine-tuning (FLLM ): Text
embeddings taken directly from a LLM without the ap-
plication of specific task labels. Additionally, the hidden
states based on prompts.

• Fine-tuned PLM Embeddings (FFLM ): Text embed-
dings extracted from BERT-like PLM that has been fine-
tuned on a specific dataset.

(2) Standard fine-tuned PLMs: We select three popu-
lar LMs: BERT (bert-base-uncased) [Devlin et al., 2019],
DeBERTa (deberta-base) and SentenceBERT (bert-base-nli-
mean-tokens) [Reimers and Gurevych, 2019]. In this setting,
we employ a simple cascading structure, where PLMs are
first fine-tuned on the downstream datasets, and the gener-
ated text embeddings are input as the initial node features for
the downstream classifier.

(3) LLM-enhanced methods: We further compare the fol-
lowing SOTA methods that combine LLMs and GNNs:
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Methods CiteSeer Cora Instagram Photo PubMed WikiCS Average

Original Textual Attributes
BERT 67.02 ± 1.75 62.36 ± 2.29 62.42 ± 3.03 73.57 ± 0.48 92.87 ± 0.44 81.18 ± 1.00 73.27

DeBERTa 45.83 ± 17.2 36.46 ± 9.55 64.90 ± 1.52 74.42 ± 0.38 93.06 ± 0.64 79.56 ± 2.90 65.80
SentenceBERT 67.08 ± 3.05 62.07 ± 3.92 62.75 ± 0.90 73.38 ± 0.54 92.74 ± 0.58 80.61 ± 1.35 73.17

Non-contextualized Shallow Embeddings
MLP 70.40 ± 1.08 56.47 ± 0.97 64.67 ± 0.31 62.47 ± 0.25 81.79 ± 0.09 73.63 ± 0.35 68.24
GCN 69.78 ± 0.27 79.53 ± 1.36 64.54 ± 0.30 83.01 ± 0.28 82.57 ± 0.52 79.51 ± 0.40 76.49
SAGE 71.22 ± 0.24 81.50 ± 0.69 64.76 ± 0.45 83.11 ± 0.29 83.91 ± 0.08 81.85 ± 0.29 77.73

LLM Embeddings without Fine-tuning

LLaMA2
MLP 66.55 ± 3.42 70.30 ± 2.12 66.74 ± 1.10 74.73 ± 0.46 89.55 ± 0.29 82.19 ± 0.76 75.01
GCN 67.40 ± 2.97 82.55 ± 2.01 67.86 ± 0.65 85.36 ± 0.47 86.67 ± 0.50 81.53 ± 0.62 78.56
SAGE 69.37 ± 3.17 82.40 ± 3.12 66.83 ± 1.20 85.80 ± 0.25 87.95 ± 0.34 82.44 ± 0.66 79.13

LLaMA2⋆
MLP 67.02 ± 3.37 70.15 ± 1.92 67.15 ± 0.67 74.75 ± 0.42 89.60 ± 0.19 81.67 ± 1.08 75.06
GCN 67.62 ± 2.61 82.44 ± 1.93 67.14 ± 0.41 85.40 ± 0.48 86.55 ± 0.34 80.83 ± 0.60 78.33
SAGE 69.40 ± 3.57 82.32 ± 3.20 67.39 ± 0.96 85.88 ± 0.30 87.69 ± 0.53 82.27 ± 1.32 79.16

Fine-tuned PLM Embeddings

BERT GCN 67.55 ± 3.09 80.44 ± 2.03 65.99 ± 1.03 85.59 ± 0.16 91.35 ± 0.47 82.64 ± 0.88 78.93
SAGE 68.81 ± 3.09 80.55 ± 3.20 66.62 ± 0.69 83.97 ± 0.47 93.00 ± 0.42 83.08 ± 1.06 79.34

DeBERTa GCN 61.00 ± 4.89 69.74 ± 7.18 66.60 ± 1.27 85.73 ± 0.26 92.04 ± 0.41 82.31 ± 0.60 76.24
SAGE 60.22 ± 8.91 70.59 ± 6.06 66.94 ± 0.68 84.59 ± 0.40 93.31 ± 0.35 82.26 ± 1.02 76.39

SentenceBERT GCN 67.49 ± 1.87 79.93 ± 3.65 66.22 ± 0.90 85.59 ± 0.28 91.17 ± 0.40 82.30 ± 0.48 78.83
SAGE 69.06 ± 2.31 80.00 ± 2.25 66.51 ± 0.56 84.04 ± 0.51 93.21 ± 0.53 82.27 ± 1.00 79.02

TAPE (GPT3.5) - 84.91 ± 0.90 - - 92.84 ± 0.12 - -
ENGINE (LLaMA2) 72.32 ± 0.81 81.75 ± 1.06 66.93 ± 0.51 84.64 ± 0.14 87.46 ± 0.74 84.04 ± 0.47 79.52

GraphAdapter (LLaMA2) 70.50 ± 0.90 78.03 ± 1.46 67.45 ± 0.51 - 88.30 ± 0.38 - -
HiTuner 71.35 ± 3.28 84.58 ± 2.69 68.10 ± 0.18 86.09 ± 0.58 93.50 ± 0.42 85.20 ± 1.19 81.47

Table 2: Accuracy (%) of all compared methods across six datasets, where the best and runner-up performance are highlighted in bold and
underlined respectively (mean% ± standard deviation%). ⋆ denotes prompt tuning.

• TAPE [He et al., 2024] leverages LLMs to generate
pseudo labels and explanations as enhancements, and
concatenates them with original text for PLMs.

• ENGINE [Zhu et al., 2024] combines LLMs and GNNs
via a tunable side structure to adopt message passing at
each layer of LLMs to integrate structural information.

• GraphAdapter [Huang et al., 2024] introduces a resid-
ual learning procedure to pre-train GNNs, which serve
as efficient adapters when integrated with LLMs.

4.2 Overall Comparison (RQ1)
We present the comparative analysis in Table 2. From the
experimental results, we derive the following observations:

Observation 1: Incorporating semantic information
into features significantly improves performance. A con-
sistent performance hierarchy is evident among different fea-
ture types: FS may suffice for basic tasks, but it lacks the
depth to grasp semantic nuances. In contrast, LLM-generate
message greatly improves the model’s ability to handle am-
biguity and context changes. On one hand, FLLM effectively
captures language regularities from extensive corpora, but the
improvement offered by LLMs remains limitations without a
well-designed prompt. On the other hand, FFLM trained with
supervised information demonstrates superior performance
with large variations on several datasets.

Observation 2: Contextualized representation cas-
caded GNNs provide a strong baseline. The standard PLM
pipeline, which focuses primarily on tasks like text classifi-
cation, neglects the inherent correlations within global graph

structures. PLMs with structure-aware cues obtain relative
improvements ranging from 4% to 8%, indicating that nat-
ural language understanding is important on these datasets.
On Cora and Photo datasets, the advantages of using GCN
and SAGE are more pronounced, demonstrating the role of
graph structures for enhanced predictive performance. How-
ever, the inclusion of neighboring information occasionally
leads to performance degradation, as in PubMed, which may
be caused by “heterophily” problem in graph.

Observation 3: With enhancing semantic information,
HiTuner achieves state-of-the-art performance. By distill-
ing hierarchical contextualized representations from LLMs
and leveraging semantics of category labels from fine-tuned
PLMs, HiTuner strikes a balanced synergy between these
two approaches, surpassing the performance of each method
when applied independently. HiTuner can effectively model
TAGs with outstanding performance across a wide range
of datasets, highlighted by the best average performance
(81.47%), demonstrates its effectiveness in combining se-
mantic understanding with graph-based learning.

4.3 Ablation Study (RQ2)
We evaluate all components by removing each item from Hi-
Tuner in turn: (a) w/o structural information: replacing GNN
with MLP; (b) w/o hierarchical representations: only take the
last layer of LLMs as input. (c) w/o task-specific knowledge:
λ is set to 0, training the HiTuner without any task-specific
knowledge. (d) w/o confidence-based fusion: simple average
fusion is used to instead. Observation 4: HiTuner benefits
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CiteSeer Cora Instagram Photo PubMed WikiCS Average

w/o structural information 68.81 ± 3.46 71.14 ± 3.72 65.34 ± 4.29 74.69 ± 0.31 93.43 ± 0.47 83.15 ± 1.00 76.09
w/o hierarchical reprensenattions 71.00 ± 3.07 83.95 ± 2.18 65.15 ± 1.94 84.87 ± 0.31 93.36 ± 0.52 85.14 ± 0.89 80.58
w/o task-specific knowledge 69.97 ± 3.10 82.66 ± 5.80 64.59 ± 1.25 85.36 ± 0.52 87.70 ± 1.20 83.65 ± 1.30 78.99
w/o confidence-based fusion 70.41 ± 2.42 82.69 ± 5.98 64.49 ± 1.23 85.64 ± 0.25 93.24 ± 0.34 85.08 ± 1.26 80.26
HiTuner 71.35 ± 3.28 84.58 ± 2.69 68.10 ± 0.18 86.09 ± 0.58 93.50 ± 0.42 85.20 ± 1.19 81.47

Table 3: Ablation study of HiTuner where w/o denotes the removal of a specific component.

(a) Instagram (b) WikiCS

Figure 5: Parameter sensitivity analysis of λ and M in HiTuner on
two types of datasets.

(a) Cora (c) WikiCS(b) Photo
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Figure 6: Test accuracy of various baselines on three datasets (Cora,
Photo, WikiCS) under different training data ratios.

from integrating complementary textual and structural
semantic. From Table 3, we observe that removing any com-
ponents leads to decrease performance. Furthermore, the im-
portance of these components across different datasets. Over-
all, removing structural information in the most significant
performance drop across all datasets, aligning with the nature
of TAGs that structure-related information plays a more piv-
otal role than pure text. Excluding task-specific knowledge
also impacts performance, confirming that fine-tuning com-
plements general LLM-derived features by adapting them to
dataset-specific nuances.

4.4 Parameter Sensitivity (RQ3)
The trade-off parameter λ is chosen from 0.1 to 0.9 with step
size 0.1, and the number of layers M varies from 2 to 8. As
demonstrated in Figure 5, we arrive at Observation 5: Hi-
Tuner effectively balances effectiveness and model com-
plexity across diverse datasets. λ regulates the mixing ratio
of general language knowledge and task-specific knowledge,
where higher λ values increase the influence of task-specific
knowledge but may impact the model’s capacity for general-
ization to unseen data. Performance fluctuates noticeably as

(a) Cora (b) WikiCS
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Figure 7: Test accuracy of HiTuner based on different fine-tuned
PLMs and LLMs across two datasets (Cora, WikiCS).

M changes, suggesting that adding more layers does not con-
sistently improve results. Overall, moderate λ values com-
bined with moderate M values achieve desired performance.

4.5 Scalability Study (RQ4)

We conduct a scalability study focusing on the performance
across varying proportions of training data, and different
LLMs (Vicuna1.5-7B [Chiang et al., 2023] and Baichuan2-
7B [Yang et al., 2023]). As depicted in Figure 6, HiTuner
consistently outperforms several baseline models as the train-
ing ratio increases, highlighting its ability to effectively inte-
grate features for enhancing generalization. Furthermore, as
shown in Figure 7, the choice of LLMs does not have a sig-
nificant impact on the performance, demonstrating the favor-
able compatibility of the proposed framework. It can derive
Observation 6: HiTuner is a generalizable and scalable
framework, proficient in adapting to diverse training en-
vironments and model architectures.

5 Conclusion
To enhance the task-specific understanding and reasoning ca-
pabilities of LLMs, we proposed HiTuner, a framework de-
signed to bridge the gap between pre-training and down-
stream objectives. Focusing on fully unleashing the potential
of LLMs for TAGs, HiTuner efficiently distilled hierarchical
contextualized representations while minimizing unnecessary
computational overhead. Specifically, we fine-tuned small-
scale PLMs, infusing task-oriented knowledge at a lower cost
and making the framework more adaptable to diverse con-
texts. Furthermore, to enhance the quality of node represen-
tations in TAGs, we integrate these refined representations
into GNNs, enabling them to capture and interpret structure-
related semantics within TAGs. Extensive experiments across
various TAG benchmarks reveal that HiTuner significantly
boosts baseline performance.
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Tag-llm: Repurposing general-purpose llms for special-
ized domains. In ICML, 2024.

[Tang et al., 2024] Jiabin Tang, Yuhao Yang, Wei Wei, Lei
Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.
Graphgpt: Graph instruction tuning for large language
models. In SIGIR, pages 491–500, 2024.

[Touvron et al., 2023] Hugo Touvron, Louis Martin, and
et al Kevin Stone. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288, 2023.

[Wu et al., 2024] Songhao Wu, Quan Tu, Hong Liu, Jia Xu,
Zhongyi Liu, Guannan Zhang, Ran Wang, Xiuying Chen,
and Rui Yan. Unify graph learning with text: Unleashing
LLM potentials for session search. In WWW, pages 1509–
1518, 2024.

[Yang et al., 2023] Aiyuan Yang, Bin Xiao, Bingning Wang,
Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan,
Dian Wang, Dong Yan, et al. Baichuan 2: Open large-
scale language models. arXiv preprint arXiv:2309.10305,
2023.

[Yu et al., 2024] Xingtong Yu, Zhenghao Liu, Yuan Fang,
Zemin Liu, Sihong Chen, and Xinming Zhang. General-
ized graph prompt: Toward a unification of pre-training
and downstream tasks on graphs. IEEE Transactions
on Knowledge and Data Engineering, 36(11):6237–6250,
2024.

[Yuan et al., 2023] Hongyi Yuan, Zheng Yuan, Chuanqi Tan,
Fei Huang, and Songfang Huang. Hype: Better pre-
trained language model fine-tuning with hidden represen-
tation perturbation. In ACL, 2023.

[Zhu et al., 2024] Yun Zhu, Yaoke Wang, Haizhou Shi, and
Siliang Tang. Efficient tuning and inference for large lan-
guage models on textual graphs. In IJCAI, pages 5734–
5742, 2024.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


