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Abstract

Despite their performance, large language models
(LLMs) can inadvertently perpetuate biases found
in the data they are trained on. By analyzing LLM
responses to bias-eliciting headlines, we find that
these models often mirror human biases. To ad-
dress this, we explore crowd-based strategies for
mitigating bias through response aggregation. We
first demonstrate that simply averaging responses
from multiple LLMs, intended to leverage the “wis-
dom of the crowd”, can exacerbate existing biases
due to the limited diversity within LLM crowds.
In contrast, we show that locally weighted aggre-
gation methods more effectively leverage the wis-
dom of the LLM crowd, achieving both bias miti-
gation and improved accuracy. Finally, recognizing
the complementary strengths of LLMs (accuracy)
and humans (diversity), we demonstrate that hybrid
crowds containing both significantly enhance per-
formance and further reduce biases across ethnic
and gender-related contexts.

1 Introduction

The increasing adoption of LLM assistants raises concerns
about their potential to perpetuate or amplify societal biases
[Bolukbasi et al., 2016; Caliskan et al., 2017; Zhao et al.,
2017; Zhang et al., 2020]. These often subtle yet pervasive
stereotypes pose a significant challenge to their responsible
use. While prior work has identified biases stemming from
training data and model architectures [Blodgett et al., 20201,
understanding how these biases manifest—especially in com-
parison to human biases—remains crucial. This understand-
ing is key not only for evaluating LLM fairness and reliabil-
ity but also for designing systems that complement human
decision-making without perpetuating harmful biases.

In this work, we analyze LLM responses to a set of bias-
eliciting headlines, comparing them to previously collected
human responses [Abels ez al., 2024]. This allows us to assess
how LLM biases align or differ from human biases, as well
as to evaluate bias patterns across various LLMs.

Building on these insights, we explore strategies to miti-
gate biases in LLM outputs. Unlike previous works which
tackled biases of individuals LLMs [Zhang et al., 2020;

Zhao et al., 2018; Tamkin et al., 20231, we draw on the prin-
ciples of collective intelligence [Surowiecki, 2005]. Specif-
ically, we investigate the effectiveness of aggregating re-
sponses from multiple LLMs—creating “LLM crowds”. We
hypothesize that, similar to human crowds [Abels et al.,
20241, this aggregation can effectively diminish bias by lever-
aging the diversity of responses. Using methods like simple
averaging and locally weighted averages—where weights are
tailored to the specializations of the crowd—we evaluate how
effectively these approaches address biases while enhancing
performance.

Finally, given the complementary strengths of humans
(high diversity, lower individual accuracy) and LLMs (high
individual accuracy, lower diversity), and recognizing that
both are crucial for effective collective intelligence [Hong and
Page, 2004; Surowiecki, 2005], we examine the potential of
hybrid crowds. Our findings demonstrate that hybrid crowds
significantly improve accuracy while reducing biases to negli-
gible levels, outperforming both LLM-only and human-only
groups. These results highlight the potential of hybrid ap-
proaches to enhance fairness and accuracy in applications
such as content moderation and hiring systems.

To summarize, our contributions include: (1) a compar-
ative analysis of LLM and human biases on bias-eliciting
headlines, (2) an evaluation of the potential and limitations
of LLM crowds, and (3) a demonstration of the superior per-
formance and fairness of hybrid crowds.

2 Background

Social biases are deeply ingrained cognitive patterns that in-
fluence human perception, judgment, and behavior. These
biases, often unconscious, arise from stereotypes, cultural
norms, and societal structures. While they are often the
product of heuristics—mental shortcuts which enable quick
decision-making—they frequently result in discrimination,
inequality, and harm to marginalized groups [Greenwald et
al., 1998; Devine, 1989]. For instance, racial biases per-
petuate systemic inequalities in education, employment, and
healthcare [Williams, 1996; Reskin, 2000], while gender bi-
ases limit opportunities and reinforce harmful stereotypes
about abilities and roles [Eagly and Johnson, 1990].

Despite growing awareness and efforts to combat them, so-
cial biases persist, influencing hiring practices, educational
access, healthcare delivery, and legal outcomes [Bertrand and
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Mullainathan, 2004; Pager, 2008]. These biases are often per-
petuated through societal institutions and media representa-
tions [Dovidio et al., 2017]. The growing integration of ar-
tificial intelligence into daily life adds a new dimension to
this challenge. Widely adopted LLLM assistants could expose
users to these biases on a broader scale, reflecting and poten-
tially reinforcing prejudices embedded in their training data.

2.1 Social Biases in LLMs

LLMs are a class of neural networks trained on extensive text
corpora to perform a wide range of natural language process-
ing (NLP) tasks, including text generation, summarization,
translation, and conversational interactions [Vaswani, 2017;
Radford et al., 2019; Brown et al., 2020]. Building on ear-
lier NLP advancements, such as word embeddings [Mikolov,
2013], LLMs use transformer-based architectures to create
dynamic, context-aware representations [Vaswani, 20171, en-
abling them to achieve high accuracy and fluency. However,
their reliance on vast amounts of real-world data also makes
them susceptible to inheriting and amplifying societal biases
present in their training data [Bolukbasi er al., 2016].

These biases manifest in various forms, including biased
word associations [Caliskan et al., 20171, stereotypical sen-
tence generation [Zhao et al, 2017], and unequal perfor-
mance across demographic groups [Zhang er al., 2020]. This
phenomenon has been extensively documented across vari-
ous social dimensions, including gender, race, and socioeco-
nomic status [Bolukbasi et al., 2016; Davidson et al., 2019;
Caliskan et al., 2017]. For instance, word embedding asso-
ciation tests reveal that LLMs often replicate harmful stereo-
types, such as associating certain professions predominantly
with one gender [Zhao et al., 2018]. Such biases extend to
conversational systems, which risk exposing users to outputs
that reinforce stereotypes and perpetuate societal prejudices.

Understanding how LLMs manifest social biases has there-
fore become a crucial component in the development of
socially responsible Al systems [Gemini et al., 2023; An-
thropic, 2024; Achiam et al., 2023]. However, mitigating
these biases is a complex challenge. Early efforts focused
on post-processing techniques, such as neutralizing gender-
specific dimensions in word embeddings [Bolukbasi ef al.,
2016]. Recent research includes interventions during the gen-
eration phase, such as reweighting or filtering outputs to sup-
press stereotypes [Sheng er al., 2020; Liang et al., 2021].

Beyond algorithmic solutions, socio-technical approaches
have gained attention as complementary strategies. These in-
clude curating representative datasets, incorporating diverse
evaluation metrics, and prioritizing interdisciplinary collabo-
ration to address ethical concerns [Birhane ef al., 2021]. Such
approaches aim to tackle biases at their source, emphasizing
the importance of combining technical innovations with ethi-
cal and societal considerations.

Despite these efforts, several challenges persist. Bias mit-
igation techniques can struggle to generalize across different
bias types, and often degrade overall model performance. Ad-
ditionally, the high cost of training state-of-the-art models has
incentivized the development of closed-source LLMs, com-
plicating efforts to ensure transparency and accountability.

2.2 Collective Intelligence

Beyond model-centric solutions, we argue in this work that
leveraging collective intelligence offers a promising com-
plementary approach to bias mitigation. The principle that
groups can achieve more accurate and reliable outcomes than
individuals is well-established [Condorcet, 1785; Hong and
Page, 2004; Surowiecki, 2005]. This “wisdom of the crowd”
effect leverages diverse perspectives and independent errors
to improve decision-making.

Wisdom of LLLM Crowds. The concept of crowd wis-
dom, widely studied in human groups and exploited by
traditional machine learning ensembles [Surowiecki, 2005;
Wolpert, 1992; Breiman, 1996], is now being explored in the
context of LLMs. Recent research demonstrates the existence
of a “wisdom of LLM crowds”. For instance, Schoenegger
et al. [2024] show that LLM ensembles achieve forecasting
accuracy comparable to human crowds. Additionally, they
show that exposing LLMs to the median prediction of human
crowds enhances their accuracy, consistent with findings from
human studies [Becker et al., 2017].

Exploring bias dynamics, Chuang et al. [2024] show that
LLM crowds, when simulating partisan personas, can mimic
human-like partisan biases. However, deliberation among
these personas leads to more accurate beliefs, mirroring the
benefits of discussion and information sharing which are
sometimes observed in human groups [Becker et al., 2019].

While these studies reproduce key results in LLMs, they
leave open critical questions. Specifically, how should LLMs
be aggregated to systematically mitigate biases while enhanc-
ing performance? Furthermore, the potential synergy be-
tween LLMs and humans remains largely unexplored. To en-
able us to address these gaps, we now review prior methods to
mitigate biases and restore crowd wisdom in human groups.

2.3 Bias Mitigation in Human Crowds

Understanding how biases influence crowd wisdom in human
groups provides valuable insights for developing aggregation
strategies in LLM and hybrid crowds. The following experi-
ment illustrates the prevalence of social biases in individuals
and their impact on collective decision-making.

The Headline Experiment

In [Abels et al., 2024], participants evaluated a balanced set
of genuine and altered news headlines, where demographic
groups were swapped to create counterfactual pairs. For ex-
ample, the headline “Men more likely than women to say
they are financially better off since last year” was altered
to “Women more likely than men to say they are financially
better off since last year”. Headlines described positive or
negative outcomes for various demographic groups (gender,
ethnicity, age), and participants rated their authenticity on a
scale from “very unlikely” to “very likely.”

This design allowed the authors to measure bias by com-
paring error rates across demographic groups and outcomes.
For example, discrepancies in error rates for positive vs. neg-
ative outcomes for white individuals revealed underlying bi-
ases. Further analyses of the responses revealed that fac-
tors like responders’ demographics, headline categories, and
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question framing significantly influenced individual judg-
ments, often leading to systematic errors.

Restoring Crowd Wisdom in Human Groups

While the “wisdom of the crowd” suggests that diverse per-
spectives could mitigate individual biases, Abels er al. [2024]
demonstrated that dominant societal beliefs can still lead to
collective errors. To address this, they proposed using locally-
weighted aggregation to counter individual biases and vari-
ations in expertise. Specifically, they used ExpertiseTrees
[Abels et al., 2023], which leverage the diversity within a
group by partitioning the context space (e.g., headline cate-
gories) and fitting specialized models to each region. Similar
to decision trees, ExpertiseTrees dynamically introduce splits
only when they improve group aggregation.

This hierarchical approach offers several advantages com-
pared to other aggregation methods. While techniques like
stacking [Breiman, 1996] or simple averaging provide static
aggregation, ExpertiseTrees allow for more nuanced aggrega-
tion by adjusting individuals’ weights to the problem (here,
the headline) at hand. This can be particularly beneficial for
bias mitigation, as different individuals may exhibit different
biases in different contexts. In particular, Abels er al. [2024]
show that when identifying fake news, human performance
varies significantly with the demographic group contained in
the headline. ExpertiseTrees partition the context space to
route inputs to individuals most likely to provide unbiased
responses, improving accuracy and fairness.

While this research highlights the promise of advanced ag-
gregation methods in human crowds, their applicability to
LLM crowds remains uncertain. LLMs may lack the diver-
sity found in humans and exhibit distinct biases, potentially
limiting the effectiveness of aggregation strategies. Addition-
ally, we hypothesize that the complementary strengths of hu-
mans and LLMs—humans contributing greater diversity and
LLMs offering higher individual accuracy—present a unique
opportunity for hybrid approaches. With these considerations
in mind, we now present how we addressed these challenges.

3 Methods

Our aim in this work is two-fold. First, we aim to compare
LLM biases with those of humans. Second, we aim to study
the benefits offered by crowds, first crowds of LLMs, and
then hybrid crowds, containing both LLMs and humans. As a
first step, we replicate the headline experiment conducted by
Abels et al. [2024] on LLMs, enabling a direct comparison of
LLM biases and performance with those of humans.

To ensure broad coverage, we include both closed-
source and open-source LLMs from OpenAl [2023], An-
thropic [2024], Google [2023], Meta [2024], Mistral [2023],
Alibaba [2023], and DeepSeek AI [2024]. Supplementary Ta-
ble S.2 provides a detailed comparison of the selected models.
These LLMs were selected to capture a diverse range of ar-
chitectures and training paradigms, ensuring a comprehensive
analysis of LLM performance and biases.

3.1 Experimental Procedure

We closely replicate the methodology of [Abels et al., 2024]
to enable a direct comparison between humans and LLMs.

We therefore prompted LLMs to estimate the likelihood
that the given headlines were real. Following the human
study, LLMs were instructed to respond using a 5-point Lik-
ert scale ranging from “very unlikely” to “very likely.” The
response for every headline h was then mapped onto a nu-
merical likelihood: p;, € {0,0.25,0.5,0.75,1}. All LLMs
were prompted in a 4-shot setting with instructions designed
to replicate the guidance provided to human participants.
Prompts included a brief explanation of the task and example
responses. Details on the prompting procedure and parame-
ters are given in the supplementary materials.

3.2 Metrics

We evaluate LLMs on their accuracy, diversity, and suscep-
tibility to biases, comparing them with previously collected
human data.

Accuracy. Accuracy is calculated as the proportion of cor-
rectly identified headlines, whether genuine or altered. Since
the dataset is balanced across class (genuine vs. altered),
sentiment (positive vs. negative), and demographic groups
(man <> woman, young < old, White <+ African American),
this metric provides an overall indication of performance. To
identify potential specializations, accuracy is also reported
for each combination of class and demographic group.

To further identify whether there are systematic differences
in accuracy which can be attributed to prejudices against cer-
tain groups, we explore the following types of bias.

Counterfactual Bias. In line with conditional statistical
parity [Corbett-Davies et al., 20171, we define counterfactual
bias as a systematic tendency to favor certain outcomes for
specific demographic groups. For a demographic group g and
its counterpart ¢’, this bias is quantified as:

Agyg(s,0) = Eunen,,, o0l — Ennn,,  ow], (1)

where py, is the likelihood assigned to headline h, and H; , 4
is the subset of headlines of status s (Genuine or Altered),
sentiment o (positive or negative), and demographic group g
(e.g., man, woman, young , old, White, African American).
Positive values indicate a bias towards group g, whereas
negative values indicate a bias towards ¢’. For example, if a
model is more likely to believe headlines reporting positive
outcomes for men over women, A,,qn woman(genuine,+)
will be positive, indicating a bias in favor of men. In practice,
Ep~H, , ,[pn] is estimated as the mean likelihood assigned to
all headlines in Hy , 4. To determine the significance of coun-
terfactual biases, we use Mann-Whitney U tests [Mann and
Whitney, 1947] to compare the distributions of likelihoods
assigned to headlines from different demographic groups.

Framing Effects. Framing effects occur when responses
differ based on how identical information is presented. In
the headline dataset, a responder’s likelihood for a headline h
may differ from 1 —py., where b’ is the counterfactual variant
of h obtained by swapping demographic groups. Systematic
differences indicate susceptibility to framing effects.

For a group ¢ and sentiment o, average framing effects are:

Ap(o,9) = ﬁ > pn— (1= pw)

g,9 h€H,, 4
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where H, , is the set of headlines with that sentiment and
group. For example, for humans A g (positive, young) and
Arp(negative, young) are positive, indicating they tend to
assign the same belief to a headline reporting the opposite
outcome for age groups. We use Wilcoxon signed-rank tests
[Wilcoxon, 1992] to assess significance.

Diversity. Diversity is crucial for crowd wisdom, as it lever-
ages individuals’ independent errors [Wood et al., 2023].
When group members consistently make the same mistakes,
their combination offers little benefit, as they merely amplify
their shared errors and biases. Conversely, when individu-
als exhibit diverse behavior—where one member’s errors are
offset by other members’ correct predictions—the group can
achieve higher performance. This is particularly relevant for
bias mitigation, as one group member might exhibit gender
bias in a specific context, while another model, trained on a
different dataset, or using a different architecture, might not.

To quantify diversity, we use the Q-statistic [Yule, 1900],
which measures the extent to which two classifiers make the
same predictions (correct or incorrect). It is defined as

Q- N11 Noo — N1o Nox @)
N11 Noo + N1o Not’

where V11 is the number of instances both classifiers predict
correctly, Ny is the number of instances both classifiers pre-
dict incorrectly, N1g is the number of instances in which Cy
is correct while C5 is incorrect, and Ny is the number of

instances in which C is incorrect while C'5 is correct.
Combined with high individual accuracies, a lower Q-
statistic often signals useful diversity, yielding better ensem-
bles as the collective can compensate for individual mistakes.

3.3 Ensembling Strategies

Our second major contribution is the exploration of
ensemble-based strategies to mitigate LLM biases. We com-
pare LLM crowds against individual models to highlight the
benefits offered by different aggregation strategies, including
potential trade-offs between accuracy and bias mitigation.

In addition to using simple averages, we investigate two
types of weighted averages. First, we explore traditional
stacking [Breiman, 19961, wherein group members are as-
signed a constant weight. While such weights effectively
prioritize consistently well-performing members, they cannot
adapt to variations in context, such as biases or specializations
specific to certain headline categories. To address this limita-
tion, we also study weights tailored to headline categories.

Specifically, let p7* be the likelihood group member m as-
signs to headline h. The aggregated likelihood is p;, =

m wgl(h) ph', where ¢(h) is h’s category (age, gender, eth-
nicity), and wg‘( h) is individual m’s weight for that category.

We use ExpertiseTrees (see [Abels er al., 2023], as well as
our detailed description in the Supplementary Information)
to learn these localized weights'. Unlike traditional stack-
ing, which learns static weights for combining model predic-
tions, ExpertiseTrees use a tree structure to assign weights

"For both weighted average methods, we use cross-validation to
ensure weights were not trained on headlines they are evaluated on.

based on input-specific characteristics, such as headline cat-
egories. This allows ExpertiseTrees to amplify the contri-
butions of less biased members while down-weighting bi-
ased predictions, thereby improving fairness and accuracy.
In the headline setting, localized weights allow us to adapt
the aggregation to headline categories. For instance, Abels
et al. [2024] demonstrate that human performance varies sig-
nificantly across headline categories. ExpertiseTrees exploit
this specialization by learning a distinct set of weights for
each category, allowing for context-sensitive aggregation.

Benchmark-based Sampling. When forming LLM
groups, we employ two sampling approaches. First, we use
random sampling, where LLMs are selected uniformly at
random from the pool of available models. This serves as
a baseline for evaluating the benefits of ensemble methods.
Second, we select LLMs based on their scores on the
widely used MMLU benchmark [Hendrycks et al., 2020].
This method prioritizes high-performing models, which we
hypothesize will better correlate with improved performance
on the headline task. However, selecting high-performing
models may reduce diversity due to increased similarity
among the selected models, presenting a trade-off between
individual strength and collective diversity. Groups formed
using this performance-based approach are denoted with a
“+” sign, e.g., LLM+.

To evaluate the potential of hybrid ensembles, we com-
bined human responders from the headline experiment
dataset with LLMs. We hypothesize that hybrid groups lever-
age the complementary strengths of humans and LLMs: hu-
mans provide greater diversity, while LLMs offer higher in-
dividual accuracy. The LLMs in hybrid groups were se-
lected using the same two sampling approaches, resulting in
two types of hybrid groups: hybrid, with randomly sampled
LLMs, and hybrid+, with performance-selected LLMs.

To assess the impact of group size on collective perfor-
mance, we evaluated groups ranging in size from 2 to 16
responders. This range reflects practical limits, as the avail-
able pool of LLMs consisted of 18 models. Although larger
groups were not tested, observed trends provide a basis for
inferring potential outcomes for larger groups.

4 Results

We now present the results of our evaluation of the headline
experiment on LLMs?. Specifically, we first compare the per-
formance and bias of individual LLMs to human participants.
Next, we demonstrate the limitations of LLM crowds and the
advantages of hybrid crowds, emphasizing the potential of lo-
cally weighted aggregations in achieving improved outcomes.

4.1 LLM Performance

To evaluate the potential for collective intelligence, we begin
by analyzing individual LLM performances. Table 1 reports
the accuracy of various LLMs across headline categories,
along with their counterfactual biases. For comparison, the
table also includes the average human participant.

2Code available at [Abels and Lenaerts, 2025].
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AGE ETHNICITY GENDER AVERAGE
MODEL altered genuine altered genuine altered genuine
human 0.44 (A=+0.01) 0.65 (A=-0.01) 0.65(A=+0.09) 0.48 (A=+0.17) 0.57 (A=-0.07)  0.53 (A=-0.04) 0.550
Qwen2.5-72B-Instruct 0.57 (A=+0.04)  0.82 (A=-0.05) 0.65(A=+0.12)  0.62 (A=+0.14) 0.65 (A=+0.04) 0.50 (A=+0.04) 0.637
claude-3-5-haiku 0.78 (A=+0.03) 0.35 (A=+0.09) 0.52 (A=+0.16) [ 047 (A=+0.33)  0.80 (A=+0.00) 0.52 (A=-0.12) 0.575
claude-3-5-sonnet 0.55 (A=+0.06) 0.88 (A=+0.11) [FOS5(A=+0:35)" 0.75 (A=+0.32)  0.68 (A=-0.11) 0.82 (A=-0.03) 0.704
claude-3-opus 0.50 (A=+0.10) 0.93 (A=+0.08) 0.48 (A=+0.18) 0.73 (A=+0.06)  0.65 (A=-0.15) 0.62 (A=+0.01) 0.650
deepseek 0.40 (A=-0.03) 0.85 (A=+0.08) [[0:42 (A=+023) = 0.65 (A=+027)" 0.45 (A=-0.17) 0.75 (A=-0.01) 0.588
gemini-1.5-flash 0.48 (A=+0.03) 0.60 (A=+0.00) | 0.68 (A=+0.22) = 0.50 (A=+0.28) 0.78 (A=-0.02) 0.42 (A=-0.02) 0.575
gemini-1.5-pro 0.62 (A=+0.06)  0.53 (A=-0.01) [ 0:62(A=+0.24) 0.68 (A=+0.24) | 0.75 (A=-0.14) 0.45 (A=-0.05) 0.608
gemini-2.0-flash 0.45 (A=+0.04) 0.77 (A=+0.08)  0.45 (A=+0.19)  0.70 (A=+0.32) 0.60 (A=-0.16) 0.70 (A=-0.15) 0.612
gemma2-9b 0.33 (A=+0.01) 0.78 (A=-0.01) = 0.47 (A=+0.16) | 0.62 (A=+0.27) 0.57 (A=-0.10) 0.65 (A=+0.06) 0.571
gemma-2-27b 0.53 (A=+0.02) 0.62 (A=-0.01) 0.80 (A=+0.01) | 0.38 (A=+0.27) 0.82(A=-0.14) 0.40 (A=-0.11) 0.592
gpt-4 0.65 (A=-0.01) 0.57 (A=-0.05) 0.70 (A=+0.06) | 0.45(A=+0.31) 0.70 (A=-0.14)  0.50 (A=-0.02) 0.596
gpt-4-turbo 0.55 (A=-0.01) 0.68 (A=-0.01)  0.65 (A=+0.03) = 0.55 (A=+0.22) 0.75 (A=-0.10) 0.60 (A=+0.04) 0.629
gpt-4o 0.57 (A=-0.08)  0.80 (A=-0.04) | 0:68 (A=+0.18) = 0.75 (A=+0:24)" 0.78 (A=-0.08) 0.75 (A=-0.05) 0.721
gpt-40-mini 0.28 (A=-0.06) 0.82 (A=+0.01) 0.62 (A=+0.08) | 0.50 (A=+0.29) 0.42 (A=-0.16) 0.72 (A=-0.11) 0.562
Llama-3.3-70B 0.43 (A=+0.13)  0.80 (A=+0.10) [T0:33(A=+020) 0.80 (A=+0.17) 0.53 (A=-0.13)  0.65 (A=-0.10) 0.588
mistral-large 0.50 (A=+0.04)  0.80 (A=+0.05) | 0.62 (A=+0.20) = 0.57 (A=+0.33) | 0.78 (A=-0.10) 0.68 (A=-0.07) 0.658
mixtral-8x7b 0.28 (A=+0.06) 0.90 (A=+0.03) 0.28 (A=+0.04) = 0.80 (A=+0.19) 0.35 (A=-0.15) 0.88 (A=-0.01) 0.579
open-mistral 0.73 (A=-0.07) 0.38 (A=+0.05) 0.93 (A=-0.06) ~ 0.25 (A=+0.15) 0.80 (A=-0.14) 0.25 (A=+0.02) 0.554
average(LLM) 0.53 (A=+0.02) 0.83 (A=+0.03) | 0.57 (A=+0.14) T 0:62(A=+0:24)" 0.72 (A=-0.11) 0.65 (A=-0.04) 0.652
average(human) 0.43 (A=+0.01) 0.75 (A=-0.02) [ 0:79 (A=+0.11) 0.48 (A=+0.17) | 0.67 (A=-0.09) 0.55 (A=-0.04) 0.611
average(hybrid) 0.50 (A=+0.01) 0.80 (A=+0.00) | 0.69 (A=+0.13) = 0.56 (A=+0.21) 0.69 (A=-0.10) 0.60 (A=-0.04) 0.641
average(LLM+) 0.60 (A=+0.01) 0.83 (A=+0.03) | 0.52 (A=+0.17) = 0.62 (A=+0.24) 0.70 (A=-0.11) 0.65 (A=-0.02) 0.654
average(hybrid+) 0.55 (A=+0.01)  0.78 (A=+0.02) |1 0:73 (A=+0.18)  0.60 (A=+0.23)  0.77 (A=-0.11) 0.63 (A=-0.05) 0.678
WeightedAverage(LLM) 0.67 (A=-0.01) 0.68 (A=-0.02) 0.67 (A=+0.11) | 0.70 (A=+0.14) 0.74 (A=-0.04) 0.75 (A=+0.01) 0.703
WeightedAverage(human)  0.62 (A=-0.02)  0.66 (A=-0.04) 0.69 (A=+0.08)  0.70 (A=+0.12) 0.70 (A=-0.09)  0.65 (A=-0.04) 0.671
Weighted Average(hybrid) 0.66 (A=-0.01) 0.68 (A=-0.02) 0.69 (A=+0.07) | 0.71 (A=+0.11) 0.75 (A=-0.07)  0.74 (A=-0.03) 0.704
WeightedAverage(LLM+)  0.76 (A=-0.02)  0.75 (A=-0.03) = 0.69 (A=+0.12) = 0.72 (A=+0.15) 0.72 (A=-0.02) 0.79 (A=+0.01) 0.738
WeightedAverage(hybrid+)  0.71 (A=-0.02) 0.74 (A=+0.00) = 0.75 (A=+0.11) 0.77 (A=+0.13)  0.83 (A=-0.06) 0.83 (A=-0.03) 0.772
ExpertiseTree(LLM) 0.70 (A=-0.02) 0.70 (A=-0.03) 0.64 (A=+0.07) | 0.65 (A=+0.14) | 0.76 (A=-0.03)  0.75 (A=-0.04) 0.701
ExpertiseTree(human) 0.72 (A=-0.02) 0.76 (A=-0.02) 0.75 (A=+0.05) 0.77 (A=+0.08)  0.75 (A=-0.04) 0.75 (A=-0.02) 0.749
ExpertiseTree(hybrid) 0.73 (A=+0.01) 0.80 (A=-0.01) 0.73 (A=+0.05) 0.76 (A=+0.05) 0.82 (A=-0.04) 0.83 (A=-0.03) 0.777
ExpertiseTree(LLM+) 0.74 (A=-0.01) 0.75 (A=-0.03) 0.68 (A=+0.09) 0.71 (A=+0.11)  0.82 (A=-0.01) 0.80 (A=-0.01) 0.752
ExpertiseTree(hybrid+) 0.81 (A=-0.02) 0.82 (A=-0.03) 0.75 (A=+0.04) 0.75 (A=+0.04) 0.89 (A=-0.00) 0.86 (A=-0.03) 0.813

Table 1: Accuracy and counterfactual bias (A, see Equation 1) across headline categories. High counterfactual biases indicate a higher belief
in positive headlines for historically privileged groups (older, white, male). Cell shading represents statistical significance of the counterfactual
bias: darkest red for p < 0.01, medium red for p < 0.05, and light red for p < 0.1. Rows labeled average(-),WeightedAverage(-),
and ExpertiseTree(-) give the performance of groups of 8 aggregated through respectively simple averages, weighted averages, or locally
weighted averages. These groups can consist of humans, LLMs, or a mix of both (hybrid). Instead of randomly sampling available LLMs,
LLM+ and Hybrid+ select the models with the highest scores on the MMLU benchmark.

LLMs show above-human-level accuracy. Our findings
indicate that GPT-40 and Claude-3.5-Sonnet achieve the
highest average accuracy, consistent with prior benchmarks
like MMLU [Hendrycks ef al., 2020]. While smaller mod-
els, such as mistral-8x7b, generally perform worse, all tested
LLMs outperform the average human on this task.

LLMs mirror human counterfactual biases. Similar to
human responders, all tested LLMs show some degree of
counterfactual bias, especially for headlines involving eth-
nic groups. LLMs tend to assign higher likelihoods to head-
lines reporting positive outcomes for White individuals than
for African-American ones, especially when only considering
genuine headlines (Table 1, ETHNICITY-Genuine column).
All but one LLM show a significant effect for this bias. For
age headlines, counterfactual bias is less pronounced in both
LLMs and humans. Gender headlines elicit moderate bias,
with fewer than half of the tested LLMs showing some form
of counterfactual bias.

These findings suggest that while LLMs outperform hu-
mans in accuracy, they are likely to reinforce existing biases

when assisting in decision-making.

LLMs are less susceptible to framing effects. One key re-
sult from [Abels er al., 2024] was that humans showed signifi-
cant framing effects. In particular, humans often gave similar
likelihood ratings to headlines reporting opposite outcomes
for age and ethnicity categories. This was attributed to vary-
ing levels of skepticism: humans showed low skepticism for
age-related headlines, assigning high likelihoods regardless
of content, but were more skeptical of ethnicity-related head-
lines, often assigning lower likelihoods. Humans were more
discerning for gender-related headlines but had lower skepti-
cism for headlines reporting negative outcomes for men.

In contrast, we found that LLM groups tend to be less
susceptible to framing effects than human groups. Supple-
mentary Figure S4 shows LLMs are not biased in their re-
sponses to headlines reporting outcomes for ethnic groups.
Similarly, while humans show significant framing effects for
age headlines, we found that LLMs display very little fram-
ing effects, suggesting they have stronger opinions on these
headlines than human responders. In terms of framing effects
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for gender headlines, LLMs aligned closely with humans.

Note that, while the average response from LLMs shows
framing effects, LLMs are not uniformly susceptible to them.
Supplementary Figure S5 shows that 6 models (claude-3-5-
haiku, claude-3-5-sonnet, gemini-1.5-pro, gemini-2.0-flash,
gpt4, and gpt-40) display no framing effects.

Lastly, we investigate how different prompts affects LLM
performance (Figure 1). Results show that the original
prompt (how likely is it that this headline is true?”’) achieves
the highest accuracy, suggesting it best captures what is be-
ing tested in the headline dataset. Variants such as “real” and
“genuine” slightly reduce performance, while antonyms like
“fake”, “false”, and “altered” cause significant declines. This
shows that while LLMs are robust against headline-induced
framing effects, they remain sensitive to prompt framing.

4.2 Wisdom and bias of LLM crowds

Building on our understanding of individual LLM behavior,
we now examine how groups of LLMs, humans, and hybrid
ensembles perform collectively.

Diversity of LLM crowds. Figure 1.C displays the Q-
statistic (Equation 2) between the 18 LLMs and 40 of the hu-
man participants, while Figure 1.B clusters responders based
on their Q-statistics.

Both the close proximity of LLM models in Figure 1.B and
the high values in the LLM sub-matrix of Figure 1.C show
that LLMs exhibit much higher correlation among themselves
than humans. Specifically, the average Q-statistic within hu-
man ensembles is 0.387 £ 0.33, while that of LLM ensem-
bles is 0.855 £ 0.08. This implies that when one LLM makes
a mistake, others are likely to make the same mistake. Con-
sequently, simply averaging LLM outputs is unlikely to im-
prove performance and may even lead to consensus on incor-
rect answers, amplifying shared biases.

Notably, the average Q-statistic for hybrid ensembles is
0.548 £ 0.31, significantly lower than that of LLM-only en-
sembles. This suggests that hybrid groups could complement
LLM accuracy with the diversity of human responders.

Static aggregates reinforce biases. The wisdom of the
crowd relies on diversity within the group to cancel out in-
dividual mistakes. However, simple averages carry individ-
ual LLM biases into the aggregate (Table 1, average(LLM)
row), as they lack the diversity—e.g., being biased in opposite
directions—to allow averaging to mitigate biases. Notably,
while only a minority of models show bias for the GENDER-
altered categories, their aggregate is significantly biased.

The lack of diversity among LLMs also results in smaller
gains from aggregation compared to human groups. For
example, aggregation increases human performance from
an individual average of 0.55 to 0.611. In contrast, LLM
groups improve only slightly, from 0.61 to 0.652. Restricting
LLM groups to high-performing LLMs (i.e., LLM+, see Sec-
tion 3.3) slightly raises the aggregated performance to 0.654,
but biases remain unmitigated.

Hybrid ensembles (average(hybrid)), achieve performance
levels between purely human and LLM groups. In contrast,
selective hybrid ensembles (average(hybrid+)) significantly
boost performance, even outperforming groups of exclusively

strong LLMs (average(LLM+)). While LLM groups offer
strong individual accuracy, their high correlation limits the
benefits of additional group members. Partially replacing
LLMs with randomly sampled humans introduces greater di-
versity, allowing the collective to correct more errors and
achieve stronger overall performance.

Group Size and Collective Intelligence. Condorcet’s Jury
Theorem [Condorcet, 1785] and related principles suggests
that larger, diverse groups should achieve higher accuracy,
assuming members are reasonably independent and perform
better than chance [Surowiecki, 2005].

Figure 2.A shows that, for the simple average, the lim-
ited diversity of LLM crowds results in diminishing returns
as group size increases. In contrast, human groups exhibit
steady performance gains due to greater diversity. Hybrid
groups initially perform between LLM and human groups but
catch up to LLMs as group size increases, suggesting they
benefit from both LLM accuracy and human diversity.

When LLMs are selected for inclusion based on their
MMLU benchmark scores (Figure 2.B), the simple average
improves significantly. However, as additional LLMs tend to
be similar to, but weaker than, already included LLMs, in-
creasing group size leads to decreased performance, as the
aggregate is unable to benefit from weaker or redundant con-
tributions. This also explains the stagnation of the simple
average for hybrid ensembles beyond group size 4; adding
LLMs introduces redundancy, while adding humans provides
beneficial diversity. Beyond size 4, these effects cancel each
other out, resulting in plateauing performance.

ExpertiseTrees promote the wisdom of the crowd. Fig-
ure 2.A demonstrates that locally weighted averages derived
from ExpertiseTrees consistently outperform simple aver-
ages. While simple LLM averages stagnate beyond group
size 4, locally weighted averages continue to improve by
leveraging additional LLMs. Interestingly, although small
LLM groups outperform human groups, human diversity
leads to higher performance in large groups.

The most significant improvements occur in hybrid groups,
which outperform both human and LLM groups. To balance
the high accuracy of LLMs with the diversity of humans, Ex-
pertiseTrees assign higher weights to well-performing indi-
viduals (typically LLMs) and to complementary subgroups of
humans. In addition, by potentially maintaining a distinct set
of weights for each category, the ExpertiseTree can also cap-
italize on the specialized strengths of certain human respon-
ders. A comparison to regular weighted averages highlights
the benefits of this specialization, as ExpertiseTrees consis-
tently outperform them when the group contains humans.

When LLMs and hybrid groups are selected based on
MMLU benchmark scores (Figure 2.B), performance further
improves. In particular, by having a more informed selec-
tion of LLMs, their aggregation outperforms human groups
for more group sizes. Note that despite the use of Exper-
tiseTrees, including more LLMs still decreases performance,
as without any useful diversity or improved individual accu-
racy, the additional LLMs simply introduce more noise. Con-
versely, hybrid groups continue to benefit from the inclusion
of humans, as their diversity complements LLM accuracy.
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Figure 1: A. Model accuracy across prompt variations, with each dot representing the accuracy of a model for a specific prompt ending. B.
t-SNE visualization of responder diversity. C. Q-statistics (see Equation 2) matrix. Each cell gives the Q-statistic between responder pairs.
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Figure 2: Accuracy for different group sizes and aggregators.
Shaded areas show 95% confidence intervals. LLMs are either sam-
pled randomly (A) or based on their MMLU scores (B).

ExpertiseTrees mitigate biases. Beyond simply improv-
ing accuracy, Table 1 shows that ExpertiseTrees mitigate bi-
ases. In particular, the ExpertiseTree(LLM) and Expertise-
Tree(LLM+) results in fewer significant biases compared to
simple and weighted LLM(+) averages. However, the most
prevalent bias in individual LLMs persists in the Expertise-
Tree aggregates, likely because the lack of diversity within
LLM-only groups limits the capacity for bias mitigation.

In contrast, the diversity within human and hybrid crowds
allows ExpertiseTrees to mitigate biases displayed by indi-
viduals and (weighted) averages of human or hybrid groups.

5 Conclusion

In this work we investigated whether LLMs exhibit similar
biases to humans on the headline dataset [Abels ef al., 2024].
Human responses to this dataset revealed susceptibility to
counterfactual biases and framing effects. Our findings con-
firm that LLMs reflect those counterfactual biases. All tested
LLMs exhibited significant biases, with many favoring head-
lines reporting positive outcomes for White individuals over
Black individuals. Approximately half of the LLMs showed
a similar bias favoring women over men. However, LLMs
were less affected by framing effects from headline varia-
tions, showing greater consistency. Nevertheless, LLMs were
susceptible to prompt-induced framing effects, with subtle
changes in wording significantly impacting accuracy.

To mitigate individual errors and biases, we explored the
“wisdom of the LLM crowd”. Our initial experiments re-

vealed that simple averaging of LLM outputs marginally im-
proved accuracy but reinforced existing biases due to the lack
of diversity among LLMs. In contrast, locally weighted av-
erages partially restored the benefits of the crowd, mitigating
some biases while improving performance.

Recognizing the complementary strengths of humans
(greater diversity) and LLMs (higher individual accuracy),
we investigated hybrid crowds that combine both. We found
that hybrid crowds outperformed purely human and purely
LLM groups in both simple and weighted aggregation ap-
proaches. Notably, while locally weighted averages of LLM
groups still exhibited counterfactual biases, hybrid crowds
achieved improved accuracy without significant biases.

To conclude, our findings highlight the potential of inte-
grating humans and Al within collective intelligence systems.
Even modestly sized hybrid ensembles demonstrated advan-
tages, combining the accuracy of LLMs with the diversity of
human perspectives to achieve more robust and fair outcomes.

Limitations. While our findings are promising, there are a
few important considerations. First, the analysis was con-
ducted using a single dataset. While this provided a con-
trolled environment for systematically comparing biases and
performance across LLMs and humans, results may differ for
datasets that have different cultural or demographic contexts.

Second, the observed biases and performance reflect the
specific versions of LLMs tested. As these models are fre-
quently updated and retrained, future versions may exhibit
different behaviors, potentially affecting our findings.

Third, our exploration of diversity focused on hybrid en-
sembles but did not incorporate techniques to engineer diver-
sity within LLMs, such as fine-tuning or prompting models
to adopt varied personas or perspectives. Such approaches
could further enhance ensemble diversity and offer additional
opportunities for bias mitigation.
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