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Abstract
Partially observable Markov decision processes
(POMDPs) model specific environments in sequen-
tial decision-making under uncertainty. Critically,
optimal policies for POMDPs may not be robust
against perturbations in the environment. Hidden-
model POMDPs (HM-POMDPs) capture sets of dif-
ferent environment models, that is, POMDPs with a
shared action and observation space. The intuition
is that the true model is hidden among a set of po-
tential models, and it is unknown which model will
be the environment at execution time. A policy is ro-
bust for a given HM-POMDP if it achieves sufficient
performance for each of its POMDPs. We compute
such robust policies by combining two orthogonal
techniques: (1) a deductive formal verification tech-
nique that supports tractable robust policy evalua-
tion by computing a worst-case POMDP within the
HM-POMDP, and (2) subgradient ascent to optimize
the candidate policy for a worst-case POMDP. The
empirical evaluation shows that, compared to var-
ious baselines, our approach (1) produces policies
that are more robust and generalize better to un-
seen POMDPs, and (2) scales to HM-POMDPs that
consist of over a hundred thousand environments.

1 Introduction
Partially observable Markov decision processes (POMDPs)
[Kaelbling et al., 1998] are the ubiquitous model in decision-
making where agents have to account for uncertainty over
the current state. Policies for POMDPs select actions based
on observations, which provide limited information about the
state, and require memory to act optimally.
Example 1. Figure 1(a) depicts a POMDP with an agent
tasked to reach any of the green cells while avoiding the obsta-
cle in the center. The agent cannot observe its position but can
detect if there is an obstacle in its current row. Due to strong
wind blowing southward, there is a small chance the agent
moves south instead of the intended direction. The optimal
policy for this POMDP is straightforward: to always go right.

Robustness. The common assumption that a single, known
POMDP model sufficiently captures a system is often unreal-

istic. Furthermore, the optimal policy for this POMDP may
not be optimal or perform well on a slightly perturbed model.
Therefore, it may be beneficial to assume that the system’s ac-
tual model is only known to be within a set of model variations
that are critically different but share certain similarities.
Example 2. Figure 1(b) depicts a set of POMDPs comprising
three potential obstacle locations. An optimal policy for any
of the individual models overfits to that particular obstacle
location and fails to solve the task in all three environments.

Hidden-model POMDPs. We introduce hidden-model
POMDPs (HM-POMDPs) encapsulating multiple different
POMDPs. The ground truth model is assumed to be hidden
among the set of POMDPs. Notably, the POMDPs share the
same actions and observations, and therefore, policies are com-
patible with all of the POMDPs. The objective is to compute
a policy that is robust in the sense that it optimizes for the
worst-case POMDPs within the set. Consequently, a robust
policy achieves a lower bound in terms of performance on the
set of POMDPs and, therefore, on the ground truth model.
Policy optimization. Computing optimal policies for
POMDPs requires infinite memory and is undecidable in gen-
eral [Madani et al., 2000]. Therefore, we restrict policies to
finite memory via finite-state controllers (FSCs) as policy rep-
resentations [Meuleau et al., 1999]. Computing a robust policy
is challenging for HM-POMDPs, as realistic examples may
induce large sets of POMDPs, and policies may overfit when
optimized for any particular POMDP. To ensure robustness,
the policy must be optimized for the worst-case POMDPs.
Therefore, we seek an approach that generalizes to the whole
set of POMDPs by optimizing it on worst-case POMDPs.
Robust policy evaluation. A robust policy evaluation is neces-
sary to deduct the worst-case POMDPs from the HM-POMDP
and, consequently, provide a lower bound on performance.
The naive approach is to enumerate all POMDPs, but the
set of POMDPs increases rapidly when we encounter many
variations in the model, rendering enumeration intractable.
Therefore, a key part of our approach is efficiently performing
robust policy evaluation on large, finite sets of POMDPs.

1.1 Contributions
We introduce the robust finite-memory policy gradi-
ent (RFPG) algorithm. Figure 1(e) provides an overview of
the core steps, namely policy optimization on worst-case
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(a) (b) (c)

M1 M2 M3 M

M1

M2

M3

rfPG

-0 -105 -0 -105

-13 -2 -220 -220

-1 -970 -0 -970

-2 -2 -2 -2

(d)

(1) Policy
Optimization

(2) Robust Policy
Evaluation

FSC π

POMDP M

HM-POMDP

(e)

Figure 1: (a) A single POMDP. Cell colours depict possible observations for the agent: green – exit, yellow – obstacle in the current row, and
white – no obstacle. (b) An HM-POMDP with three possible obstacle locations. (c) Robust FSC with two memory nodes, optimized by RFPG,
that solves any possible configuration of this HM-POMDP. (d) Robust evaluation of different policies. (e) High-level overview of RFPG.

POMDPs and robust policy evaluation. In RFPG, we repre-
sent the policy by an FSC and optimize its parameters through
gradient ascent to improve its robust performance. During
each iteration, RFPG improves the policy on the worst-case
POMDP of the HM-POMDP, akin to subgradient ascent. The
worst-case POMDPs are selected during robust policy evalua-
tion. We introduce a novel technique that exploits structural
similarities between POMDPs to scale to large sets. We as-
sume that the structural similarity is given by an equivalence
relation on the transition and reward functions of the POMDPs
and use it to construct a concise representation of the HM-
POMDP that enables efficient evaluation via deductive verifi-
cation. In an extensive experimental evaluation on both simple
and complex HM-POMDPs, we showcase the improvement
of RFPG over several baselines, both in robust performance
and in generalization to unseen models.1

Example 3. Figure 1(c) illustrates a robust policy found by
RFPG, with two memory states. It uses memory to deduce the
current configuration and solves it close to optimally, moving
up at least twice to counter the southward wind.

1.2 Related Work

Models for multiple environments. Computing policies for mul-
tiple environments has been studied for finite sets of MDPs,
known as both hidden-model MDPs (HM-MDPs) [Chades
et al., 2012; Wu et al., 2019], multiple environment
MDPs (MEMDPs) [Raskin and Sankur, 2014; Chatterjee et
al., 2020], and families of MDPs [Andriushchenko et al.,
2024]. We emphasize that, similarly to the different terms
for MDPs, our definition of HM-POMDPs could also be con-
sidered as multiple environment POMDPs (MEPOMDPs). Ro-
bust POMDPs (RPOMDPs) [Osogami, 2015] extend robust
MDPs (RMDPs) [Iyengar, 2005; Wiesemann et al., 2013]
and capture a potentially infinite set of POMDPs. HM-
POMDPs form a proper subclass of robust POMDPs, and
can approximate RPOMDPs up to finite precision. Methods
for RPOMDPs typically assume (local) convexity and inde-
pendence over state-action pairs in the set of POMDPs, which
results in models where the environment can change com-
pletely at each step, which can be overly conservative. In
contrast, our approach assumes that a worst-case POMDP is
picked adversarially at the start and then remains fixed.

1Code is on Zenodo (https://doi.org/10.5281/zenodo.15479642)
and the paper with appendix is on arXiv [Galesloot et al., 2025].

Methods for robust policy optimization. For RMDPs, vari-
ous works optimize policies through policy gradients [Grand-
Clément and Kroer, 2021; Lin et al., 2024], using subgradients
[Kumar et al., 2023; Rickard et al., 2024] or mirror ascent
[Wang et al., 2023]. For RPOMDPs, earlier work introduced
FSC policy iteration for optimistic (best-case) optimization [Ni
and Liu, 2013]. Methods based on value iteration [Osogami,
2015; Saghafian, 2018; Nakao et al., 2021] typically do not
scale well to large state spaces. More recent methods opti-
mize robust FSCs through sequential convex programming
[Cubuktepe et al., 2021] or by optimizing a recurrent neural
network on worst-case POMDPs [Galesloot et al., 2024]. To
the best of our knowledge, HM-POMDPs do not yet exist in
the literature, and RFPG is the first algorithm for robust policy
optimization in HM-POMDPs.

2 Preliminaries
A distribution over a countable set A is a function µ : A →
[0, 1], s.t.

∑
a µ(a) = 1 and µ(a) ≥ 0 for all a ∈ A. The

support of µ is supp(µ) := {a ∈ A | µ(a) > 0} and a ∼ µ
denotes a ∈ supp(µ). The set ∆(A) contains all distribu-
tions over A. ∇θf denotes the gradient of the function f wrt.
variable θ, and projA(·) denotes the projection onto the set A.

Definition 1 (POMDP). A partially observable Markov deci-
sion process (POMDP) is a tuple M = ⟨S, s0, A, T,R, Z,O⟩
with a finite set S of states, an initial state s0 ∈ S, a finite
set A of actions, a transition function T : S ×A→ ∆(S), a
reward function R : S×A→ R, a finite set Z of observations
and a deterministic observation function O : S → Z2.

We will write T (s′ | s, a) to denote T (s, a)(s′). A Markov
decision process (MDP) is a POMDP with a unique obser-
vation z ∈ Z for every s ∈ S. A Markov chain (MC) is an
MDP with |A| = 1. To simplify notation, MDPs are tuples
⟨S, s0, A, T,R⟩ and MCs are tuples ⟨S, s0, T, R⟩. A path in
an MC is a sequence ξ = (s0, s1, . . .) of states where s0 = s0
and st+1 ∼ T (st). R(ξ) :=

∑∞
t=0 R(st) denotes the (possi-

bly infinite) cumulative reward for ξ [Puterman, 1994].
Let C = ⟨S, s0, T, R⟩ be an MC. We consider reachability

reward objectives: undiscounted infinite-horizon objectives
where we accumulate rewards until reaching a set G ⊂ S of
goal states [Puterman, 1994]. We assume that every goal state

2Observation functions with a distribution over observations can
be encoded by deterministic observation functions at the expense of
a polynomial blow-up in the state space [Chatterjee et al., 2016].
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sG ∈ G is absorbing and collects no reward: T (sG | sG) = 1
and R(sG) = 0; we further assume that every path ξ in C
terminates in G. This definition encompasses infinite-horizon
objectives with discounted rewards. Under the assumptions
above, R(ξ) is a well-defined random variable, and its expecta-
tion JC := E [R(ξ)] will be referred to as the value of the MC
C. This value is obtained from the state-values VC : S → R by
setting JC = VC(s0), after finding the least fixed point of the
recursive equation: VC(s) = R(s) +

∑
s′∈S T (s′ | s)VC(s

′).
To represent observation-based policies for POMDPs, we

use finite-state controllers (FSCs). Various types of FSCs
exist in the literature [Amato et al., 2010]. In this paper, it is
convenient to define FSCs as Mealy machines whose output
depends on the current node and the most recent observation.
Definition 2 (Policy). A stochastic policy as represented by
a finite-state controller is a tuple π = ⟨N,n0, δ, η⟩ where N
is a finite set of memory nodes with the initial node n0 ∈ N ,
δ : N × Z → ∆(A) is the action function, and η : N × Z →
∆(N) is the memory update function. Policy π has full action
support if supp(δ(n, z)) = A for every n ∈ N and z ∈ Z.

Given state s with observation z = O(s), the policy π
executes action a ∼ δ(n, z) associated with the current node
n and the current observation z. The POMDP evolves to
some state s′ ∼ T (s, a), and the policy evolves to node n′ ∼
η(n, z). Imposing a policy π onto POMDP M yields the
induced Markov chain Mπ = (S×N, ⟨s0, n0⟩, Tπ, Rπ), with
a transition and reward function, using z = O(s), defined as:

Tπ(⟨s′, n′⟩ | ⟨s, n⟩) = η(n′ | n, z)
∑
a∈A

δ(a | n, z)T (s′ | s, a),

Rπ(⟨s, n⟩) =
∑
a∈A

δ(a | n, z)R(s, a).

The value of a policy π for a POMDP M is the value of the
induced MC: Jπ

M := JMπ . In this paper, we assume POMDPs
in which the goal states are reachable from any state. This
ensures that VMπ is well-defined for any policy π with full
action support and is thus differentiable.

3 Hidden-Model POMDPs
We present the main problem statement of the paper. We
consider a hidden-model POMDP, which describes an indexed
set of POMDPs that share state, action, and observation spaces.
Definition 3 (HM-POMDP). Let I be a finite set of indices.
A hidden-model POMDP (HM-POMDP) is a tuple M =
⟨S, s0, A, {Ti}i∈I , {Ri}i∈I , Z,O⟩, where S, s0, A, Z,O are
as in Definition 1 and {Ti}i∈I and {Ri}i∈I are indexed sets
of transition and reward functions, respectively.

Given an index i ∈ I, an instance of an HM-POMDPM
is a POMDP Mi = ⟨S, s0, A, Ti, Ri, Z,O⟩. We assume that
each POMDP in the HM-POMDP has an initial state (distri-
bution). Still, the assumption of the shared initial state s0
or shared observation function O is non-restrictive, as it can
be lifted by introducing intermediate states at a polynomial
increase in computational cost. Importantly, the POMDPs de-
scribed byM differ in their transition functions and may thus
differ in their topology, i.e., reachable states and observations.
Instances inM have the same set of policies, denoted by ΠM.

Definition 4 (Robust policy performance and optimal policy).
LetM be an HM-POMDP. The robust performance J π

M of a
policy π is defined as the value of the worst instance and is
maximized by an optimal robust policy π∗, defined as:

π∗ ∈ argmax
π∈ΠM

J π
M, where J π

M := min
i∈I

Jπ
Mi

.

Then, the key problem tackled in this paper is:

Goal: Given an HM-POMDPM, find a policy π∗ opti-
mizing the robust performance J π

M.

Our presentation focuses on the worst-case optimization of
reachability rewards, i.e., argmaxmin (or argminmax when
minimizing costs). The best-case policy performance and its
associated policy are defined analogously (argmaxmax or
argminmin), and our method extends to that setting.

The undecidability of the decision variant of this problem
follows straightforwardly from the undecidability of infinite-
horizon planning for POMDPs [Madani et al., 2000]. There-
fore, we focus on a sound algorithm that aims to find a policy
achieving a high robust performance within a reasonable time.

Example 4. We demonstrate the results of the robust policy
evaluation on the example presented in Figure 1(b). We encode
the objective (reaching any of the green cells while avoiding
the obstacle) as the minimization of reachability reward, where
visiting a cell with the obstacle is penalized by the reward
of −100. The table in Figure 1(d) reports the expected reward
achieved by four policies (rows) on each of the three POMDPs
(first three columns); the last column reports the worst-case
reward across all POMDPs, i.e., the robust performance. The
first three rows correspond to 2-FSCs, each optimizing the
performance in an individual POMDP. Naturally, policy πi

performs well on POMDP Mi. However, it hits the obstacle,
on average, at least once for at least one other POMDP in the
HM-POMDP. The last row reports the values achieved by the
policy produced by RFPG, a method that takes into account
many (in this case, all) POMDPs in the HM-POMDP. The
robust performance of this policy can be interpreted as hitting
the obstacle only once with a probability of at most 2% across
all POMDPs in the HM-POMDP.

4 Robust Finite-Memory Policy Gradients
This section presents the robust finite-memory policy gra-
dient (RFPG) algorithm to compute robust policies for HM-
POMDPs. We divide the presentation into the following parts.
In Section 4.1, we explain the steps of the main loop (recall
Figure 1(e)) of RFPG. In Section 4.2, we present the main step
in policy optimization, and Section 4.3 explains contributions
towards robust policy evaluation on HM-POMDPs with many
instances. In Section 4.4, we provide additional details.

4.1 Overview of RFPG
RFPG alternates between the following two main steps:

• Policy optimization, through policy (sub)gradients, and,
• Robust policy evaluation, through deductive verification.
During robust policy evaluation, we select a POMDP whose

value coincides with the robust performance J π
M.
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Definition 5 (Worst-case POMDP). Given a policy π, a worst-
case POMDP M is an instance of the HM-POMDPM that is
a minimizer of π’s robust performance J π

M:
M ∈ argmin

Mi,i∈I
Jπ
Mi

, such that Jπ
M = J π

M

Given a policy π, computing its robust performance J π
M

and a worst-case POMDP M analytically is mathematically
tractable since HM-POMDPM has finitely many instances.

During policy optimization, RFPG optimizes the candidate
policy π through policy gradient ascent on POMDP M , locally
optimizing the candidate policy π for its robust performance.
As we represent π by an FSC, we parameterize the action
function δθ by θ ∈ Θ ⊆ ∆(A)Z×N and the update function ηϕ
by ϕ ∈ Φ ⊆ ∆(N)Z×N . Thus, we simultaneously optimize
π to learn what to remember and how to act.
Remark 1. We observe that J π

M is non-differentiable in gen-
eral due to the minimization over the finite set. Thus, it may
be infeasible to compute the gradient ∇θ,ϕJ π

M to optimize
the candidate policy π for robust performance directly. This
challenge is circumvented by our iterative approach.

4.2 Policy Optimization for HM-POMDPs
Here, we address the first key component of RFPG– optimiza-
tion of the candidate policies for robust performance. Our
approach builds on subgradients, and we optimize π with a
subgradient∇θ,ϕJ

π
M , where M is a worst-case POMDP for π

as in Definition 5. If there is no unique worst-case POMDP
given π, we select one of them arbitrarily. Then, for any k ∈ N,
the projected subgradient ascent of the policy’s parameters is:

θ(k+1)=projΘ

(
θ(k) + αk∇θ(k)Jπ(k)

M

) ∣∣∣
M∈ argminMi,i∈I Jπ(k)

Mi

ϕ(k+1)=projΦ

(
ϕ(k) + αk∇ϕ(k)Jπ(k)

M

) ∣∣∣
M∈ argminMi,i∈I Jπ(k)

Mi

where π(k) = ⟨N,n0, δθ(k) , ηϕ(k)⟩, and αk are the (dimin-
ishing) step sizes. By iteratively refining the policy on the
worst POMDP via subgradients, we may efficiently learn ro-
bust behavior and generalize to other (unseen) POMDPs of
the HM-POMDP. Policy gradient ascent on a single POMDP,
i.e., for solving argminπ∈ΠM Jπ

M , converges to a local opti-
mum [Meuleau et al., 1999; Aberdeen, 2003]. The situation
is more complex for HM-POMDPs since we are maximiz-
ing for the minimum across a set of POMDPs. In particular,
∇Jπ

M does not guarantee the ascent of J π
M, i.e., robust perfor-

mance at each step may not improve monotonically. This is
in part due to the fact that there can exist multiple worst-case
POMDP, i.e., there might exist multiple subgradients for a
policy π. However, the subgradients still provide a meaningful
direction for optimizing the robust performance. Yet, similar
to the case of POMDPs, we may not provide global optimality
guarantees. To combat the non-monotonicity, RFPG returns
the best robust policy found over all iterations until a time-out
is reached. In the following, we detail how we compute the
gradients ∇Jπ

M for worst-case POMDPs M that we use to
optimize the candidate policy π.

Policy gradients on POMDPs with FSCs. For a worst-
case POMDP M , computing the gradient of the objec-
tive ∇ϕ,θJ

π
M with respect to the policy’s parameters ϕ and

θ enables us to climb the gradient and improve the pol-
icy [Meuleau et al., 1999]. To ensure the gradients are
well-defined, the partial derivatives: ∂ηϕ(n

′|n,z)/∂ϕn,z,n′ , and,
∂δθ(a|n,z)/∂θn,z,a, as well as the ratios:

∣∣∣∣ ∂ηϕ(n′|n,z)

∂ϕ
n,z,n′

∣∣∣∣/ηϕ(n
′|n,z),

and,
∣∣∣ ∂δθ(a|n,z)

∂θn,z,a

∣∣∣/δθ(a|n,z), must be uniformly bounded [Ab-
erdeen and Baxter, 2002].

These conditions are satisfied under a softmax parameter-
ization. We have that the parameters can range over the real
numbers, i.e., we set Φ ⊆ RN×Z×N and Θ ⊆ RN×Z×A,
making the projections projΘ and projΦ trivial. The soft-
max function σ transforms any finite set of real numbers
to a categorical distribution over the set. Given parameters
ϕ ∈ Φ, the probabilities ηϕ(n

′ | n, z) are given, for all
n, z, n′ ∈ N ×Z×N , based on the exponential function exp:
ηϕ(n

′ | n, z) = σn′(ϕn,z) = exp (ϕn,z,n′ )/
∑

m exp (ϕn,z,m),
The partial derivative of a softmax probability with respect to
a particular parameter input is:

∂ηϕ(n
′ | n, z)

∂ϕn,z,m
=

{
ηϕ(m | n, z)(1− ηϕ(n

′ | n, z)) m = n′

−ηϕ(m | n, z)ηϕ(n′ | n, z) m ̸= n′

Recall that the value of the policy Jπ
M = VMπ (⟨s0, n0⟩) is

given by the value of the initial state of the induced MC Mπ.
Then, for ϕ and ηϕ, the expression for the partial derivatives
of our objective with respect to the individual parameters is:

∂Jπ
M

∂ϕn,z,n′
=

∑
m

∂VMπ (⟨s0, n0⟩)
∂ηϕ(m | n, z)

· ∂ηϕ(m | n, z)
∂ϕn,z,n′

,

and similarly for θ and δθ. Then, the gradient ∇Jπ
M is com-

prised of the partial derivatives for the individual parameters:

∇Jπ
M =

[
∇ϕJ

π
M ,∇θJ

π
M

]
=

[{
∂Jπ

M

∂ϕn,z,n′

∣∣ ∀n, z, n′
}
,

{
∂Jπ

M

∂θn,z,a
| ∀n, z, a

}]
.

By computing∇Jπ
M , we optimize the parameters of the policy

for the POMDPs M selected during robust policy evaluation.

4.3 Robust Policy Evaluation
The robust performance J π

M of a given policy π (see Def. 4)
can be computed by enumerating every POMDP Mi, i ∈ I,
applying π to obtain the induced MC Mπ

i and computing
its value. In this section, we develop a methodology that
avoids this enumeration and makes our approach scale to HM-
POMDPs that describe many instances. The key to such a
methodology is a concise representation of HM-POMDPs,
namely a succinct representation of a set of transition {Ti}i∈I
and reward {Ri}i∈I functions.

To compactly describe a set of (structurally similar) transi-
tion functions, we merge transitions that are shared between
multiple instances. For instance, in the HM-POMDP from
Figure 1(b), in the initial position (x = 0, y = 0) of the
agent, all actions have the same immediate effect regardless
of the particular instance. On the other hand, when execut-
ing an action from state (x = 1, y = 0), the agent receives
a penalty of -100 in the instance (Oy = 0), but receives no

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

penalty in all other POMDPs. Formally, let s,a∼ be the equiv-
alence relation on I defined as i s,a∼ j iff Ti(s, a) = Tj(s, a)
and Ri(s, a) = Rj(s, a), i.e., executing action a in POMDPs
Mi and Mj has the same effect and yields the same reward.
I/s,a∼ denotes the corresponding equivalence partitioning of
I wrt. s,a∼ . Then, to compactly describe a set of structurally
similar POMDPs, we introduce a quotient POMDP, which is
an extension of quotient MDPs (a mild variation of feature
MDPs [Chrszon et al., 2018]) used in [Andriushchenko et
al., 2024] to reason about families of MDPs. Intuitively, the
quotient POMDP is a POMDP that can execute action a in
state s from an arbitrary Mi, i ∈ I.

Definition 6 (Quotient POMDP). Given HM-POMDP
M = ⟨S, s0, A, {Ti}i∈I , {Ri}i∈I , Z,O⟩, the quotient
POMDP associated with M is a POMDP QM =
⟨S, s0, AQ, TQ, RQ, Z,O⟩ with actions AQ = A × 2I . Let
(a, I) be denoted as aI . We define TQ(s′ | s, aI) = Ti(s

′ |
s, a) and RQ(s, aI) = Ri(s, a) where i ∈ I (arbitrarily).

While for POMDPs in Definition 1 we assume that every
action is available in every state, in our implementation, we
assume w.l.o.g. that every state s is associated with some set
A(s) ⊆ A of available actions, i.e., the transition function
T : S ×A ↛ ∆(S) is partial. Then, in the quotient POMDP,
we assume that AQ(s) = {aI | a ∈ A(s), I ∈ I/s,a∼}, i.e.,
in state s an agent chooses to play a specific variant of action
a available in any Mi, i ∈ I. This allows us to efficiently
encode an HM-POMDP where there are actions a ∈ A that
coincide in many instances Mi, i ∈ I.

We lift the notion of the induced Markov chain (Section 2)
from POMDPs to quotient POMDPs: The induced quotient
MDP defines the set of MCs describing behavior of π in the
POMDPs captured by the quotient POMDP. Intuitively, in
the current state (s, n) of the induced quotient MDP, using
z = O(s), an action a ∼ δ(n, z) is selected and the system
transitions to an intermediate state (s, n, a), in which a specific
variant of action a is selected from the set I/s,a∼ ; then, the
state is updated according to TQ(s, aI) and the memory is
updated according to η(n, z).

Definition 7 (Induced quotient MDP). Given quotient
POMDP QM = ⟨S, s0, AQ, TQ, RQ, Z,O⟩ and policy π =
⟨N,n0, δ, η⟩. Let A∅ := A ⊔ {∅} where ∅ is a fresh action.
The induced quotient MDP associated with QM and π is an
MDP Lπ

M = ⟨S ×N ×A∅, (s0, n0,∅), AL, TL, RL⟩ where
AL = {∅} ⊔ 2I with available actions AL(·, ·,∅) = {∅}
and AL(s, ·, a) = I/s,a∼ . The transition and reward functions
are defined as follows, where, using z = O(s):

TL(⟨s, n, a⟩ | ⟨s, n,∅⟩,∅) = δ(a | n, z),
TL(⟨s′, n′,∅⟩ | ⟨s, n, a⟩, I) = TQ(s′ | s, aI) · η(n′ | n, z),

RL(⟨s, n, a⟩, I) = RQ(s, aI).

Given such a quotient MDP compactly describing a fam-
ily {Mπ

i }i∈I of induced MCs, we can use deductive formal
verification techniques implemented in the tool PAYNT [An-
driushchenko et al., 2021] to efficiently identify an MC with
the minimal value of Jπ

Mi
= J π

M, obtaining the robust perfor-
mance of π and an associated worst-case POMDP M .

Algorithm 1: The RFPG algorithm
Input :An HM-POMDPM, a set G of goal states
Output :A policy π∗ achieving the best J π∗

M
Global :number of GA steps GASTEPS, step sizes αk

1 N ← SIZEOFFSC(M) ▷ See App. B

2 θ(0), ϕ(0) ← INIT(Θ,Φ, N), k ← 0, ν∗ ← −∞
3 π(0) ← ⟨N,n0, δθ(0) , ηϕ(0)⟩ ▷ Build policy

4 QM ← QUOTIENTPOMDP(M) ▷ Def.6
5 while TIMEOUT IS NOT REACHED do
6 Lπ(k)

M ← INDUCEDMDP
(
QM, π(k)

)
▷ Def. 7

7 M (k),J π(k)

M ← PAYNT
(
Lπ(k)

M , G
)
▷ Sec. 4.3

8 if J π(k)

M > ν∗ then π∗ ← π(k), ν∗ ← J π(k)

M
9 for j ← k to k + GASTEPS − 1 do

10 θ(j+1) ← projΘ
(
θ(j) + αj∇θ(j)Jπ(j)

M(k)

)
11 ϕ(j+1) ← projΦ

(
ϕ(j) + αj∇ϕ(j)Jπ(j)

M(k)

)
12 π(j+1) ← ⟨N,n0, δθ(j+1) , ηϕ(j+1)⟩
13 k ← k + GASTEPS
14 return π∗

4.4 RFPG Algorithm
Algorithm 1 outlines the key steps of RFPG. First, we de-
termine the number of nodes for the policy π. Determining
the optimal size is undecidable [Madani et al., 2000], there-
fore, we apply a heuristic that solves a small sample set of
POMDPs fromM to determine an adequate size (Line 1, see
Appendix B). We then initialize the gradient ascent parameters
(Line 2, see Appendix A) and build the corresponding policy π
(Line 3). Finally, we build the quotient POMDP QM (Line 4,
see Definition 6) that compactly represents the set of POMDPs
in the given HM-POMDPM.

The main loop runs until the given timeout is reached. We
first construct for the current policy π the induced quotient
MDP Lπ(k)

M (Line 6, see Definition 7). The tool PAYNT [An-
driushchenko et al., 2021] takes this MDP Lπ(k)

M and the given
goal states G to compute a worst-case POMDP M (k) and
the robust performance J π(k)

M (Line 7, see Section 4.3). We
then update the running optimum (Line 8). Finally, we run
GASTEPS gradient ascent steps to update parameters ϕ and
θ of the policy π, now on POMDP M (k) (Line 9, see Sec-
tion 4.2). GASTEPS is a hyperparameter that should be tuned
based on the size of the HM-POMDP: having many instances
|I| slows down the policy evaluation, while many states |S|
slows down the gradient update steps. In our experiments,
we picked GASTEPS = 10, such that at most 75% of the
computation time is spent on policy evaluation.

5 Experimental Evaluation
In this section, we evaluate RFPG on the following questions.

(Q1) Does RFPG produce policies with higher robust perfor-
mance compared to several baselines?

(Q2) Can RFPG generalize to unseen environments?
(Q3) How does the POMDP selection affect performance?
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5.1 Experimental Setting
Benchmarks. We extend four POMDP benchmarks [Littman et
al., 1997; Norman et al., 2017; Qiu et al., 1999] and one fam-
ily of MDPs [Andriushchenko et al., 2024] to HM-POMDPs.
These benchmarks together encompass a varied selection of
different complexities of HM-POMDPs, i.e., different num-
bers of POMDPs and sizes thereof, as reported in Table 1.
Appendix C gives a detailed description of the benchmarks.
Baselines. For (Q1), we compare our approaches (1) to
the POMDP solver SAYNT [Andriushchenko et al., 2023],
which provides competitive performance to other state-of-
the-art tools that compute FSCs, and (2) standard FSC pol-
icy gradient ascent (GA) for POMDPs [Aberdeen, 2003;
Heck et al., 2022]. We create four different baselines by
using the following two strategies to compute robust policies:
• Enumeration: SAYNT-E/GA-E runs SAYNT/GA indepen-

dently on each of the POMDPs in the HM-POMDP and
selects the policy with the best robust performance.

• Union: SAYNT-U/GA-U runs SAYNT/GA on the union
POMDP, constructed from the disjoint union of the
POMDPs described by the HM-POMDP, with a uniform
distribution over the initial states of these POMDPs.

Set-up. Due to their size, executing the baselines on the com-
plete sets of POMDPs described by our benchmark suite of
HM-POMDPs is infeasible. Moreover, we are interested in
assessing the generalizability of our method (Q2). Therefore,
we design the following experiment: (1) Pick a random subset
of ten POMDPs from the full HM-POMDP, (2) compute a
robust policy for this smaller sub-HM-POMDP using the four
baselines and RFPG (referred to as RFPG-S), (3) compare the
achieved robust performance of RFPG to the baselines on this
sub-HM-POMDP (Q1). To further study the scalability and
generalization of RFPG to large HM-POMDPs, we extend the
experiment with the following steps: (4) compute a robust pol-
icy for the full HM-POMDP using RFPG, and (5) compare the
robust performance of the resulting six policies on the full HM-
POMDP using the policy evaluation method from Section 4.3.
From this experiment, we can not only assess the scalability
of our approach compared to the baselines but, moreover, the
ability to generalize to unseen environments (Q2). Addition-
ally, we can see if RFPG produces a better robust performance
than RFPG-S, indicating whether it is essential to assess all
POMDPs within an HM-POMDP. All methods have a one-
hour timeout to compute a policy; in case of a timeout, we
report the robust performance of a uniform random policy.
To report statistically significant results, each experiment was
carried out on 10 different subsets obtained using stratified
sampling from the full HM-POMDP. Appendix D provides
information on the infrastructure used to run the experiments.

5.2 Overview of the Experimental Results
We present three experimental artifacts that report the key
results of the experimental evaluation.
The table in Figure 2 reports, similar to Example 4, the values
achieved by the policies on one particular subset of the Ob-
stacles(8,5) HM-POMDP. The table shows the performance
of the baseline methods except for GA-E, whose results are

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M

SAYNT M1

SAYNT M2

SAYNT M3

SAYNT M4

SAYNT M5

SAYNT M6

SAYNT M7

SAYNT M8

SAYNT M9

SAYNT M10

GA-U

SAYNT-U

RFPG-S

-13 -132 -262 -119 -104 -33 -111 -104 -119 -95 -285

-24 -14 -219 -194 -120 -38 -106 -186 -89 -22 -284

-136 -106 -16 -120 -136 -214 -29 -171 -170 -135 -361

-16 -105 -132 -23 -111 -120 -33 -14 -272 -121 -286

-13 -132 -262 -119 -104 -33 -111 -104 -119 -95 -285

-15 -112 -219 -103 -120 -30 -97 -104 -180 -95 -285

-15 -177 -163 -103 -120 -31 -15 -120 -180 -13 -284

-106 -15 -138 -195 -120 -103 -106 -104 -89 -104 -284

-271 -91 -123 -272 -120 -103 -271 -170 -16 -136 -361

-23 -30 -253 -207 -107 -40 -117 -186 -40 -22 -284

-24 -14 -219 -194 -120 -38 -106 -186 -89 -22 -284

-37 -120 -173 -132 -112 -111 -109 -132 -171 -91 -230

-94 -130 -145 -137 -139 -118 -138 -135 -149 -145 -220

Figure 2: Performance (maximizing) of SAYNT-E (first 10 rows),
SAYNT-U, GA-U, and RFPG-S for a sub-HM-POMDP of Obsta-
cles(8,5). In the first 10 columns, corresponding to the evaluation
of the individual POMDPs, we highlight the worst-case value of
each method in blue and the best worst-case value among these in
green. Independently, we highlight the highest value on the full HM-
POMDP M (last column) in green. For comparison, RFPG achieves
a value of −206 on M, surpassing the baselines.

generally worse and are reported in Appendix E. The right-
most column shows the results for the full HM-POMDP. It
provides details in this particular environment on how (Q1)
RFPG compares to the baselines on the subset of POMDPs
and how (Q2) RFPG generalizes to the full HM-POMDP.
Table 1 summarizes the main results, including all algorithms
and benchmarks to provide substantial evidence to answer
(Q1) and (Q2). The upper part of the table contains less com-
plex HM-POMDPs, describing a modest number of POMDPs,
while the lower part includes more complex problems. The left
part of the table presents the results for the sub-HM-POMDPs,
and the values are normalized wrt. the value obtained using
RFPG-S. The right part presents the results for the full HM-
POMDP with the values normalized wrt. the value obtained
using RFPG. We average values over 10 seeds; the extended
Tables 2 and 3 in Appendix E include standard errors. Values
below 1 indicate how much the baselines lag behind RFPG-S
(the left part) and by RFPG (the right part), respectively.
The learning curves in Figure 3 show the robust performance
over time for the policies computed by RFPG and by the
variant of the GA optimization that in every iteration of Algo-
rithm 1 selects a random POMDP, similar to domain random-
ization [Tobin et al., 2017], to answer (Q3). We report curves
for two selected benchmarks, a simpler and a harder one; learn-
ing curves for all benchmarks are reported in Appendix E. We
consider the full HM-POMDP and plot the average values over
10 seeds with 95% confidence intervals.

5.3 Analysis of the Experimental Results

(Q1) Comparison to baselines
Detailed evaluation via Obstacles(8,5). As expected, the table
in Figure 2 shows that the policy optimized for a particular
POMDP achieves excellent relative value on this POMDP, but
generally performs poorly on other POMDPs. The best robust
performance of SAYNT-E is achieved with the policy opti-
mized for POMDP M7, yielding a value of -180 for the subset
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Model
Dimensions Subset of |I| = 10 POMDPs Full HM-POMDP
|I| |S| |Z| |A| SAYNT-E SAYNT-U GA-E GA-U SAYNT-E SAYNT-U GA-E GA-U RFPG-S

Obstacles(10,2) 81 299 14 8 0.76 0.81 0.92 0.95 0.19 0.71 0.21 0.94 0.99
Network 140 4k 20 7 1.06 1.05 0.93 0.96 1.04 1.07 0.72 1.02 1.02
Avoid 1600 13k 11 10 1.05 0.10 0.52 0.98 0.18 0.18 0.08 1.10 1.23

Rover 6k 86 18 6 0.88 0.85 0.88 0.85 0.75 0.80 0.75 0.80 0.83
Obstacles(8,5) 12k 380 25 10 0.79 0.67 0.71 0.68 0.62 0.72 0.25 0.81 0.84
DPM 131k 737 3 5 0.80 0.61 0.95 0.61 0.54 0.64 0.46 0.62 0.91

Table 1: Values of policies computed by the baselines and RFPG-S on a subset of POMDPs of size 10, evaluated on both the subset and the full
HM-POMDP. Values evaluated on the subset are normalized wrt. the value of RFPG-S; values evaluated on the HM-POMDP are normalized
wrt. the value of RFPG. Each method had a total timeout of 1 hour. The reported results are averaged over 10 seeds.
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Figure 3: Learning curves of RFPG compared to a baseline configured
to randomly select a POMDP from the HM-POMDP at each iteration.
We plot averages over 10 seeds with 95% confidence intervals.

and -284 for the HM-POMDP. The baselines using the union
POMDP provide more robust policies. GA-U outperforms
SAYNT-U in both settings, although SAYNT-E outperforms
GA-E. While SAYNT-U achieves a better average, its robust
performance is worse than GA-U. Being the best baseline on
this benchmark, GA-U computes a policy achieving a value
of -173 on the subset and -230 for the HM-POMDP. Our ap-
proach significantly improves these values: RFPG-S finds a
policy with a value of -149 on the subset and -220 on the
HM-POMDP, and RFPG finds a policy with a value of -206
on the HM-POMDP (not reported in the table).

Comparison on the whole benchmark suite. Table 1 shows that
our approach generally outperforms the baselines. Below, we
analyze the left and right parts of the table in more detail.

Subsets. The results demonstrate the benefits of our approach
already for the subsets of POMDPs, especially for the more
complex benchmarks. In 4 (out of 6) benchmarks, the best poli-
cies produced by the baselines are behind the policies found
by RFPG. We also observe that the relative performance of the
particular baselines significantly varies among the benchmarks.
This shows that (i) already small subsets require generaliza-
tion in the policies for particular POMDPs to obtain robust
performance and (ii) the union POMDP, which “averages” the
individual POMDPs in the subset, does not necessarily pro-
vide an adequate abstraction and provides worse results than
the enumeration even when it is tractable to solve it.

Full HM-POMDPs. We observe similar trends to the previ-
ous setting; however, our approach’s benefits are even more
significant. GA-U and SAYNT-U are sometimes competitive
with RFPG on the three benchmarks with smaller I, as it is
more probable that useful POMDPs end up in the union. For
the more complex benchmarks with large I , in most cases, the

baselines cannot produce policies with a value better than 80%
of the value produced by RFPG. For the most complex bench-
mark, DPM, the gap between RFPG and the best baseline
(SAYNT-U) is 36%. We also observe that RFPG considerably
improves RFPG-S on these benchmarks, which demonstrates
the scalability of our approach: RFPG can effectively reason
about HM-POMDPs describing over 130000 environments.

(Q2) Generalization Recall Table 1 to compare RFPG-S
and the baselines. These results show how well the poli-
cies optimized for the same subset can generalize to unseen
POMDPs in the HM-POMDP. Except for the Network bench-
mark, RFPG-S provides much better generalization to the full
HM-POMDP. The most complex benchmark, DPM, shows a
gap of 26% between RFPG-S and the best baseline.

(Q3) Ablation with random POMDP selection The learning
curves in Figure 3 demonstrate the role of robust policy evalu-
ation within our approach. For the Network benchmark with
a modest number of POMDPs, the random selection of the
POMDP has a decent chance of sampling useful POMDPs for
policy optimization, which is similar to what we observed for
GA-U and SAYNT-U. Therefore, the performance is competi-
tive with RFPG, yet RFPG performs slightly better on average.
On the other hand, for DPM, the HM-POMDP describes over
a hundred thousand POMDPs, and the learning curve clearly
shows that robust policy evaluation is essential for more com-
plex problems with more POMDPs: random selection leads to
policies that achieve significantly worse values with very high
fluctuation of values during the learning process.

6 Conclusion

HM-POMDPs encapsulate sets of POMDPs, with the assump-
tion that the true model is hidden within the set. The problem
is to find a robust policy for all POMDPs. We separated
the concerns of robust policy evaluation to pick worst-case
POMDPs and perform gradient ascent on the set of POMDPs
to optimize a policy. The experimental evaluation confirms
that our approach has two key benefits compared to the base-
lines: (1) the policies achieve better generalization to unseen
POMDPs, and (2) it scales to HM-POMDPs with over one
hundred thousand POMDPs. As such, the paper presents the
first approach that can effectively solve HM-POMDPs, an im-
portant and practically-relevant subclass of robust POMDPs.
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