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Abstract

Multimodal federated learning (MMFL) enables
collaborative model training across multiple
modalities, such as images and text, without re-
quiring direct data sharing. However, the inherent
correlations between modalities introduce new
privacy vulnerabilities, making MMFL more sus-
ceptible to gradient inversion attacks. In this work,
we propose MMGIA, an intermodal correlation-
driven gradient inversion attack that systematically
exploits multimodal correlation to enhance data
reconstruction quality. MMGIA consists of a
two-stage optimization framework: the first stage
independently reconstructs each modality using
traditional gradient inversion techniques, while
the second stage refines these reconstructions
through pre-trained feature extractors to align
modalities in a shared latent space. To further
improve reconstruction accuracy, we introduce a
quality-weighted fusion strategy, which dynam-
ically integrates multimodal embeddings into a
global fused representation that serves as a guiding
signal for refining each modality’s reconstruction.
This ensures that high-quality reconstructions
contribute more to the optimization process,
preventing degradation in well-reconstructed
modalities while enhancing weaker ones. We
conduct extensive experiments on multiple mul-
timodal scenarios, demonstrating that MMGIA
outperforms both the only existing multimodal
attack and state-of-the-art single-modal attacks,
revealing the heightened privacy risks in MMFL.

1 Introduction

Multimodal learning integrates data from diverse modali-
ties (e.g., text, images, audio) to develop models capable
of understanding and leveraging information from multiple
sources [Che et al., 2023]. By combining complementary
features across modalities, multimodal learning achieves sig-
nificant improvements in tasks such as emotion recogni-
tion [Feng and Narayanan, 2022; Chen and Zhang, 2022], vi-
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Figure 1: Multimodal federated learning and gradient inversion at-
tack.

sion—language interaction [Liu er al., 2020; Guo e al., 2023],
and medical diagnosis [Bernecker er al., 2022; Agbley et al.,
2021]. These models capture richer contextual information
and semantic relationships, enhancing both performance and
generalization. However, privacy concerns remain a critical
challenge, severely hindering the broader adoption and devel-
opment of multimodal learning.

Federated Learning (FL) is a distributed machine learning
paradigm that restricts model training to local clients while
enabling collaborative learning through the exchange of gra-
dients or model updates [Kairouz et al., 2021]. By elim-
inating the need for centralized data storage and transmis-
sion, FL significantly mitigates privacy risks while harness-
ing the potential of distributed data from diverse sources. Re-
cently, FL has been extended to multimodal scenarios, re-
sulting in the development of multimodal federated learning
(MMFL) [Feng et al., 2023; Lin et al., 2023]. MMFL enables
clients to train models on local multimodal datasets, such as
those combining text and image data, and share modality-
specific gradients with a central server. The server aggre-
gates these gradients to update a global model, as illustrated
in Fig. 1. By integrating the strengths of federated learning
and multimodal processing, MMFL facilitates collaborative
training across diverse data types, addressing the growing de-
mand for multimodal solutions in real-world applications, in-
cluding healthcare, e-commerce, and social media analytics.

Although FL mitigates the risk of direct data leakage by
sharing only gradients, studies have demonstrated that gradi-
ents can still encode substantial information, potentially re-
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vealing sensitive details about the original data. Gradient
inversion attacks (GIAs), a widely recognized threat, enable
attackers to reconstruct training data by minimizing the dis-
tance between shared gradients and those generated from can-
didate inputs [Zhu erf al., 2019; Geiping et al., 2020]. These
risks are further amplified in multimodal federated learning
due to the correlation between modalities. For example, gra-
dients from the text modality may encode semantic clues
that facilitate the reconstruction of visual data, while visual
gradients can reveal information useful for recovering text.
This intermodal leakage significantly increases privacy risks
in MMFL, making it more vulnerable to attacks compared
to single-modal scenarios. While researchers have begun ex-
ploring this issue, the only existing work relies on unrealistic
assumptions, rendering it ineffective in practice.

Existing Attack. Research on gradient inversion attacks
in MMFL is limited, with MGIS [Liu et al., 2024] being the
only existing method. However, its practicality is constrained
by unrealistic assumptions and methodological issues. MGIS
assumes that the adversary can determine in advance which
modality achieves better reconstruction by comparing recon-
structed images and text using metrics like PSNR for images
and word matching rates for text. Based on this, the adver-
sary uses the label from the better-performing modality to
assist reconstruction of the weaker one. However, this as-
sumption may not hold in practice, as adversaries typically
lack access to the original data, making such evaluations in-
feasible. Moreover, these metrics are modality-specific and
not directly comparable, complicating the identification of the
better-performing modality. In their experiments, MGIS cir-
cumvents these limitations by assuming that the text modality
produces superior results and using text labels to assist im-
age reconstruction. Thus, effectively leveraging intermodal
correlations to enhance gradient inversion attacks remains an
open challenge, underscoring the importance of our work.

Our Contributions. In this work, we propose MMGIA, a
novel intermodal correlation-driven gradient inversion attack
for multimodal federated learning. MMGIA employs a two-
stage framework to systematically reconstruct multimodal
data. The first stage independently reconstructs each modal-
ity using traditional gradient inversion techniques, while the
second refines the reconstructions by leveraging pre-trained
feature extractors to map the reconstructed data into a shared
latent space, explicitly capturing intermodal relationships. A
dynamic quality-weighted fusion strategy is applied to inte-
grate multimodal embeddings into a global fused representa-
tion, which serves as a guiding signal to enhance the recon-
struction of each modality by balancing contributions from
stronger and weaker modalities. Additionally, MMGIA in-
corporates an iterative optimization mechanism, where the
outputs of the second stage are reintroduced as inputs to the
first, with iterations continuing until the similarity between
modality embeddings in the shared latent space exceeds a pre-
defined threshold, ensuring high reconstruction accuracy and
semantic alignment. Through extensive experiments on di-
verse multimodal datasets, we demonstrate that MMGIA sig-
nificantly outperforms existing multimodal and single-modal
attacks, revealing heightened privacy risks in MMFL and un-
derscoring the need for privacy-preserving mechanisms.

2 Related Work

2.1 Multimodal Federated Learning

Multimodal federated learning extends traditional FL to han-
dle multiple modalities (e.g., text, images, audio), leveraging
their complementary characteristics to build global models.
Early work by [Saeed er al., 2020] introduced scalogram-
signal correlation learning, a self-supervised method for ro-
bust multimodal representation learning in FL. More re-
cently, [Xiong et al., 2022] proposed MMFed, a multi-
modal FL framework using cross-attention, and [Chen and
Zhang, 2022] introduced FedMSplit to address missing
modalities. CreamFL [Yu et al., 2023] developed a con-
trastive representation-level ensemble to aggregate heteroge-
neous multimodal clients. [Feng er al., 2023] proposed the
first comprehensive benchmark dataset and evaluation frame-
work specifically designed for multimodal federated learning.
[Li et al., 2024] proposed MuEP, a multimodal benchmark
for embodied planning addressing diversity, modality limita-
tions, and coarse metrics.

2.2 Gradient Inversion Attack

Gradient inversion attacks have emerged as a critical threat
to the privacy of federated learning, where adversaries aim to
reconstruct client data from shared gradients. Existing studies
have primarily focused on gradient inversion in single-modal
FL, such as reconstructing images or text.

Image. [Zhu et al., 2019] demonstrated in their pioneering
work that sharing gradients can leak data privacy, introduc-
ing DLG to reconstruct images by minimizing the Euclidean
distance between true and dummy gradients. However, DLG
performs best with small images and batch sizes. Building on
this, [Zhao et al., 2020] proposed iDLG, which extracts labels
from gradients but is limited to the case where the batch size
is one. [Geiping et al., 2020] improved image reconstruction
by replacing Euclidean with cosine distance and applying to-
tal variation for denoising. CPL [Wei et al., 2020] enhanced
attacks further with Lo distance and label-based regulariza-
tion. Recently, GIFD [Fang et al., 2023] uses the GAN prior
via optimizing the feature domain of the generative model to
generate stable and high-fidelity inversion results.

Text. Most GIAS focus on image reconstruction, with re-
cent work exploring textual data. DLG [Zhu et al., 2019]
pioneered reconstruction from transformer gradients, while
TAG [Deng et al., 2021] improved it with an L; loss term.
LAMP [Balunovic et al., 2022] incorporated language model
priors and discrete-continuous optimization to recover text,
and FILM [Gupta er al., 2022] extended gradient-based text
leakage in LMs to settings with larger batch sizes. Fowl et
al. [Fowl et al., 2022] proposed another attack targeting NLP
tasks, but their approach relied on a stronger assumption that
the server could send malicious updates to the client.

Multimodal data. As stated in Section 1, MGIS [Liu et
al., 2024] is the only gradient inversion attack method for
MMFL, but its practicality is limited.

3 Threat Model

Threat Model: Multimodal data, due to interdependencies
between modalities, reveals additional information and in-
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creases the risk of attackers reconstructing sensitive data. We
consider a horizontal multimodal federated learning setting
with two widely used modalities: image and text, common
in applications like medical diagnosis and social recommen-
dation. Each client trains local models on multimodal data
and independently shares the gradients of different modali-
ties with the central server [Chen and Li, 2022]. Since differ-
ent modalities use distinct architectures, fused gradients (e.g.,
concatenation-based) can still be easily separated by modal-
ity. The adversary leverages exchanged gradients to recon-
struct private data.

Adversarial Goal: In multimodal gradient inversion at-
tacks, the adversary’s goal is to reconstruct the original mul-
timodal input data, including texts and images, from the
shared gradients exchanged during training. By leveraging
the modality-specific information contained in the gradients
and exploiting intermodal correlations, the adversary itera-
tively refines the reconstruction process. This approach com-
bines the stability of single-modality reconstruction with the
complementarity of cross-modal alignment, aiming to accu-
rately recover the original text and image inputs, thereby ex-
posing the vulnerabilities in multimodal federated learning.

Adversary’s Knowledge: As shown in Fig. 1, we assume
the adversary to be an honest-but-curious server with spe-
cific knowledge that facilitates the attack. First, the adver-
sary has access to the shared gradients exchanged between
clients and the central server during training. Second, the
adversary can utilize pre-trained auxiliary models to extract
embeddings from the reconstructed data of each modality and
map them into a shared latent space, effectively capturing in-
termodal correlations. This assumption is plausible, as many
publicly available models, such as CLIP, can perform this
task. The mapping enables cross-modal alignment and refine-
ment, which are crucial for enhancing reconstruction quality.
Finally, the adversary is aware of the global model architec-
ture, including its structure and loss function.

4 Design of MMGIA

Fig. 2 illustrates the framework of our proposed methodology,
which consists of two main stages: modality-specific recon-
struction and correlation-driven refinement. In the first stage,
traditional gradient inversion techniques are applied to recon-
struct preliminary results for each modality from the shared
gradients. The second stage refines these results by exploiting
latent consistency constraints between modalities.

4.1 Modality-Specific Reconstruction

In the first stage, we utilize the shared gradients for each
modality and independently apply gradient inversion attacks
to the image and text modalities to generate initial reconstruc-
tion results. The single-modal gradient inversion attack is
formulated as an optimization problem that reconstructs the
original input by minimizing the difference between the true
gradients and the gradients computed from the reconstructed
data. The general objective is:

£*7?3* = argmipﬁgrad(vw(xay)vVW(:%7Q))3 (1)
z,Y

where L;.q is a distance function and (Z, ) denote dummy
data optimized using gradient descent to have similar gradi-
ents VW (Z, 9) to true data (z,y).

Gradient Inversion for Image Modality: For the im-
age modality, we can define the optimization objective as the
Lo distance between the shared gradients and the generated
gradients. To further enhance reconstruction quality, we in-
corporate additional regularization terms, i.e., total variation
(TV) regularization, which promotes smoothness in the re-
constructed image. The reconstruction error is:

L
Lha =D IVwe L@ d1) = VW |, + TV(Er), )
=1

where L denotes the total layers. After multiple iterations,
this approach produces a reconstructed image that approxi-
mates the original input.

Gradient Inversion for Text Modality: For the text
modality, we can use a cosine reconstruction loss to quantify
the similarity between the reconstructed and shared gradients,
expressed as:

1 LV, L@, 9r) - VIV
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where L denotes the total layers. This choice is informed
by the findings of [Balunovic et al., 2022], which highlight
that cosine loss provides superior performance in text-based
attacks. After obtaining the initial reconstruction results 7
and 27, for the image and text modalities, they are passed to
the second stage for further optimization. Importantly, the
first stage of our framework directly employs existing single-
modal gradient inversion attacks in a plug-and-play manner.
This modular design allows MMGIA to seamlessly incorpo-
rate both current and future single-modal techniques without
modifying the overall architecture. Consequently, MMGIA
remains broadly compatible with ongoing advancements in
gradient inversion research, ensuring long-term extensibility
and adaptability.

4.2 Correlation-Driven Refinement

The second stage leverages intermodal correlations to refine
and complement the first-stage reconstructions. Due to gra-
dient sparsity, the initial reconstructions often lack detail and
semantic completeness. To address this, the second stage re-
fines initial reconstructions by exploiting latent consistency
constraints between modalities. For convenience, we denote
the first-stage reconstruction result for the image modality,
Z7, as Timg, and that for the text modality, 27, as Tyext.

Extracting Latent Features.

The first step of this stage involves mapping the initial re-
construction results from the first stage into a shared latent
feature space to explicitly capture the correlations between
modalities. To achieve this, we leverage CLIP’s pre-trained
visual and text encoders, which are specifically designed to
align image and text representations within a common em-
bedding space. The reconstructed image and text data are
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Figure 2: Framework of the proposed MMGIA. MMGIA consists of two stages. In the first stage, single-modality gradient inversion is
performed independently for each modality, reconstructing the initial image and text data based on their respective gradients. In the second
stage, we utilize CLIP to extract feature embeddings from the initial reconstruction results, compute a fused embedding as a unified target,
and align each modality’s embedding with the fused embedding to iteratively refine the reconstruction.

processed through CLIP’s respective encoders, generating la-
tent feature embeddings that preserve high-level semantic re-
lationships across modalities. Specifically,

Zimg = CLIP('rimg)a Ztext — CLIP(xtext)- (4)

Both modalities are mapped into a unified latent feature
space, enabling their embeddings to be directly compared and
optimized. This shared latent space serves as the basis for
subsequent cross-modal optimization and joint refinement.

Cross-Modal Optimization.

We first propose a direct cross-modal alignment optimiza-
tion method that leverages the inherent correlations between
modalities to enhance reconstruction quality. This approach
is based on the assumption that, in a shared latent space, the
latent feature embeddings of different modalities should ex-
hibit consistency. To achieve this, we define the following
alignment loss function:

&)

Here, zimg and z.x represent the latent feature embeddings
of the reconstructed results for the image and text modalities,
respectively. By minimizing this loss, we explicitly align the
feature embeddings of both modalities in the shared space,
enhancing reconstruction consistency and improving the re-
constructed data quality. We employ gradient descent to iter-
atively update the reconstructed results Zjy,g and Ty, €nsur-
ing that their feature embeddings in the shared space become
progressively closer.

Although this method improves cross-modal alignment and
enhances reconstruction quality, we observe that it may nega-
tively impact certain modalities in practice. For instance, the
alignment process might degrade the quality of a modality
that initially has better reconstruction, as it forces alignment

Ealign = Hzimg - Ztext”2 .

with a weaker modality. To address this issue, we further
propose an improved method to dynamically balance the in-
fluence of each modality during optimization, ensuring that
alignment does not lead to performance degradation while en-
hancing overall reconstruction quality.

Quality-Weighted Cross-Modal Optimization. To ad-
dress the challenge of intermodal interference observed in di-
rect cross-modal alignment, we propose a quality-weighted
multimodal optimization method. This approach incorporates
a global fused embedding as a guiding signal to direct the re-
construction of individual modalities while minimizing neg-
ative interference between them. By dynamically account-
ing for reconstruction quality, the method balances the influ-
ence of each modality during optimization, ensuring robust
and consistent improvements in reconstruction accuracy.

We begin by evaluating the reconstruction quality of each
modality in the first stage using a scoring function Q(-),
which quantifies the alignment between the shared gradient
and the gradient generated by the reconstructed data. For
modality m, the quality score is defined as:

||V‘Cm (.’Em) - V‘Cm,trueH
Hv‘am,true ” ’

Qzm) =1— (6)
where VL, true denotes the shared gradient corresponding
to modality m, V.L,,(x,,) represents the gradient generated
by the current reconstruction x,,,. Higher scores indicate a
stronger alignment between the reconstructed data and the
shared gradients, reflecting superior reconstruction quality.
Based on the quality scores, dynamic weights are assigned
to each modality to determine its contribution to the global
fused embedding. The dynamic weights are computed as:

b Q(Tm)
me Q(xm’) .

Wm

(7
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The normalization ensures that all modalities contribute pro-
portionally to global optimization. Modalities with higher re-
construction quality receive greater weights, amplifying their
influence on the fused embedding, while weaker modalities
have reduced impact. Using the dynamic weights, the latent
feature embeddings of all modalities are combined to gener-
ate a global fused embedding:

Zfused = Z Wm Zm,, (8)
m

where z,, represents the latent feature embedding of differ-
ent modalities, and zfyseq 1S the global fused embedding that
integrates multimodal information. This fused embedding
balances the strengths of high-quality modalities while re-
ducing the negative impact of weaker modalities, providing
a robust global signal for optimization. The global fused em-
bedding zpseq Serves as a guiding signal for optimizing the
reconstruction of individual modalities. For each modality,
the optimization objective minimizes the distance between its
embedding z,, and the fused embedding zgyseq:

£fused,m =3 Hzm — qused||2 : (€)]

Reconstruction updates are performed iteratively using gradi-
ent descent:

st =2lf) - i%n7 (10)
T

where a:,(fl) is the reconstruction of modality m at iteration ¢.

7 is the learning rate. This process ensures that each modal-
ity’s reconstruction is guided by the global fused embedding,
improving consistency and reducing inter-modal interference.
The quality-weighted cross-modal optimization dynami-
cally adjusts weights based on reconstruction quality, using
the global fused embedding as a unified target to enhance ac-
curacy. This method prevents quality degradation of stronger
modalities during alignment, ensuring a stable and robust op-
timization for multimodal gradient inversion attacks.

4.3 Iterative Reconstruction Optimization

After completing the second stage, the reconstruction results
are reintroduced into the first stage for further optimization.
This iterative process continues until the similarity between
modality embeddings in the shared latent space exceeds a pre-
defined threshold 0, indicating convergence. The similarity is
calculated as:

Sim(zimga let) = Zimg : let/ (”ZimgH ||tht||) . (11)
Each iteration refines reconstruction quality by stabiliz-
ing single-modality optimization and enhancing cross-modal
alignment, leveraging multimodal correlations to progres-
sively improve reconstruction accuracy in multimodal gradi-
ent inversion attacks.

S Experiments

In this section, we evaluate MMGIA by comparing it with
state-of-the-art single-modal and multimodal attack methods.
We also investigate the impact of different architectures, aux-
iliary models, convergence thresholds, and defense methods
on its performance.

5.1 Experimental Setup

Datasets. We evaluate the proposed MMGIA on three mul-
timodal datasets, i.e., CIFAR100 [Krizhevsky er al., 2009],
Openl [Demner-Fushman et al., 2016], and Flickr30K [Plum-
mer et al., 2015]. CIFARI100 is a widely used dataset for
image classification, consisting of 60,000 images from 100
object categories. Since CIFAR100 does not contain text de-
scriptions, we generate text for each image by employing a
simple template-based approach: “A [class] in the image.”,
where [class] is replaced with the corresponding category la-
bel of the image. Openl is a multimodal medical dataset that
contains 7,470 chest X-ray images along with correspond-
ing radiology reports. Flickr30K is a multimodal dataset
containing 30,000 images, each paired with five human-
annotated textual descriptions. These datasets collectively en-
able a comprehensive evaluation of MMGIA in different mul-
timodal scenarios, including general image-text associations,
medical image-text relations, and natural image captioning.

Evaluation Metrics. To evaluate the effectiveness of our
method, we use traditional single-modal evaluation metrics.
For the image modality, we employ SSIM to assess the qual-
ity of reconstructed images by measuring their structural sim-
ilarity to the original inputs [Wang et al., 2004]. For the
text modality, we use ROUGE metrics, reporting aggregated
F-scores for ROUGE-1, ROUGE-2, and ROUGE-L, which
measure unigrams, bigrams, and longest matching subse-
quences, respectively [Lin, 2004]. We randomly sample 100
images from each dataset to evaluate attack performance.
These metrics provide a standardized evaluation of MMGIA’s
ability to recover high-quality content and enable rigorous
comparisons with existing gradient inversion methods.

Baselines. We compare MMGIA with the only existing
multimodal attack, MGIS [Liu et al., 2024], which cannot
be directly used due to its unrealistic assumption. Thus,
we have to follow its experimental setting, using the text
modality to assist in attacking the image modality. Addi-
tionally, we benchmark against single-modal attacks, includ-
ing DLG [Zhu et al., 2019], IG [Geiping et al., 2020], and
GIFD [Fang et al., 2023] for image modality, and DLG [Zhu
etal.,2019], TAG [Deng et al., 20211, and LAMP [Balunovic
et al., 2022] for text modality, to comprehensively evaluate
MMGIA’s effectiveness. We also compare MMGIA (d), a
direct modality alignment method defined by Eq. (5), which
aligns image and text modalities in a shared latent space.

Local Models. We conduct experiments using various ar-
chitectures for both text and image modalities. For text, we
compare TinyBERT 4, BERTgAsE, and BERT ArgE, and for
images, we evaluate LeNet-5, ResNet-18, and ResNet-50.
These models vary in complexity and feature extraction ca-
pabilities. Unless otherwise specified, the local models used
in our experiments are ResNet-50 for the image modality and
BERT ArGE for the text modality.

Auxiliary Models. We use pre-trained visual and text en-
coders from the CLIP model to compute embeddings for im-
ages and text, enabling cross-modal alignment in our attack.
Specifically, we benchmark our method using two CLIP-
based models: OpenAl CLIP [Radford er al., 2021], which is
pre-trained on 400 million image-text pairs from the Internet,
providing a strong multimodal representation in the general
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LeNet-5 ResNet-18 ResNet-50

Attack SSIM SSIM SSIM
MGIS 0.748 0.834 0.869
DLG 0696 0822 0.853
CIFARIO0 IG 0.625 0.791 0.814
GIFD 0742 0858 0.876
MMGIA (d) 0764  0.907 0912
MMGIA 0.771 0.915 0.927
MGIS 0.209 0253 0.264
DLG 0203 0.245 0257
Openl G 0237 0.274 0306
GIFD 0261 0319 0379
MMGIA (d)  0.279 0376 0435
MMGIA 0295 0422 0.479
MGIS 0213 0271 0.290
DLG 0211 0.263 0278
Flickr30K  IG 0.247 0317 0329
GIFD 028 0385 0.446
MMGIA (d) 0305 0.459 0.485
MMGIA 0320 0498 0.517

Table 1: Main results of image reconstruction from gradients with
different attacks, for various datasets and architectures in the setting
with batch size equal to 1.

domain, and PubMedCLIP [Eslami et al., 2021], a domain-
specific variant fine-tuned on 80,000 radiology image-text
pairs, enhancing its ability in medical applications.

5.2 Attack Performance Comparison

Attack Performance on Image Modality. Table 1 shows the
reconstruction results for the image modality, where MMGIA
achieves the highest SSIM score, demonstrating its effec-
tiveness in reconstructing high-quality images. Compared to
MGIS, MMGIA significantly enhances reconstruction qual-
ity, thanks to its two-stage optimization strategy: the first
stage ensures independent reconstruction of each modality,
while the second stage refines results by leveraging inter-
modal correlations. Unlike single-modal attacks, which rely
solely on image gradients, MMGIA utilizes complementary
semantic cues from the text modality to reduce ambiguity and
improve fine-grained details. Furthermore, compared to MM-
GIA (d), which directly aligns modalities, MMGIA’s quality-
weighted fusion strategy ensures high-quality reconstructions
guide weaker ones without degrading strong modalities, re-
sulting in dynamic and robust optimization.

Attack Performance on Text Modality. Table 2 presents
the reconstruction results for the text modality, where MM-
GIA also achieves the highest ROUGE scores, outperform-
ing all baselines, including MGIS and single-modal attacks
(DLG, TAG, LAMP). This improvement is primarily due to
our quality-weighted fused embedding optimization, which
dynamically balances the influence of the image and text
modalities during the reconstruction process. Unlike MGIS,
which only focuses on using the text modality to improve im-
age reconstruction, MMGIA explicitly integrates multimodal
relationships bidirectionally, enabling both modalities to ben-
efit from cross-modal information. We omit DLG’s attack
results as its performance in text reconstruction is identical
to that of MGIS. This is because MGIS only uses the text
modality to assist image recovery, without introducing any
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Figure 3: Performance of MMGIA with different auxiliary models
and thresholds.

additional optimization techniques for text reconstruction it-
self. Instead, it simply adopts the Lo loss from DLG for text
reconstruction, limiting its potential for improvement.

Impact of Local Model. We also evaluate the impact
of different network architectures on attack performance,
as shown in Table 1 and Table 2. For the image modal-
ity, LeNet-5 shows the weakest reconstruction, ResNet-18
performs better, and ResNet-50 achieves the highest SSIM
scores due to its richer feature information, while LeNet-
5’s simplicity and limited gradients result in poorer perfor-
mance. For text modality, TinyBERT, produces the weakest
reconstructions, BERTp ssg performs moderately better, and
BERTyarGE achieves the highest ROUGE scores. The dif-
ferences stem from model size and representational capacity:
TinyBERT,’s limited layers struggle with complex linguistic
structures, while BERTgssg and BERTy pArgE, with deeper
architectures, provide progressively better contextual repre-
sentations. These findings demonstrate that deeper architec-
tures with more expressive gradient information are more sus-
ceptible to gradient inversion attacks, whereas simpler mod-
els naturally provide stronger resistance due to their weaker
gradient representations.

Impact of Auxiliary Model. Fig. 3(a) shows the im-
pact of different auxiliary models on attack performance.
We compare the reconstruction results using OpenAl CLIP
and PubMedCLIP across CIFAR100, Flickr30K, and Openl
datasets. The results show a clear distinction: on CIFAR100
and Flickr30K, directly using OpenAl CLIP leads to better
reconstruction quality, while on the Openl dataset, using Pub-
MedCLIP achieves superior performance. This difference
arises because Openl is a medical dataset. OpenAl CLIP,
trained on 400 million general-domain image-text pairs, pro-
vides stronger representations for natural image datasets like
CIFAR100 and Flickr30K but lacks the specialized knowl-
edge required for medical. In contrast, PubMedCLIP, fine-
tuned on 80,000 radiology image-text pairs, is better suited
for medical feature extraction, resulting in improved recon-
struction on Openl. These findings highlight the importance
of selecting domain-specific auxiliary models for optimizing
multimodal gradient inversion attacks, as feature extractor
suitability significantly affects reconstruction quality.

Impact of Threshold 6. Fig. 3(b) illustrates the impact
of varying embedding similarity thresholds 6, as defined by
Eq. (11), on the attack performance for image modality in
the Openl dataset, comparing the effectiveness of two auxil-
iary models, CLIP and PubMedCLIP. The results show that
attack quality improves as 6§ increases but stabilizes at differ-
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Attack TinyBERT, BERTEAsE BERTLARGE
Rl R2 RL RI R2 RL RI1 R2 RL

MGIS 63.9 102 437 711 114 374 749 181 526

TAG 735 131 513 802 186 574 824 237 571

CIFARI00  LAMP 797 465 697 846 513 612 867 554 624
MMGIA (d) 864 557 732 883 597 739 892 63.1 73.5

MMGIA 873 584 759 914 645 784 937 674 798

MGIS 274 19 176 321 08 116 427 27 264

TAG 338 45 213 459 16 224 559 59 357

Openl LAMP 517 113 337 627 219 432 671 164 441
MMGIA (d) 605 137 394 623 151 407 694 159  47.8

MMGIA 626 174 421 643 238 445 739 217 516

MGIS 327 24 1901 435 27 232 549 98 298

TAG 375 39 214 458 37 257 604 171 363

Flickr30K ~ LAMP 67.6 441 497 704 473 512 762 426 519
MMGIA (d) 643 439 462 729 464 556 797 468 523

MMGIA 71.6 475 582 765 529 603 859 593 607

Table 2: Main results of text reconstruction from gradients with different attacks, for various datasets and architectures in the setting with
batch size equal to 1. R-1, R-2, and R-L, denote ROUGE-1, ROUGE-2 and ROUGE-L scores respectively. Bold indicates the best result, and

underline indicates the suboptimal result.

ent thresholds for the two models. With CLIP, performance
saturates at = 0.5, reflecting its limited semantic alignment
capacity for medical data. In contrast, PubMedCLIP achieves
optimal performance at # ~ 0.7, demonstrating its superior
ability to capture semantic relationships between medical text
and images. This discrepancy arises from the distinct pre-
training objectives of the models: CLIP, a general-purpose
model, reaches its alignment capacity at lower thresholds,
while PubMedCLIP, designed specifically for the medical do-
main, continues to improve at higher thresholds.

Method Metric B=1 B=2 B=4
SSIM 0.264 0.148 0.091

MGIS Rouge-L. 259 21.3 16.5
SSIM 0.652 0.531 0.317

MMGIA Rouge-L  51.6 40.7 33.8

Table 3: Impact of different batch sizes (B).

Impact of Batch Size. Table 3 shows the attack perfor-
mance on the Openl dataset with batch sizes greater than
1. The auxiliary model is PubMedCLIP, while the local
model is BERT, oArgg. Our findings indicate that as the batch
size increases, reconstruction quality declines. This decline
results from the gradient aggregation effect, reducing the
sample-specific information encoded in the shared gradients.
Nonetheless, MMGIA effectively leverages intermodal cor-
relations to generate meaningful reconstructions, albeit with
reduced detail and accuracy compared to the B = 1 setting.

Defense Performance of Differential Privacy. Differen-
tial privacy (DP) is a widely used method to protect data
privacy. Here, we evaluate the impact of DP on the perfor-
mance of MMGIA. Specifically, we employ the commonly
used DPSGD (Differentially Private Stochastic Gradient De-
scent) algorithm [Abadi et al., 2016], which ensures (¢, §)-DP
by adding Gaussian noise to the clipped gradients during each
training iteration. In the experiments, ¢ is fixed at 10~°, and

the noise scale is adjusted to achieve target privacy budgets e
ranging from 1.0 to 10.0. The performance of MMGIA under
different privacy budgets is shown in Table 4. As the privacy
budget decreases (i.e., as € becomes smaller), the attack per-
formance of MMGIA significantly degrades. However, this
degradation in attack performance comes at the cost of re-
duced model utility.

Method SSIM ROUGE-L ACC
e=10 0214 16.7 0.53
e=50 0495 48.9 0.74
e=10.0 0.637 64.5 0.87
no DP 0.652 67.2 0.90

Table 4: Comparison of SSIM (Image) and ROUGE-L (Text) under
different e values and without DP, under the Openl dataset and Pub-
MedCLIP auxiliary model. ACC is the model prediction accuracy.

6 Conclusion

In this paper, we proposed MMGIA, an intermodal
correlation-driven gradient inversion attack, to expose the
heightened privacy risks inherent in multimodal federated
learning. By leveraging a two-stage optimization framework,
MMGTIA systematically reconstructs multimodal data, utiliz-
ing a quality-weighted fusion strategy to align embeddings
and enhance reconstruction quality. Our experiments demon-
strated that MMGIA significantly outperforms the only ex-
isting multimodal attack and state-of-the-art single-modal at-
tacks, showcasing its ability to exploit the inherent corre-
lations in multimodal data for high-fidelity reconstruction.
These findings reveal the greater privacy vulnerabilities in
multimodal data, where intermodal dependencies exacerbate
the risks of gradient leakage. Our work not only exposes
critical privacy risks in MMFL but also lays the foundation
for further exploration of vulnerabilities and defense mecha-
nisms in multimodal federated learning systems.
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