Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

LTLf+ and PPLTL+: Extending LTLf and PPLTL to Infinite Traces

Benjamin Aminof' , Giuseppe De Giacomo'?, Sasha Rubin® and Moshe Y. Vardi*
'University of Rome “La Sapienza”, Italy
ZUniversity of Oxford, United Kingdom
3University of Sydney, Australia

4Rice University, USA
benjamin.aminof @tuwien.ac.at, giuseppe.degiacomo @cs.ox.ac.uk, sasha.rubin @sydney.edu.au,
vardi@cs.rice.edu

Abstract

We study two logics, LTLf+ and PPLTL+, to ex-
press properties of infinite traces, that are based on
the linear-time temporal logics LTLf and PPLTL
on finite traces. LTLf+/PPLTL+ use levels of
Manna and Pnueli’s LTL safety-progress hierar-
chy, and thus have the same expressive power as
LTL. However, they also retain a crucial character-
istic of reactive synthesis for the base logics: the
game arena for strategy extraction can be derived
from deterministic finite automata (DFA). Conse-
quently, these logics circumvent the notorious dif-
ficulties associated with determinizing infinite trace
automata, typical of LTL synthesis. We present
optimal DFA-based technique for solving reactive
synthesis for LTLf+ and PPLTL+. Additionally, we
adapt these algorithms to optimally solve satisfia-
bility and model-checking for these two logics.

1 Introduction

Reactive synthesis is concerned with synthesizing programs
(aka, strategies) for reactive computations (e.g., processes,
protocols, controllers, robots) in active environments [Pnueli
and Rosner, 1989; Finkbeiner, 2016; Ehlers et al., 20171, typ-
ically from temporal logic specifications. The most common
specification language is possibly Linear Temporal Logic
(LTL) [Pnueli, 1977]. The basic techniques for reactive syn-
thesis share several similarities with Model Checking, and
are based on the connections between Logics, Automata, and
Games [Fijalkow and others, 2023]. Indeed, Reactive Synthe-
sis for LTL involves the following Steps: (i) having a spec-
ification ¢ of the desired system behavior in LTL, in which
one distinguishes controllable and uncontrollable variables;
(ii) extracting from the specification an equivalent automaton
on infinite words, corresponding to the infinite traces satisfy-
ing ; (iii) (differently from Model Checking) determinizing
the automaton to obtain an arena for a game between the sys-
tem and the environment; (iv) solving the game, by fixpoint
computation, for an objective determined by the automaton’s
accepting condition (e.g., a parity objective for LTL), yielding
a strategy for the system that fulfills the original specification.

Model Checking is mature, and its techniques may be ex-
ploited in Reactive Synthesis as well, including symbolic

techniques based on Boolean encodings to compactly repre-
sent the game arena and compute fixpoints over it. However,
despite this, LTL synthesis has lagged behind since the re-
quired determinization in Step (iii) remains a major perfor-
mance obstacle: determinizing nondeterministic Biichi au-
tomata (NBA) is notoriously difficult [Vardi, 2007].

At first glance, the difficulty appears to be a simple conse-
quence of the worst-case computational complexity gap: the
NBA built from an LTL formula at Step (ii) is worst-case ex-
ponentially larger than the formula, and then determinizing it
at Step (iii) requires a further exponential blowup, resulting
in a 2EXPTIME-algorithm for reactive synthesis with LTL
specifications (with a matching lower-bound). In compari-
son, model checking LTL specifications does not require the
determinization step and is only PSPACE-complete. How-
ever there is more.

In AI, Reactive Synthesis has been studied with a fo-
cus on logics on finite traces (instead of infinite traces),
e.g., LTLf [Gabbay et al., 1980; Baier and Mcllraith, 2006;
De Giacomo and Vardi, 2013; De Giacomo and Vardi, 2015].
In fact, LTLf synthesis [De Giacomo and Vardi, 2015] is
one of the two main success stories of reactive synthesis so
far (the other being the GR(1) fragment of LTL [Piterman
et al., 2006]), and has brought about scalable results that
are unprecedented [Zhu et al., 2017; Bansal et al., 2020;
De Giacomo and Favorito, 2021; De Giacomo et al., 2022].

The reason behind such good results can not be explained
by worst-case complexity arguments since the complexity
of LTLf synthesis is exactly the same that of LTL, i.e.,
2EXPTIME-complete. Furthermore, the basic steps of the
LTLf synthesis algorithm are similar to Steps (i) to (iv) earlier
outlined for LTL, with each step potentially introducing the
same asymptotic blowup as the corresponding step for LTL.
Indeed, for LTLf, Step (ii) produces a nondeterministic finite
state automaton (NFA) which in the worst case is exponen-
tially larger than the input formula, and Step (iii) determinizes
that NFA to produce a DFA which in the worst case is expo-
nentially larger than the NFA. It turns out that the difference
between the practical performance of LTL and LTLf synthe-
sis algorithms lies in the practical performance differences
of Steps (ii) and (iii) of these algorithms: for LTLf, neither
of these usually manifests its worst-case potential in prac-
tice! For LTL synthesis, Step (ii) is also shared by the model-
checking algorithm, which performs well in practice, thus in-

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

dicating that Step (iii) is the main culprit. Indeed, the expo-
nential blow-up of the determinization of NBA is serious also
in practice [Althoff et al., 2006]. In comparison, for LTLf,
Step (iii) not only does not usually introduce a blowup, but in
fact it has been observed multiple times that determinizing an
NFA results in a DFA that is smaller than the NFA [Tabakov
and Vardi, 2005; Armoni et al., 2006; Rozier and Vardi, 2012;
Tabakov et al., 2012].

Besides LTLf, another finite-trace logic that is gaining
popularity in Al is Pure Past LTL (PPLTL) [Lichtenstein ef
al., 1985; De Giacomo et al., 2020; Bonassi et al., 2023b;
Bonassi et al., 2023a; Bonassi et al., 2024; Cimatti et al.,
2024]. This is a variant of LTLf that sees the trace backwards
and has the notable property that one can obtain a symbolic
(i.e., factorized) DFA directly from the formula in linear time.
Moreover, while the size of the (non-symbolic) DFA corre-
sponding to an LTLf formula can be double-exponential in
the size of the formula itself, the size of the (non-symbolic)
DFA corresponding to a PPLTL formula is at most a single-
exponential in the size of the formula.

In this paper we show how to lift the DFA techniques at
the base of the success story of LTLf and PPLTL to handle
the expressive power of full LTL. To do so, we leverage the
classic hierarchy of LTL properties — the safety-progress hi-
erarchy [Manna and Pnueli, 1990]. ! It consists of six classes
of semantic properties, organized by inclusion. The bottom
first level has the safety properties that intuitively express that
nothing bad ever happens, and the guarantee (aka co-safety)
properties that intuitively express that something good even-
tually happens. The second level has the obligation properties
obtained by taking positive Boolean combinations of safety
and guarantee properties. The third level has recurrence prop-
erties that intuitively express that something good occurs in-
finitely often, and persistence properties that intuitively say
that nothing bad occurs infinitely often. The fourth level
contains the reactivity properties which are positive Boolean
combinations of recurrence and persistence properties. Each
such property, which is interpreted over infinite traces, is de-
fined in terms of sets of finite traces, which refer to finite
prefixes of the infinite trace. For example, a set F' of finite
traces induces a basic safety (resp. progress) property that
is satisfied by an infinite trace iff every prefix (resp. all but
finitely many prefixes) of that trace are in F'. The reactivity
properties contain all properties expressible in LTL.?

We revisit Manna and Pnueli’s hierarchy, and extract from
it extensions of LTLf and PPLTL, which we call LTLf+ and
PPLTL+, that can express arbitrary LTL properties on infinite
traces. These logics retain a crucial characteristic for reactive
synthesis of their base logics: one can exploit the techniques

!The hierarchy was introduced by Lichtenstein ef al. in 1983,
later described in detail by Manna and Pnueli in 1990; also, see the
survey [Piterman and Pnueli, 2018].

2The hierarchy is not limited to LTL, i.e., to properties that are
expressible in first-order logic (FO) over infinite sequences [Kamp,
1968], but extends to omega-regular properties, i.e., to monadic-
second order logic (MSO) over infinite sequences. Indeed, all the
results we present here can be extended to omega-regular properties
by substituting LTLf (resp. PPLTL) by its MSO-complete variant
LDLS (resp. PPLDL) [De Giacomo and Vardi, 2013].

for translating LTLf and PPLTL formulas into DFAs [De Gi-
acomo and Vardi, 2015; De Giacomo et al., 2020]. By taking
a simple product of these DFAs one can form the game arena
for strategy extraction of LTLf+/PPLTL+ specifications. Nat-
urally, the game objectives for LTLf+/PPLTL+ go beyond
the simple adversarial reachability for LTLf/PPLTL. In par-
ticular, we exploit the Emerson-Lei condition [Emerson and
Lei, 1987] for handling Boolean combinations, and the pos-
sibility of translating these conditions into parity conditions
(typically used for LTL) or to fixpoint computations [Haus-
mann ef al., 2024]. Beside studying Reactive Synthesis in
LTLf+/PPLTL+, we also study satisfiability and model check-
ing problems of these logics, and provide both upper bounds
and corresponding lower bounds.

We believe that the importance of this work is not in
the presentation of new logics, new algorithmic techniques,
or new hard to achieve lower-bounds. In fact, the log-
ics LTLf+/PPLTL+ can be easily extracted from Manna and
Pnueli’s work, the algorithms we present, though new, em-
ploy variations of known building blocks, and the same goes
for the lower bounds. The main contribution of this paper is in
observing that if one combines the exact building blocks we
use, in the exact way that we do, one can obtain for the first
time, for natural LTLf-based and PPLTL-based logics that
are as expressive as LTL, synthesis algorithms that are DFA
based — and thus avoid the notoriously difficult stumbling
block of determinizing automata over infinite words which
has been the bane of putting LTL synthesis into practical use.
In many ways, this paper has been “hiding in plain sight” and
could have been written many decades ago, as all the neces-
sary pieces were available for everyone to see for a very long
time. The fact that it was never written, and that nobody no-
ticed how to obtain the algorithms we present and tried to put
them into practical use, is a strong indication to us that this
information should be finally brought to the attention of the
Al and reactive synthesis communities.

2 Preliminaries

Trace Properties. Let X be a finite alphabet. If S C %,
then S“ (resp. S*) is the set of infinite (resp. finite) se-
quences over S. The empty sequence is denoted €. Index-
ing sequences starts at 0, and we write 7 = 797y For
0 < i < |7|, write T<; for the prefix 79 ...7;, and 7>; for
the suffix 7,741 ... of 7. Let AP be a finite non-empty
set of atoms. A trace is a non-empty finite or infinite se-
quence T over X = 24P (valuations of atoms); in particular,
the empty sequence ¢ is not a trace. The length of 7 is de-
noted |7| € NU{oo}. A finite-trace property is a set of finite
traces. An infinite-trace property is a set of infinite traces. A
trace satisfies a property Z if itis in Z. Let £ be a logic for
representing infinite-trace (resp. finite-trace) properties (we
will later consider a few instantiations of £). The set of infi-
nite (resp. finite) traces satisfying a formula ¢ of £ is denoted
[¢]. An infinite-trace (resp. finite-trace) property Z is defin-
able (aka, expressible) in £ iff there is some formula ¢ of £
such that Z = [¢].

Transition Systems. A nondeterministic transition system
T = (2,Q,1,0) consists of a finite input alphabet ¥ (typ-

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

ically, ¥ = 247), a finite set Q of states, a set I C @ of
initial states, and a transition relation § C QQ X ¥ X). The
size of T is |@)|, the number of its states. We say that T is
total if for every g, a there exists ¢’ such that (¢, a,q’) € 4.
Unless stated otherwise, nondeterministic transition systems
are assumed to be total. In case [= {¢} is a singleton and
d is functional, i.e., for every ¢, a there is a unique ¢’ such
that (g, a,q’) € 9, the transition system is called determinis-
tic instead of nondeterministic; in this case we write ¢ instead
of I, and §(s,a) = ¢’ instead of (s,a,s’) € 0. A run (aka
path) induced by the trace 7 is a sequence p = pgp; ... of
states, where po € I and p;+1 € d(p;, ;) for 0 < i < |7|.
We simply say that 7 has the run p and that p is a run of
7. In a nondeterministic transition system 7', a trace may
have any number of runs (including none). If a trace 7 has
arun in T, we say that T generates 7. For i € {1,2}, let
T, = (X,Qi, 1, 0;) be deterministic transition systems over
the same alphabet. The product Ty x 15 is the determin-
istic transition system (X, Q’, ¢/, ¢") where Q' = Q1 X Qa,
V= (t1,t2),and §((q1,92),a) = (61(q1,a),d2(q2,a)). This
naturally extends to a product of n-many systems. For an in-
finite run p, define inf{p) C Q to be the set of states ¢ € @
such that ¢ = p; for infinitely many 1.

Automata on finite traces. A finite automaton is a pair
A = (T, F), where T is a transition system and F' C @ is the
set of final states. The size of A is the size T'. If T' is nondeter-
ministic, then A is called a nondeterministic finite automaton
(NFA); if T is deterministic, then A is called a deterministic
finite automaton (DFA). A finite trace is accepted by A if it
has a run that ends in a state of F'. The set of finite traces
accepted by A is called the language of A, and is denoted
L(A). Two automata A, B are equivalent if L(A) = L(B).

Games and synthesis. An arena is a deterministic transi-
tion system D = (X,Q,t,6) where ¥ = 24F and AP is
partitioned into X U Y for some sets X,Y of atoms (we
use 1" to denote general transition systems, and D to de-
note arenas). Elements of 2¥ (resp. 2%) are called envi-
ronment moves (resp. agent moves). An objective O over
D is a subset of Q“. Elements of O are said to satisfy O.
A game is a pair G = (D,0). A strategy is a function
o : (2¥)* — (2%) that maps sequences of environment
moves to agent moves (including the empty sequence, be-
cause the agent moves first). An outcome of o is an infinite
trace 7 over 24% such that (i) pNX = o(e), and (ii) fori > 0
wehave ;N X = o(1oNY -1y NY - 7,1 NY). A strategy
o is winning if for every outcome T, the run p €) induced
by the trace 7 in D satisfies O. The following computational
problem is called game solving: given G = (D, O), decide if
there is a winning strategy, and if so, to return a finite repre-
sentation of one. Intuitively, in a game, the agent moves first,
the environment responds, and this repeats producing an infi-
nite trace 7. The agent is trying to ensure that the run induced
by 7 satisfies the objective, while the environment is trying to
ensure it does not.

Emerson-Lei (EL) automata and games. An EL condi-
tion [Emerson and Lei, 1987] over a set @ of states is a triplet
(T, \, B), where T is a finite set of labels, \: Q — 2F is a la-
beling function that assigns to a state a (possibly empty) sub-

setof labels, and B: 21" — {true, false} is a Boolean function
over the set I" (treated as variables).®> For a state ¢ € Q and a
label I € A(q), we say that g visits I. We will sometimes (but
not always) write B as a Boolean formula over the set I" of
variables, with the usual syntax and semantics, e.g., the for-
mula [y A ls A —l3 denotes the Boolean function that assigns
true to a set Z C I' iff Z contains {; and /> but not /3. For
a sequence p € QQ“, we denote by inf, (p) = U{A\(q) : q¢ €
inf(p)}, i.e., the set of labels that are visited infinitely many
times by states on p. The EL condition (T', \, B) induces the
objective O = {p € Q¥ : B(inf\(p)) = true}, e, p € O
if the set of labels that are visited infinitely often satisfies B;
in this case we say that p satisfies the EL condition. An EL
automaton is a pair A = (T, (', \, B)), where T is a transi-
tion system, and (I, A, B) is an EL condition over the states
of T'. If T is deterministic then A is called a deterministic EL
automaton (DELA). An EL game is a DELA (D, (T', \, B))
where D is an arena. DELA are closed under Boolean opera-
tions, with very simple constructions, and trivial proofs:

Proposition 1. Givena DELA A = (T, (I', A\, B)), the DELA
B = (T, (T, \,~B)) accepts the complement of L(A). Given
DELA A = (Tl, (Fl,)\1,31)) and B = (Tg7 (FQ,)\2, Bg)),
with I'y and I's being disjoint, let T' be the product of T\ and
T5. We have that the DELA C = (T, (I'y UT'9, A, B)), where
A(p, q) = A1(p) U Xa(q), accepts the language L(A) U L(B)
if we take B = By V By, and the language L(A) N L(B) if
we take B = By A\ Bs.

Theorem 1. [Hausmann et al., 2024] EL games can be
solved in time polynomial in the size of the arena and ex-
ponential in the number of labels.

3 Linear Temporal Logics on Finite Traces
Let AP be a finite non-empty set of atoms.

LTLf. LTLf formulas are given by the syntax:

pu=p|lo|leAp|Xp|pUp

Here p € AP, X (“next”) and U (“until”) are the future op-
erators. Common abbreviations include WXy = = X-p
(“weak next”). We interpret LTLf formulas over (non-empty)
finite traces. Intuitively, we evaluate starting in position 0 of
the trace, X says that ¢ holds in the next step, and @1 U @2
says that o holds eventually, and ¢; holds at every point in
time until then. In LTLf, one can predicate about both ends
of the finite trace: the first instant of the trace by avoiding
temporal operators (as in LTL), and the last instant by using
the abbreviation last := — X true. There is an algorithm that
converts a given LTLf formula ¢ into an equivalent NFA of
size exponential in the size of ¢, and also into an equivalent
DFA of size double-exponential in ¢ [De Giacomo and Vardi,
2013; De Giacomo and Vardi, 2015].

3This definition is implicit in [Emerson and Lei, 1987]. However,
later references to the EL-condition in the literature, e.g., [Hunter
and Dawar, 2005], often give a special case where the Boolean for-
mula is over states (not labels). This special case would not allow us
to achieve optimal complexities.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

PPLTL. PPLTL formulas are given by the syntax:
pu=plop|lene|Yeo|pSe

Here p € AP, Y (“yesterday”) and S (“since”) are the past
operators, analogues of “next” and “until”, respectively, but
in the past. Common abbreviations include O ¢ = trueS ¢
(“(at least) once in the past”), Hy = — O - (“historically”
or "hitherto”), first = =Y true. We interpret PPLTL formu-
las over (non-empty) finite traces starting at the last position
of the trace. One can also predicate about both ends of the
finite trace: the last instant of the trace by avoiding tempo-
ral operators, and the first instant by using the abbreviation
first == —Ytrue. We say that an automaton A is equiva-
lent to an LTLf/PPLTL formula ¢ if L(A) = [¢]. There is
an algorithm that converts a given PPLTL formula ¢ into an
equivalent DFA of size exponential in ¢ [De Giacomo ef al.,
2020].

Remark 1. LTLf and PPLTL define the same set of finite
trace properties, namely, the properties definable by FOL
over finite traces, or equivalently by the star-free regular ex-
pressions [Gabbay et al., 1980; Lichtenstein et al., 1985].
However, translating LTLf into PPLTL, and vice-versa, is
at least exponential in the worst case, see [Artale et al.,
2023] and the discussions in [De Giacomo et al., 2020;
Bonassi et al., 2023b; Geatti et al., 2024].

LTL, and LTL with past Linear Temporal Logic (LTL)
[Pnueli, 1977] is perhaps the most used logic for specify-
ing temporal properties. LTL formulas have the same syn-
tax as LTLf, but are interpreted over infinite traces, which
allows LTL to capture liveness properties which cannot be
fully done using finite trace semantics. LTL with past, i.e.,
enhanced with the past operators “yesterday” and “since”, is
expressively equivalent to LTL [Zuck, 1987].

4 LTLf+ and PPLTL+

Based on LTLf (resp. PPLTL), we define the logic LTLf+
(resp. PPLTL+) for specifying infinite-trace properties. We
do so by quantifying over prefixes of infinite traces relativized
to LTLf/PPLTL finite-trace properties. Formally, for a finite-
trace property Z, we define four fundamental infinite-trace
properties as follows: VZ (resp. 37) denotes the set of in-
finite traces 7 such that every (resp. some) non-empty finite
prefix of 7 satisfies Z; V3Z (resp. 3VZ) denotes the set of in-
finite traces 7 such that infinitely many (resp. all but finitely
many, aka almost all) finite prefixes of 7 satisfies Z. Notice
that these properties cover the entire safety-progress hierar-
chy. Based on these we now define our logics.

Syntax. Fix a set AP of atoms. The syntax of LTLf+ (resp.
PPLTL+) is given by the following grammar:

U=V |30 |V | IVE | UV | T AT | -0

where ® are formulas in LTLf (resp. PPLTL) over AP. We
use common abbreviations, e.g., ¥ D ¥’ for =W V ¥’. The
formulas V&, 3P, V3P, VP are called infinite-trace formu-
las, and the formulas ® are called finite-trace formulas.

Semantics. For an LTL{/PPLTL formula ®, recall that we
write [®] C (247)F for the set of (non-empty) finite traces
that satisfy ®. For an LTLf+/PPLTL+ formula ¥ let [¥] C
(247)« denote the set of infinite-trace properties, defined re-
cursively as follows:

s [TV U] = [T]U[V], [T AT] = [P]N[P] and

[~] = (247) \ [2];
o VO] = V[®], [3P] = 3TJ[P], [VIP®] = VI[P], and
[FVD] = IV[D].

In words, the Boolean operations are handled as usual, and
[V®] (resp. [3®]) denotes the set of infinite traces 7 such that
every (resp. some) non-empty finite prefix of 7 satisfies ®,
and [V3®] (resp. [IVP]) denotes the set of infinite traces T
such that infinitely many (resp. all but finitely many) finite
prefixes of 7 are in ®. Note that Y® and 3P are dual since
V& = —3-P, as are VIP and VP since VIP = —IV-P.
We write 7 |= ¥ to mean that 7 € [¥].

In the terminology of the safety-progress hierarchy [Manna
and Pnueli, 1990]: [V®] is a safery property; [39P] is a guar-
antee property; [V®] is a persistence property; [V3®] is a
recurrence property; and [U] is a reactivity property.
Examples. We illustrate LTLf+ and PPLTL+ with some ex-
amples. To specify properties of the initial instant we use
propositional formulas ¢ as abbreviations for V¢ in LTLf+,
and for V(H(first O ¢)) in PPLTL+.

Preconditions and effect specifications in planning do-
mains [Geffner and Bonet, 2013], non-Markovian domains
[Gabaldon, 2011] are essentially safety properties, which can
all be expressed with formulas of the form V&, see also
[Aminof et al., 2025]. For example — below ¢, are proposi-
tional formulas — conditional effect axioms can be expressed
in LTLf+ and PPLTL+ by VG(¢. D (Xa D X¢.)) and
VH(Y ¢. D (a D ¢¢)). Frame axioms can be expressed as
VG(p. AXaD (p=Xp))and VH(Y ¢ Aa D (Yp = p)).
Initial conditions ¢;,,;+ can be expressed as mentioned above.
Fairness of effects, e.g., assuming that action a under condi-
tion ¢, can effect two effects ¢, or ¢.,, can be expressed as
VIF(¢e A X(a A last)) D N\;YIF(de A X(a A last A de,))
and VI((Y ¢c) Aa) DO A, VI(Yoe) Aa A ¢e,), see e.g.,
[D’Ippolito et al., 2018]. Arbitrary LTLf temporally ex-
tended goals ® [De Giacomo and Vardi, 2013] can be ex-
pressed using formulas of the form 3P, e.g., eventually reach-
ing a state where ¢, holds while guaranteeing to maintain
a safety condition ¢, can be expressed as 3(F ¢, A G ¢5)
and 3(¢g A H ;). Some LTL formulas, though not all [Es-
parza et al., 2024], are also easy to express, for example
G(¢1 D F o) can be expressed as VI(G(¢py D F o)) in
LTLf+ and V3(—¢1 S ¢2 V H —¢1) in PPLTL+. Note that al-
though in these examples the sizes of the LTLf formulas and
corresponding PPLTL are polynomially (linearly, in fact) re-
lated, this is not always the case, see Remark 1.

Expressive Power. The logics PPLTL+, LTLf+, and LTL
have the same expressive power.

Theorem 2. The logics LTLf+, PPLTL+, and LTL define the
same infinite-trace properties.

Proof. For Q € {V,3,v3,3v}, write QPPLTL for the frag-
ment of PPLTL+ consisting of formulas of the form Q®

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

for ® in PPLTL. Recall from [Manna and Pnueli, 1990]
that: a reactivity formula is defined as a Boolean combina-
tion of formulas from VIPPLTL, and that every formula in
VPPLTL, dPPLTL, 3VPPLTL is equivalent to a reactivity for-
mula.* Thus, PPLTL+ defines the same properties as the
reactivity formulas. Also, recall from [Manna and Pnueli,
1990] that the reactivity formulas define the same infinite-
trace properties as LTL. Finally, use the fact that PPLTL and
LTLf define the same finite-trace properties [De Giacomo et
al., 2020]. O

PNFE. The LTLf+ (resp. PPLTL+) formulas in positive
normal-form (PNF) are given by the following grammar:
U :=VP |30 | VIP | VR | TV T | U AT where ¢
are formulas in LTLf (resp. PPLTL) over AP. We can con-
vert, in linear time, a given LTLf+ (resp. PPLTL+) formula
into one that is in positive normal-form, in the usual way, by
pushing negations into the finite-trace formulas ®.

Remark 2. We observe that PPLTL+ can be viewed as a
syntactical variant of the normal form of LTL, enhanced
with past operators, as originally introduced by Manna and
Pnueli in defining the safety-progress hierarchy in [Manna
and Pnueli, 1990]. Specifically, it suffices to use G instead
of ¥ and F instead of 3, without altering the meaning of the
PPLTL+ formulas. Consequently, our results for PPLTL+
apply directly to Manna and Pnueli’s normal form as well.

5 Reactive Synthesis

In this section we study reactive synthesis [Pnueli and Rosner,
1989] for PPLTL+ and LTLf+ specifications.

Definition 1. The LTLf+ synthesis problem (resp. PPLTL+
synthesis problem) asks, given U in LTLf+ (resp. PPLTL+),
to decide if there is a strategy o such that every outcome of o
satisfies U (such a strategy is said to enforce V), and, if so,
to return a finite representation of such a strategy.

We solve the LTLf+/PPLTL+ synthesis problem with an
automata-theoretic approach based on DFAs, in a 4-step Syn-
thesis Algorithm, as follows. For convenience, we begin
with a formula ¥ in positive normal-form. The formula ¥

can be thought of as a Boolean formula U without negations
over a set of the form [k] = {1,2,...,k} (for some k); thus

~

U can be formed from ¥ by replacing, for every ¢ € [k], ev-

ery occurrence of ¢ in WU by a certain infinite-trace formula of
the form Q;®;, where Q; € {3,V, 3V, v3}. Elements of [k]
are called component numbers.

Step (1). For each i € [k], convert the finite-trace for-
mula ®; into an equivalent DFA A; = (D, F;). Say D; =
(%, Qi, i, ;). We assume, without loss of generality, that the
initial state has no incoming transitions. Note that one only
has to do this conversion once for each finite-trace formula,
even if it appears in multiple infinite-trace formulas.

Step (2). For each 7 € [k], build a transition system D} =
(2,Qi,1i,0}), aset F/ C Q;, and an objective O; over Q;:

1. Say Q; = V3. Letd, = §;, F/ = F;,and O; = {p :

inflp) N Fl # 0},

*This equivalence may involve a blowup, but this is not relevant
to understand expressive power.

2. Say Q; = V. Let (5; = 0, Fz/ = F;, and O; = {p :
inflp) N (Q\ F}) = 0}.
3. Say Q; = V. If ¢; is not a final state, make it into a
final state, i.e., define F/ = F; U {1;}. Let ¢, be like
d; except that every non-final state is a sink, i.e., define
0(q,a) tobe g if ¢ ¢ F/, and otherwise to be J;(q, a).
Let O; = {p : inf(p) N F! # 0}.
4. Say Q; = 4. If «; is a final state, make it into a non-
final state, i.e., define F] = F; \ {¢;}. Let 4, be like
d; except that every final state ¢ is a sink, i.e., define
0!(g,a) to be g if ¢ € F/, and otherwise to be d;(q, a).
Let O; = {p : inf(p) N E! # 0}.°
The next Theorem connects the formula QQ;®; to the runs
in the transition system D) that satisfy the objective O;, and
follows by the construction in Step (1) and Step (2).

Theorem 3. An infinite trace satisfies Q;®; iff the run it in-
duces in D!, satisfies the objective O;.

Proof. Let 7 be an infinite trace and let p (resp. p’) be the run
in D; (resp. D) induced by 7. Recall that the empty string is
not a trace, and so a non-empty prefix of 7 corresponds to a
prefix of its run of length > 1.

We look at each case separately.

1. 7 satisfies V3, iff (by Definition of V3) infinitely many
prefixes of 7 satisfy ®; iff infinitely many prefixes of
p end in F; iff inf(p) N F; # 0 iff (since p’ = p and
F] = F;) p/ satisfies O;.

2. 7 satisfies IVP; iff (by Definition of V) almost all pre-
fixes of 7 satisfy @, iff almost all prefixes of p end in F;
iff it is not the case that infinitely many prefixes of p end
in Q; \ F; iff inf(p) N (Q \ F;) = 0 iff (since p’ = p and
F! = F)) p/ satisfies O;.

3. 7 satisfies V®; iff (by Definition of V) all non-empty pre-
fixes of 7 satisfy ®; iff p,, € I for all n > 0 iff (since
the transitions from the initial state and final states in D;
are unchanged in D)) p/, € F/ for all n > 0iff p, € F/
for infinitely many n (since all non-final states are sinks)
iff inf(p') N F] # 0 iff p’ satisfies O;.

4. T satisfies 3P, iff (by Definition of 3) some non-empty
prefix of 7 satisfies ®; iff p, € F; for some n > 0
iff (since the transitions from the initial state and non-
final states in D; are unchanged in D), and taking the
least such n) p;, € F/ for some n > 0 iff p, € F
for infinitely many n (since all final states are sinks) iff
inf(p') N E! # 0 iff p satisfies O;.

This completes the proof. O

Call a state ¢; € Q; marked if either (a) Q; # 3V and
gi € F/,or(b)Q; = IV and ¢; € Q; \ F!. Thus, by the

SWe make two remarks about the cases Q € {V, 3}: by our as-
sumption that the initial state has no incoming transitions, redefining
whether the initial state is a final state or not does not change the set
of non-empty strings accepted by the DFA 4;; we could have de-
fined either or both these cases to have an objective like the 3V case
(instead of the V3 case) since seeing a sink is the same as seeing it
infinitely often which is the same as seeing it from some point on.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

construction in Step (2), in case Q; # 3V, the objective O;
says that some marked state is seen infinitely often, and in
case Q; = 3V the objective O; says that no marked state is
seen infinitely often.

Step (3). Build the product transition system D =
[Ticp Di- Let Q be the state set of D. Define an EL
condition (T, \, B) over @ as follows: T' = [k] (i.e., the
labels are the component numbers), A(q) = {i € [k] :
q; is marked} (i.e., a state is labeled by the numbers of those
components that are in marked states), and the Boolean for-
mula B is formed from the Boolean formula ¥ by simul-
taneously replacing, for every ¢ with Q; = 3V, every oc-
currence of ¢ by —i. Define the deterministic EL-automaton
A\Il = (D? (F7 A7 B))

Example 1. Say ¥ = V3®, V IVD,. Then the label set is
I' = {1,2}. Let T be an infinite trace, let p (resp. p') be the
induced run in D (resp. D}). By Theorem 3, T |= W iff p!
satisfies Oy or p? satisfies Oy. By definition of O;, this is iff
p' sees a marked state of D} infinitely often or p* does not
see a marked state of DY infinitely often. And this is iff the set
of labels i € {1, 2} for which p® sees a marked state infinitely
often, satisfies the Boolean formula B := 1V —2.

Theorem 4. V is equivalent to the EL-automaton Ay.

Proof. In Step (2), for i € [k], the objective O; is induced
by the following EL-condition (T';, \;, B;) over Q;. Let
I' = {i}, i.e., the only label is i. For ¢; € @Q;, let \;(¢;) = {i}
if g; is marked, and \;(¢;) = {} otherwise. Then, for a run
p in Dj, we have that inf, (p) = {i} iff some state seen in-
finitely often in p is marked (and otherwise infy (p) = {}).
We consider the two cases:

1. Say Q; # 3Vv. Recall that ¢; is marked iff ¢; € FJ.
Thus, p € O, iff inf(p) N F{ # 0 iff infy (p) = {i} iff
p satisfies the EL-condition (T';, \;, B;) where B; is the
Boolean formula i.

2. Say Q; = 3V. Recall that ¢; is marked iff ¢; € Q; \ F/.
Thus, p € O;iff inf(p) N (Q: \ F}) = Diffinfy (p) = {}
iff p satisfies the EL-condition (I';, A;, B;) where B; is
the Boolean formula —z.

By Theorem 3, V¥ is equivalent to the Boolean combi-
nation formed from W by replacing each occurrence of in-
dex i by the EL-automaton A; := (D}, (T';, \;, B;)). Ap-
plying Proposition 1 to this Boolean combination results
in an EL-automaton whose transition system is the product
D, and whose EL-condition is (T, A\, B) where I' = [k],
A(q1,-+ 5 qn)) = U, Ai(g:), and B is formed from ¥ by
simultaneously replacing, for every ¢ with Q; = 3V, every
occurrence of ¢ by —i. Now notice that this is exactly the
definition of Ay in Step (3) of the Synthesis Algorithm. [

Step (4). Solve the EL game Ag. By Theorem 1, this
can be done in time polynomial in the size of the arena and
exponential in the number of labels. This completes the de-
scription of the algorithm.

Since, for an LTLf+ (resp. PPLTL+) formula W, the size of
the arena D is double-exponential (resp. single-exponential)

in the size of ¥, and the number of labels k is linear in the
size of U, we get:

Theorem 5. The LTLf+ (resp. PPLTL+) synthesis problem
is in 2EXPTIME (resp. EXPTIME).

We observe that our algorithms are (worst-case) optimal:

Theorem 6. The LTLf+ (resp.PPLTL+) synthesis problem is
2EXPTIME-complete (resp. EXPTIME-complete).

Proof. For the lower bounds, synthesis is 2EXPTIME-hard
already for the fragment of LTLf+ consisting of formulas of
the form 3% [De Giacomo and Vardi, 2015], and synthesis
is EXPTIME-hard already for the fragment of PPLTL+ for
formulas of the form 3® [De Giacomo et al., 2020]. O

Remark 3. PPLTL+ synthesis is in EXPTIME (Theorem 5),
which is exponentially cheaper than LTL synthesis, which is
2EXPTIME-hard [Pnueli and Rosner, 1990]. This means
that LTL is, in the worst case, exponentially more succinct
than PPLTL+. One may be tempted to think that the fact
that PPLTL+ synthesis is cheaper than LTL synthesis is be-
cause LTL is always more succinct than PPLTL+. How-
ever, it turns out this is not true. Indeed, PPLTL+ is, in the
worst case, exponentially more succinct than LTL [Markey,
2003, Section 3]. This leads to the interesting phenomenon
of two logics with the same expressive power, incompara-
ble succinctness, yet solving a logic problem for one of them
is exponentially cheaper. This phenomenon holds for the
finite-trace logics LTL/PPLTL [Artale et al., 2023], and so
the fact that PPLTL+ synthesis is in EXPTIME shows that
this phenomenon can be lifted to all LTL-definable infinite-
trace properties.

Finally, we remark that Step (4) requires solving an EL
game built from the product of the DFAs with a simple
Boolean formula (that mimics the given formula ¥). This
can be implemented based on fixpoint computations [Haus-
mann et al., 2024], which has the potential for efficient sym-
bolic implementations. Alternatively, one may convert the EL
game to a parity game, and solve the parity game using ex-
isting algorithms and solvers [van Dijk, 2018]. The literature
provides hints on how to perform this transformation [Hunter
and Dawar, 2005; Casares et al., 2022]. However, one has to
be careful not to blow up the state space in a way that would
degrade the overall complexity stated in Theorem 5.

6 Satisfiability and Model Checking

We now study other standard reasoning tasks for our log-
ics, i.e., satisfiability and model checking. Let £ be one of
LTLf/PPLTL. The £+ satisfiability problem asks, given ¥ in
£+, to decide whether [¥] # (). For a nondeterministic tran-
sition system 7', that is not assumed to be total, with input
alphabet 3 = 247, we say that T satisfies U if every infinite
trace generated by T satisfies W.> The £+ model checking

®There are many ways to define transitions systems for verifica-
tion. Commonly, these are state-labeled directed graphs. For techni-
cal convenience, instead of labeling the state with [, we will instead
label all outgoing edges with [, and thus we can view these as (not
necessarily total) nondeterministic transition systems.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

problem asks, given ¥ in £+, and a nondeterministic labeled
transition system 7', whether T satisfies W.

Theorem 7. The LTLf+ (resp. PPLTL+) satisfiability and
model checking problems are EXPSPACE-complete (resp.
PSPACE-complete).

Satisfiability Upper Bound. Given U, build the equivalent
EL-automaton Ay = (D, (T, A, B)) of Step (3) above. Re-
call that |I'| = k, which is linear in |¥|. Satisfiability can be
solved by checking if there is an infinite run in D that satisfies
the EL-condition. This can be done in time polynomial in the
size of D and k, as follows. Check if there is a state s of D
such that (i) there is a path from the initial state to s, and (ii)
there is a path (that uses at least one transition) from s to s
such that the set of labels visited on this path is a satisfying
assignment of B. However, since the size of D is doubly-
exponential (resp. exponential) in the size |¥| of the given
formula, this algorithm would run in 2EXPTIME for LTLf+
(resp. EXPTIME for PPLTL+). These complexities can be
lowered to EXPSPACE (resp. PSPACE) by exploiting the fact
that reachability in directed-graphs is in NLOGSPACE [Pa-
padimitriou, 20071, and, as usual, doing things “on-the-fly”.

Model Checking Upper Bound. Given a nondeterministic
transition system 7' and an LTLf+/PPLTL+ formula ¥, we
have that T satisfies W iff it is not the case that there is an in-
finite trace generated by 7' that satisfies =W. Thus, since de-
terministic complexity classes are closed under complement,
it is enough to provide an optimal algorithm for the following
problem: given a nondeterministic transition system 7" and a
LTLf+/PPLTL+ formula V¥, decide if there is an infinite trace
generated by 7T’ that satisfies U. To do this we proceed as in
the “on-the-fly”” algorithm for satisfiability. However, we add
to the current state of D a component consisting of the current
state of 7.

Lower Bounds. The lower bounds already hold for formu-
las of the form V® and 3®. This can proven by relying on
results and techniques from [De Giacomo and Vardi, 2013;
Vardi and Stockmeyer, 1985; Kupferman and Vardi, 2000;
Bansal et al., 2023].

Remark 4. The EXPSPACE-completeness result for satisfi-
ability and model checking in LTLf+ may appear surpris-
ing since satisfiability and model checking for LTL are both
PSPACE-complete [Clarke et al., 20181, but in fact confirms
and extends a recent EXPSPACE-hardness result for model
checking the fragment of LTLf+ limited to the guarantee
class [Bansal et al., 2023]. We remark that despite this theo-
retical worst-case complexity, we expect model checking and
satisfiability of LTLf+ to be much more tractable in practice,
the same way and for the same reason that the 2EXPTIME-
hardness for LTLf synthesis does not manifest in practice
(as discussed in the Introduction). Finally, observe that our
results show that the complexity of satisfiability and model
checking of PPLTL+ is the same as for LTL.

7 Related Work

The guarantee and safety fragment of LTLf+/PPLTL+, i.e.,
formulas of the form 3® and V® for ® in LTL{/PPLTL,
has been studied in the literature (under other names), i.e.,

as LTLf synthesis [De Giacomo and Vardi, 2015], LTLf
synthesis under environment specifications [Aminof et al.,
2025], and LTLf model-checking (non-terminating seman-
tics) [Bansal ez al., 2023]. Synthesis for the Safety fragment
has been studied in [Cimatti et al., 2024]

Reactive synthesis is deeply related to Planning [De Gia-
como and Rubin, 2018; Camacho et al., 2019; De Giacomo
et al., 2023], and in particular to (strong) planning for tem-
porally extended goals in fully observable nondeterministic
domains [Cimatti et al., 2003; Bacchus and Kabanza, 1998;
Calvanese et al., 2002; Baier and Mcllraith, 2006; Baier et
al., 2007; Gerevini et al., 2009]. Following, e.g., [De Gi-
acomo and Rubin, 2018] it is easy to design optimal al-
gorithms for handling LTLf+/PPLTL+ goals, and would be
interesting to extend this to best-effort planning and syn-
thesis [De Giacomo et al., 2023; Aminof et al., 2021b;
Aminof et al., 2021a; Aminof et al., 2023al, and also to
stochastic best-effort [Aminof et al., 2022; Aminof et al.,
2023b].

The safety-progress hierarchy has mainly been used to un-
derstand the expressivity of fragments of LTL. However, re-
cent results that convert arbitrary LTL formulas into a nor-
mal form consisting of a combination of classes in the hi-
erarchy in single exponential time [Esparza et al., 2020;
Esparza et al., 2024] are providing new interest in the hier-
archy. Our work shares this interest, though sidesteps the
LTL normalization, and focuses instead on specifying directly
using finite traces, and then lifting to infinite traces through
quantification on prefixes.

8 Conclusion

We studied two logics LTLf+/PPLTL+ that have the same
expressive power as LTL, and showed how to apply DFA
techniques to build arenas for synthesis, typical for handling
the base finite-trace logics, thus side-stepping the difficulty
of determinizing automata on infinite traces, typical of LTL
synthesis. Our approach only relies on the base logic be-
ing closed under negation and having conversions into DFAs.
Thus, it would also work for any other base logic with these
properties, e.g., linear dynamic logic on finite traces [De Gia-
como and Vardi, 2015] or pure past linear dynamic logic [De
Giacomo et al., 2020]. We thus advocate revisiting Manna
and Pnueli’s safety-progress hierarchy, focusing on (i) us-
ing it directly for representation, by putting emphasis on the
finite-trace components of infinite properties, and (ii) solv-
ing computational problems by exploiting DFA-based arena
constructions.

A key characteristic of Planning is that the system con-
tinuously receives a goal, “thinks” about how to achieve it,
synthesizes a plan, executes the plan, and repeats [Geffner
and Bonet, 2013]. However, if we consider goals on infinite
traces, e.g., expressed in LTLf+/PPLTL+, this loop needs to
be revised, by considering that the agent will receive its new
goal while executing for the previous ones, as in live syn-
thesis [Finkbeiner et al., 2022; Zhu and De Giacomo, 2022].
This observation puts goal reasoning [Aha, 2018] at the cen-
ter of the stage when dealing with infinite trace goals, and is
an avenue of future research.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Acknowledgments

This work is supported in part by the ERC Advanced
Grant WhiteMech (No. 834228), the PRIN project RIPER
(No. 20203FFYLK), the PNRR MUR project FAIR
(No.PE0000013), the UKRI Erlangen AI Hub on Mathemat-
ical and Computational Foundations of AI, NSF grants IIS-
1527668, CCF-1704883, 11S-1830549, CNS-2016656, DoD
MURI grant N00014-20-1-2787, and an award from the
Maryland Procurement Office.

References

[Aha, 2018] D. W. Aha. Goal reasoning: Foundations,
emerging applications, and prospects. Al Mag., 39(2):3—
24, 2018.

[Althoff et al., 2006] C. S. Althoff, W. Thomas, and
N. Wallmeier. Observations on determinization of biichi
automata. Theor. Comput. Sci., 363(2):224-233, 2006.

[Aminof et al., 2021a] B. Aminof, G. D. Giacomo, A. Lo-
muscio, A. Murano, and S. Rubin. Synthesizing best-effort
strategies under multiple environment specifications. In
KR, 2021.

[Aminof et al., 2021b] B. Aminof, G. D. Giacomo, and
S. Rubin. Best-effort synthesis: Doing your best is not
harder than giving up. In IJCAI, 2021.

[Aminof et al., 2022] B. Aminof, G. D. Giacomo, S. Rubin,
and F. Zuleger. Beyond strong-cyclic: Doing your best in
stochastic environments. In IJCAI, 2022.

[Aminof et al., 2023a] B. Aminof, G. D. Giacomo, and
S. Rubin. Reactive synthesis of dominant strategies. In
AAAI 2023.

[Aminof et al., 2023b] B. Aminof, G. D. Giacomo, S. Rubin,
and F. Zuleger. Stochastic best-effort strategies for Borel
goals. In LICS, 2023.

[Aminof ez al., 2025] B. Aminof, G. De Giacomo, A. Di Sta-
sio, H. Francon, S. Rubin, and S. Zhu. LTLf synthesis un-
der environment specifications for reachability and safety
properties. Inf. Comput., 303:105255, 2025.

[Armoni et al., 2006] R. Armoni, D. Korchemny,
A. Tiemeyer, M. Y. Vardi, and Y. Zbar. Determin-
istic dynamic monitors for linear-time assertions. In
FATES/RV, 2006.

[Artale et al., 2023] A. Artale, L. Geatti, N. Gigante,
A. Mazzullo, and A. Montanari. LTL over finite words
can be exponentially more succinct than pure-past LTL,
and vice versa. In TIME, 2023.

[Bacchus and Kabanza, 1998] F. Bacchus and F. Kabanza.
Planning for temporally extended goals. Ann. Math. Ar-
tif. Intell., 22(1-2):5-27, 1998.

[Baier and Mcllraith, 2006] J. A. Baier and S. A. Mcllraith.

Planning with first-order temporally extended goals using
heuristic search. In AAAI 2006.

[Baier et al., 2007] J. A. Baier, C. Fritz, and S. A. Mcllraith.
Exploiting procedural domain control knowledge in state-
of-the-art planners. In ICAPS, 2007.

[Bansal er al., 2020] S. Bansal, Y. Li, L. M. Tabajara, and
M. Y. Vardi. Hybrid compositional reasoning for reac-
tive synthesis from finite-horizon specifications. In AAAI,
2020.

[Bansal er al., 2023] S. Bansal, Y. Li, L. M. Tabajara, M. Y.
Vardi, and A. M. Wells. Model checking strategies from
synthesis over finite traces. In ATVA, 2023.

[Bonassi et al., 2023a] L. Bonassi, G. De Giacomo, M. Fa-
vorito, F. Fuggitti, A. Gerevini, and E. Scala. FOND plan-
ning for pure-past linear temporal logic goals. In ECAI,
2023.

[Bonassi et al., 2023b] L. Bonassi, G. De Giacomo, M. Fa-
vorito, F. Fuggitti, A. Gerevini, and E. Scala. Planning
for temporally extended goals in pure-past linear temporal
logic. In ICAPS, 2023.

[Bonassi et al., 2024] L. Bonassiy, G. De Giacomo,
A. Gerevini, and E. Scala. Shielded FOND: Plan-
ning with safety constraints in pure-past linear temporal
logic. In ECAI, 2024.

[Calvanese et al., 2002] D. Calvanese, G. De Giacomo, and
M. Y. Vardi. Reasoning about actions and planning in LTL
action theories. In KR, 2002.

[Camacho et al., 2019] A. Camacho, M. Bienvenu, and S. A.
Mcllraith. Towards a unified view of Al planning and re-
active synthesis. In ICAPS, 2019.

[Casares et al., 2022] A. Casares, T. Colcombet, and
K. Lehtinen. On the size of good-for-games rabin au-
tomata and its link with the memory in muller games. In
ICALP, 2022.

[Cimatti ef al., 2003] A. Cimatti, M. Pistore, M. Roveri, and
P. Traverso. Weak, strong, and strong cyclic planning via
symbolic model checking. Artif. Intell., 1-2(147), 2003.

[Cimatti ef al., 2024] A. Cimatti, L. Geatti, N. Gigante,
A. Montanari, and S. Tonetta. Extended bounded response
LTL: a new safety fragment for efficient reactive synthesis.
Formal Methods Syst. Des., 64(1):1-49, 2024.

[Clarke er al., 2018] E. M. Clarke, T. A. Henzinger, H. Veith,
and R. Bloem, editors. Handbook of Model Checking.
Springer, 2018.

[De Giacomo and Favorito, 2021] G. De Giacomo and
M. Favorito. Compositional approach to translate
LTL;/LDL¢ into deterministic finite automata. In /CAPS,
2021.

[De Giacomo and Rubin, 2018] G. De Giacomo and S. Ru-
bin. Automata-theoretic foundations of fond planning for
LTL;/LDL goals. In IJCAI, 2018.

[De Giacomo and Vardi, 2013] G. De Giacomo and M. Y.
Vardi. Linear temporal logic and linear dynamic logic on
finite traces. In IJCAI, 2013.

[De Giacomo and Vardi, 2015] G. De Giacomo and M. Y.
Vardi. Synthesis for LTL and LDL on finite traces. In
1JCAI 2015.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

[De Giacomo et al., 20201 G. De Giacomo, A. Di Stasio,
F. Fuggitti, and S. Rubin. Pure-past linear temporal and
dynamic logic on finite traces. In IJCAI, 2020.

[De Giacomo et al., 2022] G. De Giacomo, M. Favorito,
J.Li, M. Y. Vardi, S. Xiao, and S. Zhu. Ltl; synthesis as
AND-OR graph search: Knowledge compilation at work.
In IJCAI, 2022.

[De Giacomo et al., 2023] G. De Giacomo, G. Parretti, and
S. Zhu. LTL¢ best-effort synthesis in nondeterministic
planning domains. In ECAI, 2023.

[D’Ippolito et al., 2018] N. D’Ippolito, N. Rodriguez, and
S. Sardifia. Fully observable non-deterministic planning as
assumption-based reactive synthesis. J. Artif. Intell. Res.,
61:593-621, 2018.

[Ehlers et al., 2017] R. Ehlers, S. Lafortune, S. Tripakis, and
M. Y. Vardi. Supervisory control and reactive synthesis: a
comparative introduction. Discret. Event Dyn. Syst.,27(2),
2017.

[Emerson and Lei, 1987] E. A. Emerson and C. Lei. Modal-
ities for model checking: Branching time logic strikes
back. Sci. Comput. Program., 8(3):275-306, 1987.

[Esparza et al., 2020] J. Esparza, J. Kretinsky, and S. Sick-
ert. A unified translation of linear temporal logic to w-
automata. J. ACM, 67(6):33:1-33:61, 2020.

[Esparza et al., 2024] J. Esparza, R. Rubio, and S. Sickert.
Efficient normalization of linear temporal logic. J. ACM,
71(2):16:1-16:42, 2024.

[Fijalkow and others, 2023] N. Fijalkow et al. Games on
graphs. arXiv, 2305.10546, 2023.
[Finkbeiner et al., 2022] B. Finkbeiner, F. Klein, and

N. Metzger. Live synthesis.
18(3):443-454, 2022.

[Finkbeiner, 2016] B. Finkbeiner. Synthesis of reactive sys-
tems. Dependable Softw. Syst. Eng., 45:72-98, 2016.

[Gabaldon, 2011] A. Gabaldon. Non-Markovian control in
the situation calculus. Artif. Intell., 175(1), 2011.

[Gabbay et al., 1980] D. Gabbay, A. Pnueli, S. Shelah, and
J. Stavi. On the temporal analysis of fairness. In POPL,
1980.

[Geatti et al., 2024] L. Geatti, M. Montali, and A. Rivkin.
Foundations of reactive synthesis for declarative process
specifications. In AAAI, 2024.

[Geffner and Bonet, 2013] H. Geffner and B. Bonet. A Con-
cise Introduction to Models and Methods for Automated
Planning. Springer, 2013.

[Gerevini et al., 2009] A. Gerevini, P. Haslum, D. Long,
A. Saetti, and Y. Dimopoulos. Deterministic planning
in the fifth international planning competition: PDDL3
and experimental evaluation of the planners. Artif. Intell.,
173(5-6):619-668, 2009.

[Hausmann et al., 2024] D. Hausmann, M. Lehaut, and
N. Piterman. Symbolic solution of Emerson-Lei games
for reactive synthesis. In FoSSaCS$, 2024.

Innov. Syst. Softw. Eng.,

[Hunter and Dawar, 2005] P. Hunter and A. Dawar. Com-

plexity bounds for regular games. In MFCS, 2005.

[Kamp, 1968] H. Kamp. Tense logic and the theory of linear
order. PhD thesis, UCLA, 1968.

[Kupferman and Vardi, 2000] O. Kupferman and M. Y.
Vardi. An automata-theoretic approach to modular model
checking. TOPLAS, 22(1), 2000.

[Lichtenstein et al., 1985] O. Lichtenstein, A. Pnueli, and
L. D. Zuck. The glory of the past. In Logic of Programs,
pages 196-218, 1985.

[Manna and Pnueli, 1990] Z. Manna and A. Pnueli. A hier-
archy of temporal properties. In PODC, 1990.

[Markey, 2003] N. Markey. Temporal logic with past is ex-
ponentially more succinct, concurrency column. Bull.
EATCS, 79:122-128, 2003.

[Papadimitriou, 2007] C. H. Papadimitriou. Computational
complexity. Academic Internet Publ., 2007.

[Piterman and Pnueli, 2018] N. Piterman and A. Pnueli.
Temporal logic and fair discrete systems. In Handbook
of Model Checking, pages 27-73. Springer, 2018.

[Piterman ef al., 2006] N. Piterman, A. Pnueli, and Y. Sa’ar.
Synthesis of reactive(1) designs. In VM CAI, 2006.

[Pnueli and Rosner, 1989] A. Pnueli and R. Rosner. On the
synthesis of a reactive module. In POPL, 1989.

[Pnueli and Rosner, 1990] A. Pnueli and R. Rosner. Dis-
tributed reactive systems are hard to synthesize. In FOCS,
1990.

[Pnueli, 1977] A. Pnueli. The temporal logic of programs.
In FOCS, 1977.

[Rozier and Vardi, 2012] K. Y. Rozier and M. Y. Vardi. De-
terministic compilation of temporal safety properties in ex-
plicit state model checking. In HVC, 2012.

[Tabakov and Vardi, 2005] D. Tabakov and M. Y. Vardi. Ex-
perimental evaluation of classical automata constructions.
In LPAR, 2005.

[Tabakov et al., 2012] D. Tabakov, K. Y. Rozier, and M. Y.
Vardi. Optimized temporal monitors for systemc. Formal
Methods Syst. Des., 41(3):236-268, 2012.

[van Dijk, 2018] T. van Dijk. Oink: An implementation and
evaluation of modern parity game solvers. In TACAS,
2018.

[Vardi and Stockmeyer, 1985] M. Y. Vardi and L. J. Stock-
meyer. Improved upper and lower bounds for modal logics
of programs: Preliminary report. In STOC, 1985.

[Vardi, 2007] M. Y. Vardi. The Biichi complementation saga.
In STACS, 2007.

[Zhu and De Giacomo, 2022] S. Zhu and G. De Giacomo.
Act for your duties but maintain your rights. In KR, 2022.

[Zhu et al., 2017] S. Zhu, L. M. Tabajara, J. Li, G. Pu, and
M. Y. Vardi. Symbolic LTL; Synthesis. In IJCAI, 2017.

[Zuck, 1987] L. Zuck. Past Temporal Logic. PhD thesis,
Weizmann Institute of Science, 1987.

