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Abstract

Accurate vessel segmentation is essential for di-
agnosing and managing vascular and ophthalmic
diseases. Traditional learning-based vessel seg-
mentation methods heavily rely on high-quality,
pixel-level annotated datasets. However, segmen-
tation performance suffers significantly when ap-
plied in federated learning settings due to vessel
morphology inconsistency and vessel-background
imbalance. The former limits the ability of mod-
els to capture fine-grained vessels, while the latter
overemphasizes background pixels and biases the
model towards them. To address these challenges,
we propose a novel method named Federated
Vessel-Aware Calibration (FVAC), which lever-
ages global uncertainty to provide differentiated
guidance for clients, focusing on pixels of various
morphologies that are difficult to distinguish. Fur-
thermore, we introduce a foreground-background
decoupling alignment strategy that utilizes more
stable and balanced global features to mitigate se-
mantic drift caused by vessel-background imbal-
ance in local clients. Comprehensive experiments
confirm the effectiveness of our method.

1 Introduction

Vessel segmentation plays a crucial role in the image reg-
istration of blood vessels and in the diagnosis and manage-
ment of vascular and ophthalmic diseases, such as coronary
artery disease, diabetic retinopathy, and glaucoma [Liu et al.,
2024]. Advances in deep learning, particularly through U-Net
and its variants [Ronneberger er al., 2015; Liu et al., 2022],
have significantly improved segmentation accuracy and ro-
bustness. However, progress in vessel segmentation is hin-
dered by the lack of large-scale, high-quality, pixel-level an-
notated datasets, which are expensive and time-consuming
to construct. In addition, data collected from different in-
stitutions often vary in imaging modalities, acquisition proto-
cols, and labeling standards, resulting in heterogeneous ves-
sel image distribution. Notably, privacy regulations further
restrict multi-center data sharing, emphasizing the need for
distributed approaches that can preserve privacy while lever-
aging diverse and heterogeneous datasets. Recently, Feder-

ated Learning (FL) has provided an ideal solution for vessel
segmentation by addressing data privacy concerns and effec-
tively handling data heterogeneity [McMahan er al., 2016;
Hyeon-Woo et al., 2022; Elgabli et al., 2022; Yang et al.,
2023a; Huang et al., 2024b; Wang et al., 2025]. By enabling
collaborative training without requiring the exchange of raw
data, FL offers a reliable framework to advance multiparty
vessel segmentation collaboration, enhancing model general-
ization and scalability across diverse clinical environments.

Federated vessel segmentation faces greater performance
challenges than general federated medical segmentation due
to vessel morphology inconsistency and vessel-background
imbalance. The former arises from significant variations in
the distribution of thin and thick vessel pixels across clients,
compounded by the complexity of intricate regions, such as
vessel intersections. These inconsistencies bias the global
model toward dominant features (e.g., thick vessels or sim-
pler regions) while neglecting subtle yet critical details, such
as thin vessels and ambiguous boundaries. Existing methods
commonly optimize local clients using cross-entropy loss,
which treats all units (e.g., images or pixels) uniformly with-
out accounting for fine-grained challenges. Some studies
have explored sample reweighting strategies to address data
imbalance, enhance the representation of specific samples,
and promote fairness across clients [Zhao and Joshi, 2022].
However, these strategies primarily focus on image-level
reweighting, while the full potential of pixel-level reweight-
ing remains largely unexplored. This gap is particularly crit-
ical for vessel segmentation, where fine-grained structures,
such as thin and tortuous vessels, require more precise and
adaptive guidance to ensure accurate, reliable, and faithful
representation. Consequently, a critical question emerges:
“Q1: How can global information be leveraged to provide
differentiated guidance for vessel pixels?”

Regarding the vessel-background imbalance, current fed-
erated learning frameworks typically perform one-to-one
model or parameter alignment, which involves either full-
parameter alignment [Li ez al., 2020b] or direct point-to-point
feature alignment [Mendieta et al., 2022]. However, this ap-
proach significantly limits the applicability of federated learn-
ing in vessel segmentation, where the foreground-background
disparity is particularly pronounced. Overemphasis on one-
to-one alignment often leads to prioritizing background pix-
els, which weakens the semantic representation of sparse cat-
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egories like vessels. Additionally, the aligned features are
unstable and lack robustness when handling heterogeneous
client data. Consequently, another key question arises: “Q2:
How to use robust feature alignment strategies to balance
foreground and background global knowledge?”

Based on the above issues, we propose our method.
Concerning Question 1, we propose Federated Morphol-
ogy Uncertainty Guidance (FMUG), inspired by the sam-
ple reweighting strategy in Federated Learning (FL). The first
and most important step is to reveal the “hard kernel”, which
consists of challenging pixels that significantly impact the
segmentation performance. Therefore, our method combines
global and local uncertainty to guide the model in focusing
on these key pixels. To be precise, we generate a global un-
certainty map using the predictions of the global model and
the ground truth alongside a local uncertainty map derived
from the optimization process of the client’s local model.
These uncertainty maps facilitate a progressive learning pro-
cess by dynamically identifying areas requiring focused at-
tention at each stage. Leveraging these maps, we employ
an uncertainty-based weighted cross-entropy loss to encour-
age the model to improve its accuracy while enhancing the
uncertainty associated with each prediction. As for Ques-
tion 2, we propose Federated Vessel Decoupling Alignment
(FVDA), a foreground-background separation alignment ap-
proach. Existing methods primarily focus on aligning local
and global directions for each pixel, treating this alignment
as a holistic optimization term. In contrast, our work aims
to decouple the foreground and background using the pro-
vided ground-truth labels. Specifically, we reconstruct fore-
ground and background masks based on pixel labels and align
each part independently. We argue that this approach is both
compatible and flexible, ensuring semantic consistency while
maintaining overall coherence with the global style.

In this paper, we aim to tackle the unique challenges in fed-
erated vessel segmentation, including vessel morphology in-
consistency, foreground-background imbalance. To address
these critical issues, we design innovative approaches that
efficiently enhance segmentation accuracy, preserve seman-
tic consistency, and improve generalization across diverse
datasets. Our contributions are summarized as follows:

* We propose a novel pixel-level federated vessel segmen-
tation method based on a divide-and-conquer approach,
which leverages global uncertainty to guide local models
in identifying critical pixels and effectively tackles chal-
lenges related to vessel morphology inconsistencies.

e We introduce a foreground-background separation
alignment approach for vessel segmentation, effectively
decoupling and aligning vessel and background features
to ensure semantic consistency, thereby improving the
generalization of the global model across diverse and
heterogeneous client datasets.

* We conduct extensive experiments on two modalities of
vessel datasets: one consisting of color fundus images
(DRIVE [Staal er al., 2004], STARE [Hoover et al.,
20001, CHASEDB1 [Owen et al., 2009]) and the other
composed of optical coherence tomography angiogra-
phy (OCTA) images (ROSE-1 [Ma et al., 2021] and

OCT-500 [Li et al., 2024]). Our method demonstrates
superior performance compared to related approaches.

2 Related Work

2.1 Federated Learning

With the introduction of FedAvg by McMabhan et al. [McMa-
han er al., 2017], federated learning (FL) began to emerge
as a promising and scalable approach for distributed learn-
ing. This groundbreaking work clearly showcased the po-
tential of FL to enable collaborative model training without
requiring raw data exchange, addressing privacy and security
concerns that traditional centralized methods could not eas-
ily overcome. However, it experiences degraded performance
when handling non-i.i.d. data (data heterogeneity). Some
approaches focus on leveraging shared models as global sig-
nals [Li et al., 2020b; Li er al., 2021; Huang et al., 2022;
Huang e al., 2023b; Huang et al., 2023al, while others em-
phasize utilizing statistical distributions [Zhang et al., 2022;
Zhou and Konukoglu, 2023; Tang et al., 2024]. Addition-
ally, certain methods are built upon semantic class proto-
types [Tan er al., 2022; Mu et al., 2023; Huang et al., 2023c;
Huang et al., 2024al, and some rely on gradient aggrega-
tion [Karimireddy er al., 2020; Gao et al., 2022] to en-
hance collaboration in federated learning. These methods
have achieved remarkable success, significantly advancing
the development and adoption of federated learning. How-
ever, these methods are not specifically designed for pixel-
level dense prediction tasks. Their granularity in federated
learning is insufficient, especially for medical segmentation
tasks, where they struggle to perform well in segmenting ob-
jects with blurry boundaries or thin and elongated structures.

2.2 Medical Segmentation Meet Federation

Fueled by the rapid development of deep learning, medical
image segmentation has achieved remarkable progress [Ron-
neberger et al., 2015; Isensee et al., 2021; Ma et al., 2024],
greatly enhancing clinical diagnosis and treatment by en-
abling precise and efficient delineation of anatomical struc-
tures and pathological lesions, such as brain tumors [Yang et
al., 2023b; Zhou et al., 2024], optic discs [Yii et al., 2023;
Chen et al., 2024], and lung nodules [Wang er al., 2023al.
However, training fully supervised models often demands
costly and labor-intensive pixel-level annotations, particu-
larly in the medical domain. Additionally, the sensitive na-
ture of patient data and strict privacy regulations create sig-
nificant legal and practical barriers to centralized data col-
lection and sharing. In this context, federated learning (FL)
has emerged as a natural, scalable, and promising solu-
tion for medical image segmentation [Wang et al., 2022;
Wang et al., 2023b]. Jiang et al. [Jiang et al., 2022] effec-
tively mitigates local drift using amplitude normalization and
addresses global drift through weight perturbation, thereby
resolving style domain discrepancies in medical images.

In this paper, we focus on federated vessel segmentation,
where the targets are characterized by variable thickness and
tortuous structures. Additionally, the significant foreground-
background disparity, with sparse vessel pixels compared to
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Figure 1: Illustration of FVAC.(A) The workflow of our model, which generates both global and local predictions along with intermediate
features. (B) Federated Morphology Uncertainty Guidance, as described in Sec. 3.2: The global and local predictions are used as inputs, from
which uncertainty maps /¢ and U~ are derived by projecting the prediction results. The weights c are then obtained through the combination
and linear mapping of both. (C) Federated Vessel Decoupling Alignment, as described in Sec. 3.2: Based on the labels, the feature map F is
decoupled into the foreground and background features (e.g. ((Flf‘g7 ng), (F{‘,g, Fﬁg)), which are then used for group-wise alignment.

the dominant background, poses unique challenges for accu-
rate segmentation in federated settings.

2.3 Federated Vessel Segmentation

Vessel segmentation has experienced rapid advancements in
recent years. Accurately segmenting vessels with complex
shapes and variable thicknesses remains a challenging and
important problem. As a landmark network in medical image
segmentation, U-Net [Ronneberger er al., 2015] has demon-
strated excellent performance in vessel segmentation, owing
to its symmetric encoder-decoder and skip connection archi-
tecture. Inspired by U-Net, numerous variant networks for
vessel segmentation have been developed [Li et al., 2020a;
Liu et al., 2022]. Nevertheless, they all rely on detailed anno-
tations, limiting applicability. Moreover, due to strict patient
confidentiality and privacy policies, centralized data collec-
tion and sharing are highly challenging and often infeasible.

Federated learning (FL) offers a promising new paradigm
for vessel segmentation by addressing the challenges of cen-
tralized data collection and the reliance on finely detailed an-
notations. Unfortunately, existing federated medical segmen-
tation fails to fully address the unique challenges of vascular
segmentation due to the high variability in vascular shapes
and the uneven distribution of vessel thickness.

In this paper, we introduce the first federated learning-
based framework designed explicitly for vessel segmentation.
This framework enables clients to effectively focus on key
pixels, enhance local model performance, and simultaneously
learn more generalized, robust, and contextually aware se-

mantic representations across heterogeneous datasets.

3 Methodology

3.1 Preliminaries

Following the setup of FedAvg [McMahan er al., 20171, typi-
cal Federated Learning (FL) usually involves a centralized
server and multiple clients. Each client & holds its private
dataset Dy, which can be represented at the sample level as:

Dy = {zi, yi };5,, )

where ny, represents the number of samples in the k-th client’s
local data. At the beginning of each communication round ¢,
the global model parameter ¢ is broadcasted by the server
to all clients. Each client then performs local optimization on
its dataset by minimizing a local objective (e.g., cross-entropy
loss), resulting in updated local parameters %, which are sent
back to the server. The server aggregates these local updates
using a weighted averaging mechanism to produce the global
model for the next round:

M
t4+1 t Nk
0 = E arby, = —3—> 2)
k=1 D k=1 T

where M denotes the total number of clients, and the weight
ay, ensures that each client’s contribution is proportional to its
dataset size. This framework enables collaborative learning
without sharing raw data, effectively preserving privacy while
utilizing distributed datasets across multiple clients.

For segmentation-specific tasks, the client’s dataset can
also be expressed at the collection level as:
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where P(h,w) denotes the predicted probability for pixel
(h,w), and Y (h,w) is its ground truth label. The function
argmax (P (h, w)) returns the class with the highest predicted
probability. For correctly classified pixels, uncertainty in-
creases when non-predicted classes have higher probabilities,
indicating weaker separation. For misclassified pixels, higher
probability for the incorrect class leads to increased uncer-
tainty, reflecting overconfidence. This behavior underscores
the need to analyze the full probability distribution to assess
confidence and detect weaknesses.

3.2 Proposed Method

Motivation. Federated Learning (FL) has emerged as
a privacy-preserving collaborative learning framework, en-
abling multiple institutions to train global models without
sharing sensitive data. In medical image segmentation tasks,
existing FL methods primarily focus on addressing data het-
erogeneity caused by differences in imaging modalities (e.g.,
MRI, CT) or acquisition protocols, emphasizing mitigating
style shifts in global and local feature distributions.

However, segmenting thin and tortuous structures (e.g.,
blood vessels) presents unique challenges in federated learn-
ing. Blood vessel segmentation suffers from vessel morphol-
ogy inconsistency, where the distribution of thin and thick
vessels varies significantly across clients. As a result, the
global model often overlooks subtle yet important details,
such as thin vessels and unclear boundaries, while focusing
on dominant features like thick vessels or simpler regions.
Moreover, the vessel-background imbalance, where vessels
occupy only a small fraction of pixels, further weakens the
representation of sparse categories and causes unstable fea-
ture alignment across heterogeneous clients.

Considering these challenges, this work focuses on:

* Leveraging the global uncertainty map to guide local
clients in effectively prioritizing key regions (e.g., thin
vessels and blurred edges) during training.

* Foreground-background separation semantic alignment
to help local clients learn more generalizable features,
ensuring consistency across diverse clients while pre-
serving fine-grained segmentation performance.

Overview of Framework. The framework of our method is
illustrated in Fig. 1. Specifically, We leverage the uncertainty
from the prediction results to assist local models in learning
the hard kernels while utilizing decoupled features to mitigate
the bias toward the dominant class. Next, we will introduce
Federated Morphology Uncertainty Guidance and Federated
Vessel Decoupling Alignment in detail.

I) Federated Morphology Uncertainty Guidance. Con-
sidering vessel morphology inconsistency, which represents
pixel-level data heterogeneity (e.g., varying vessel crossing
degrees), this issue severely hampers the learning of fine-
grained features. As a result, the global model becomes bi-
ased toward dominant features (e.g., thick vessels or simpler
regions), leaving it uncertain or even incapable of segmenting
thin, elongated structures or ambiguous boundaries.

To address this, we leverage global uncertainty to guide
local models in further refining their learning on hard-to-
distinguish pixels, improving segmentation accuracy. Addi-
tionally, we treat the local client optimization process as a
progressive learning approach, specifically focusing on un-
certain pixels. By incorporating local uncertainty, we dynam-
ically adjust the global uncertainty, deriving stable pixel-level
learning weights to enhance model performance.

For a given input X, the model’s predictions are repre-
sented as:

Z = f(X;0), 4

P =0(2), (&)

where Z denotes the logits of the model, and o represents the

softmax function, which transforms the logits into a pixel-
wise probability distribution P.

Based on these predictions, uncertainty maps are derived

to quantify the reliability of the predictions at the pixel level:

if argmax(P(h,w)) =
otherwise.

Y (h,w),

Y= {min(?’(h, w)), ©)

max(P(h,w)),

where P (h,w) represents the predicted probability for pixel
(h,w), and Y (h,w) denotes the ground truth label for that
pixel. The function argmax(P(h,w)) returns the index of
the class with the highest predicted probability at pixel (h, w).
For correctly classified pixels, uncertainty increases when the
probabilities assigned to non-predicted classes are higher, in-
dicating a weaker separation between the predicted class and
others. Conversely, for misclassified pixels, uncertainty in-
creases when the probability of the incorrect class is higher,
reflecting the model’s overconfidence in its prediction. This
nuanced behavior highlights the importance of understanding
the probability distribution across all classes to effectively as-
sess confidence and identify weaknesses or inconsistencies.

Thus, based on the uncertainty maps &2 € R7*W and
U~ € REXW the pixel-wise weight map for the entire image
is computed as a linear combination of the global and local
uncertainty maps:

a=05-U+0.5-U" @)
where the superscripts g and k denote the global uncertainty
(aggregated across clients) and the local uncertainty (specific
to the current client), respectively. To ensure proper normal-
ization, the weights are scaled as follows:

o= > ®)

Zh 1 Zw p e(h, w)’
where the denominator ensures that the sum of all weights
across the image equals 1. These normalized weights are then
used to compute the weighted cross-entropy loss over the en-
tire image:

EFMUG - Z Z
h,w

c=0

]-Y(h w)=c log (PC(h U))) (9)

¢ selects the predicted probability P..(h,w)
C-1}.

where 1y (4,)=
corresponding to the ground-truth class ¢ € {0,...,
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Here, C denotes the total number of semantic classes (and
prediction channels). ae(h, w) is a pixel-wise adaptive weight
derived from both global and local uncertainty. In our binary
vessel segmentation task, C' = 2.

This approach adaptively penalizes ambiguity in correct
predictions and overconfidence in incorrect ones. Leverag-
ing uncertainty maps, the model focuses on difficult regions,
enhancing robustness and performance.

II) Federated Vessel Decoupling Alignment. Ves-
sel-background imbalance poses another significant chal-
lenge in federated vessel segmentation, weakening the se-
mantic representation of sparse classes like vessels. Com-
mon one-to-one feature learning or parameter-sharing strate-
gies in general federated learning often exacerbate this by
overemphasizing background pixels, leading to unstable fea-
ture learning and reduced model robustness.

To address this, we extract foreground and background
features from intermediate model features F € REXHXW
where C, H, and W are the number of channels, height, and
width. The ground truth Y is resized to / x W to obtain the
mask S, and we optimize foreground and background fea-
tures separately. The optimization is as follows:

ng = 1S(h w)=1;

(10)

WMm
s uMs

Fyy =

]-S(h w)=0>

h 1w=
where F[:, h, w| represents the feature vector at pixel (h, w),
and S(h,w) is the mask value at pixel (h,w). The features
F, and Fyg are averaged across all pixels, ultimately yielding
a C x 1 feature vector for each respective category.

To ensure consistency between the local and global fea-
ture representations, we calculate the Mean Squared Error
(MSE) loss for both foreground and background features in
the model. The loss is then computed as follows:

k g 2
)Fbg—Fbg - an

ad

Through the combined use of the reweighted cross-entropy
loss and the decoupled alignment loss, the final training ob-
jective is defined as:

1
Lrvpa = Hng

Lrvac =Lryuva + B Lrvpa, (12)

where [ controls the balance between the two loss terms. The
reweighted cross-entropy loss L7 improves segmenta-
tion accuracy and confidence, while the decoupled alignment
loss Lrypa ensures consistent features between local and
global models. The overall algorithm is illustrated in Algo-
rithm 1. Jointly optimizing both losses boosts accuracy and
preserves foreground—background consistency.

3.3 Discussion

Conceptual Difference. Most FL. methods use cross-entropy
loss and sample reweighting but overlook pixel-level weight-
ing and global context, limiting their ability to handle com-
plex pixels. We first introduce global uncertainty in FL for
vessel segmentation, guiding local models toward hard pix-
els and boosting accuracy. Moreover, conventional FL aligns

Algorithm 1: Model training in FVAC

Input: Communication rounds 7', local epochs E, number
of participants K, the k%" participant private data
Dy (z,y), private model 6y,
Output: The final global model 87
fort =1,2,...,T do
Participant Side;
for k = 1,2, ..., K in parallel do
| 6% < LocalUpdating(¢*, G)
Server Side;
0 e L0

LocalUpdating(9?, G):

0t — 6" // Distribute global parameter
Ofized < ot // Fix global parameter
fore=1,2,..., E do

for (Xl,Y) € Dy do
Zi = f(Xi,0k), 27 = [(Xi,0ficeq)
Pi = 0(2). 77 = o(20)
/ * Uncertainty Estimation =/
U; + (P, Y;), U? < (P?,Y;) in Eq. (6)
/* Weight ASSLgnment */

« (U?,U;) in Egs. (7) and (8)
/* Feature Decoupling */
ng ,Fog, < (Fi,S;) in Eq. (10)

fg JFE_ + (FE,S;) in Eq. (10)
£F]MUG — (o, Pi, ;) in Eq. (9)
Lhypa — (ngi,FbgHng 7Fg .)inEq. (11)
Livac + (Lhyue, Livpa)in Eq. (12)

08 < 0 — v .LF

return 07

models one-to-one, favoring dominant classes like the back-
ground and causing unstable feature learning. We address this
by leveraging global uncertainty and decoupling foreground-
background features for separate alignment, boosting seg-
mentation precision and overall performance.

Related Uncertainty Learning. Uncertainty learning in
semi-supervised settings helps models focus on informative
regions and avoid noisy inputs, improving robustness and ac-
curacy. Inspired by this, we incorporate uncertainty maps into
FL to address vessel morphology inconsistencies, which of-
ten lead the global model to miss key pixels. Enhancing lo-
cal learning on such regions mitigates global forgetting and
boosts segmentation performance.

Limitation. FVAC achieves strong vessel segmentation via
a pixel-wise divide-and-conquer strategy. However, it in-
curs extra training cost due to the additional forward pass
for global uncertainty and overlooks potential attacks on the
global model, which may mislead local clients. Future work
will focus on enhancing robustness and security against ad-
versarial threats while preserving efficiency and accuracy.
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Figure 2: Qualitative comparison results of exemplars. The top-left corner highlights the zoomed-in details within the red box for each
image. Our method demonstrates significantly more complete segmentation of vessel intersections and fine capillaries, effectively capturing
intricate structures that are often challenging to distinguish, thereby improving overall segmentation performance. See detail in Sec. 4.2

Methods Color Funds OCTA
DRIVE STARE CHASEDBI | AVG ROSE-SVC  ROSE-SD OCTA-3MM  OCTA-6MM | AVG
FedAvg [ASTAT17] 77.23 79.74 74.00 76.99 64.27 57.98 59.34 41.76 55.84
FedProx [MLSys18] 77.60 79.95 74.72 77.42 63.46 57.24 59.56 41.14 55.35
MOON [CVPR21] 78.10 79.57 72.24 76.64 61.42 51.15 60.50 39.68 53.19
FedDyn [ICLR21] 77.24 79.74 74.00 76.99 64.27 57.99 59.35 41.77 55.85
FedOPT [ICLR21] 73.66 77.47 68.62 73.25 57.18 53.65 57.53 37.76 51.53
FedProto [AAAI22] 77.27 79.52 73.18 76.66 63.45 57.50 59.53 39.80 55.07
FedProc [FGCS23] 77.56 79.96 73.53 77.01 64.70 56.46 59.40 43.07 55.90
FVAC 78.58 80.26 74.83 77.89 67.62 61.50 59.70 48.20 59.30
1 1.35 1 0.52 1 0.83 1 0.90 13.35 13.52 1 0.36 1 6.44 1 3.46

Table 1: Comparison with the sota methods on the Color Fundus and OCTA datasets. AVG denotes the average Dice coefficient calculated
across all domains. The best result is highlighted in bold, and the second-best is underlined. 1 indicates an improvement in Dice compared to
FedAvg, which serves as the baseline for our method. These notations apply to all other comparisons as well. See detail in Sec. 4.2

4 Experiments

4.1 Experimental Setup

Datasets and Evaluation Metric. We evaluate FVAC on
both color fundus and OCTA retinal datasets. The fundus
data include DRIVE [Staal et al., 2004], STARE [Hoover et
al., 20001, and CHASEDB1 [Owen et al., 2009], while the
OCTA data consist of ROSE-1 [Ma et al., 2021] and OCT-
500 [Li et al., 2024].

* DRIVE [Staal et al., 2004] contains 40 high-resolution
color retinal images (565x584), evenly split into 20 for
training and 20 for testing.

* STARE [Hoover et al., 2000] contains 20 manually an-
notated color retinal images (700x605), with 16 used
for training and 4 for testing.

« CHASEDBI1 [Owen et al., 2009] contains 28 color reti-
nal images with a resolution of 999x960 pixels, split
into 20 images for training and 8 for testing.

e ROSE-1 [Ma et al., 20211, a subset of ROSE, includes
117 OCTA images from 39 subjects, with 90 for training
and 27 for testing. Each subject has enface angiograms

of the superficial (SVC), deep (DVC), and combined
(SVC+DVQ) vascular plexus. We use ROSE-SVC and
ROSE-SD (SVC+DVC) as two domain-specific subsets
of our OCTA dataset.

¢ OCT-500 [Li et al., 2024] provides OCTA images from
500 subjects across two fields of view, split into OCTA-
6MM (300 images) and OCTA-3MM (200 images).
We use 280/20 for training/testing in OCTA-6MM and
180/20 in OCTA-3MM. Both subsets are treated as sep-
arate domains in our OCTA dataset.

We evaluate all vessel datasets using the Dice coefficient as

the sole performance metric, as it is widely adopted in med-
ical image segmentation to reflect the overlap between pre-
dicted and ground truth regions.
Comparison Methods. We compare our method, FVAC,
with several state-of-the-art approaches, including Fed-
Prox [Li er al., 2020b], FedDyn [Durmus et al., 2021],
FedOPT [Reddi er al, 2021], MOON [Li et al., 2021],
FedProto [Tan et al., 2022], and FedProc [Mu et al.,
2023].Although experimental settings may vary slightly
across methods, we ensure fairness by preserving key fea-
tures of each approach for comparison.



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Color Funds
ANIE VA DRIVE STARE CHASEDBI1 | AVG
77.23 79.74 74.00 76.99
v 77.27 79.90 74.51 77.23
v 77.34 79.85 74.50 77.23
v v 78.58 80.26 74.83 77.89

Table 2: Ablation study of key components of our method on the
Color Funds Dataset demonstrates each branch plays a distinct and
complementary role. See detail in Sec. 4.2
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(a) Color Funds (b) OCTA

Figure 3: Analysis of FVAC with different beta (Eq. (12)) on
Color Funds and OCTA datasets. "BASE” denotes FedAvg. § = 2
gives the best results on different datasets. See detail in Sec. 4.2

Implementation Details. For the experiment, to ensure sim-
plicity and general applicability, we choose U-Net, a widely
used and effective architecture, as the backbone for all Fed-
erated Learning methods. To ensure the reproducibility and
consistency of our results, we fix the random seed across all
experiments. In the federated learning process, models are
trained using the AdamW optimizer [Loshchilov and Hutter,
2019] with a batch size of 4. The communication round is set
to 100, and the local training epoch is 5 for all datasets.

We set up six participants per experiment with different
combined datasets and randomly assign domains. For color
fundus data, the split is DRIVE:3, STARE:1, CHASEDBI1:1;
for OCTA, ROSE-SVC:2, ROSE-SD:1, OCTA-3MM:1,
OCTA-6MM:2. Each participant receives 1% of the origi-
nal data from their assigned domains. We also apply data
augmentations on each client, including color jitter, gamma
correction, flipping, rotation, and random cropping.

We use a learning rate of le-4 for both collaborative and
local updates on the color retinal datasets across all methods.
In our method, all participants share the same hyperparame-
ters (i.e., B = 2). For the OCTA datasets, the learning rate
is reduced to le-5 due to higher segmentation difficulty from
varying modalities and denser vessel structures.

4.2 Results

Performance Comparison. For clarity and brevity, we
present representative visualizations from the final model af-
ter federated learning, as shown in Fig. 2. Our method
preserves more complete vascular structures, especially in
regions with complex, twisted, or entangled connections.
Though such areas constitute only a small part of the overall
network, they are essential for downstream tasks like blood
flow modeling or vascular assessment. Based on earlier qual-
itative results, the final Dice scores across popular methods
are reported in Tab. 1, showing that our approach consistently

0.8
0.6
0.4
0.2

Figure 4: Visualization of the pixel-wise weights ( Egs. (7)
and (8)) in the FMUG. As shown in the color bar, brighter regions
distinctly highlight areas the model prioritizes more, emphasizing
its focus on these regions. See detail in Sec. 4.2

outperforms others. On the OCTA dataset, it achieves a Dice
improvement of nearly 3.5% over the baseline. Both qualita-
tive and quantitative results confirm our method’s strength in
capturing complex and detailed vascular structures.
Hyper-Parameter Setting. We evaluate FVAC under
different 5 values as defined in Eq. (12), searching over
[0.5,1,2,3,4]. As shown in Fig. 3, a small /5 overemphasizes
the weighted cross-entropy loss, causing the local model to
overfit difficult pixels and misalign with global features. A
large (3, in contrast, leads to plain feature alignment and fails
to leverage challenging pixels. We choose 5 = 2 as the opti-
mal setting and apply it consistently in all experiments.
Ablation Study. Compared to FedAvg, FMUG better cap-
tures challenging vessel structures, such as edges, capillaries,
and crossing or adjacent vessels, as shown in Fig. 4. These
hard-to-classify pixels, caused by morphology inconsistency
across clients, often degrade performance. To address this,
FMUG leverages uncertainty to guide the global model in
helping local models focus on such regions, as shown in
Tab. 2. Meanwhile, FVDA improves segmentation by sep-
arately aligning foreground and background features. When
combined, FVAC maintains sensitivity to morphology varia-
tions while learning more robust and generalized representa-
tions, boosting segmentation performance.

5 Conclusion

In this paper, we are the first to explore federated vessel seg-
mentation. To address two key challenges in federated ves-
sel segmentation, namely vessel morphology inconsistency
and vessel-background imbalance, we propose a pixel-wise
divide-and-conquer approach called Federated Vessel-Aware
Calibration (FVAC). By leveraging global uncertainty, our
method directs the local models’ attention to the hard kernel,
which consists of pixels with high uncertainty caused by vari-
able vessel morphology. Additionally, we use foreground-
background separation alignment to mitigate the semantic
bias induced by pixel-level class imbalance, ultimately lead-
ing to more robust semantic feature learning. Numerous ex-
periments have clearly demonstrated the effectiveness and
generalizability of the FVAC method, particularly in han-
dling complex and detailed vascular structures. In the fu-
ture, we will further explore innovative solutions to enhance
the performance, robustness, and security of federated vessel
segmentation, with a particular focus on reliably defending
against potential adversarial threats to the global model.
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