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Abstract
Existing handwriting recognition methods only fo-
cus on learning visual patterns by modeling low-
level relationships of adjacent pixels, while over-
looking the intrinsic geometric structures of char-
acters. In this paper, we propose a novel graph-
enhanced cross-modal mutual learning network
GCM to fully process handwritten text images
alongside their corresponding geometric graphs,
which consists of one shared cross-modal encoder
and two parallel inverse decoders. Specifically,
the encoder simultaneously extracts visual and ge-
ometric information from the cross-modal inputs,
and the decoders fuse the multi-modal features for
prediction under the guidance of cross-modal fu-
sion. Moreover, two parallel decoders sequentially
aggregate cross-modal features in inverse orders
(V→G and G→V) but are enhanced through mu-
tual distillation at each time-step, which involves
one-to-one knowledge transfer and fully leverages
complementary cross-modal information from both
directions. Notably, only one branch of GCM is
activated in inference, thus avoiding the increase
of the model parameters and computation costs for
testing. Experiments show that our method outper-
forms previous state-of-the-art methods on public
benchmarks such as IAM, RIMES, and ICDAR-
2013 when no extra training data is utilized.

1 Introduction
Handwritten text recognition (HTR) is considered a high-
level human-computer interaction, which aims to convert hu-
mans’ handwriting into characters or texts. HTR still re-
mains challenging since humans’ handwriting can be very
arbitrary and has distinct writing styles. With the recent
advances in deep learning techniques, it has witnessed sig-
nificant progress in HTR [Yousef et al., 2020; Kang et al.,
2022; Li et al., 2023], in which the most widely used ap-
proaches are attention-based encoder-decoder models or net-

∗Corresponding author: Xinbo Gao

works equipped with the connectionist temporal classification
(CTC) [Graves et al., 2008] auxiliary objectives.

However, most existing methods for HTR simply operate
on handwriting data from a single modality, i.e., either visual
images or geometric graphs alone. Specifically, visual-based
methods simply focus on exploiting visual patterns of hand-
written texts by modelling the low-level relationships of adja-
cent pixels, while ignoring the intrinsic geometric structures
of characters. Instead, computational methods based on struc-
tured, relational information can better demonstrate human-
like learning. Particularly, recent advances [Gan et al., 2023;
Chen et al., 2024] demonstrate that handwritten characters
can also be considered as geometric graphs, which can ex-
plicitly learn the geometric structures of characters by utiliz-
ing graph-based networks [Yao et al., 2019]. Although such
graph-based methods are primarily proposed for recognizing
isolated handwritten characters, they can be feasibly extended
to HTR by integrating the encoder-decoder framework.

Nevertheless, it remains under-explored whether the com-
bination of visual and geometric information can benefit
handwriting analysis. Existing uni-modal approaches typi-
cally overlook the fact that both visual and geometric infor-
mation of characters are advantageous for handwriting recog-
nition, in which the two distinct modalities can complement
each other. Therefore, it is highly probable to achieve bet-
ter recognition performance by adequately exploiting and fus-
ing both visual and geometric properties of handwritten texts
through multi-model learning. In other words, a structure-
aware handwriting recognition approach that explicitly incor-
porates both characters’ geometric structures and visual ap-
pearances is promising to achieve better performance.

Furthermore, it also suffers from inadequate cross-modal
fusion and conflicting optimization directions when directly
adopting existing multi-modal fusion techniques for HTR.
Recent advances [Huang et al., 2022b; Peng et al., 2022]
demonstrate that multi-modal learning may be inferior to the
uni-modal models under certain circumstances, since multi-
modal models sometimes cannot jointly utilize all modalities
well due to the conflicting optimization directions and unco-
ordinated modality convergence. Moreover, existing encoder-
decoders typically adopt the two-dimensional coverage atten-
tion to focus on the current visual region of characters for
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Figure 1: Typical architectures and our proposed GCM for HTR: (a) CTC-based methods; (b) Attention-based encoder-decoders on visual
images; (c) Encoder-decoders on geometric graphs; (d) Graph-enhanced encoder-decoders (baseline); (e) The proposed GCM, which further
introduces bidirectional mutual learning on cross-modality data. Notably, only one decoding branch of GCM will be activated in inference.

literal prediction, while ignoring the fact that geometric struc-
tures are more reasonable and intuitive for identifying char-
acters, which therefore may cause the problem of attention
drift. Nevertheless, it remains unclear how to appropriately
and effectively integrate the geometric modality data to com-
plement the visual modality for better performance.

To address those challenges, we introduce a graph-
enhanced cross-modal mutual learning network (GCM) to
fully process handwriting images alongside their correspond-
ing geometric graphs for HTR. Firstly, we introduce a graph-
enhanced cross-modal decoder to aggregate the geometric
contexts from graphs and then employ such graph contexts
to guide the visual coverage attention on visual regions in
the G→V direction, thus achieving structure-aware handwrit-
ing recognition. Secondly, considering that geometric con-
texts can guide the decoding process on visual features (from
G→V), visual context can also guide the decoding process on
geometric features in the inverse direction (from V→G). Intu-
itively, the cross-modal features from two inverse directions
should be decoded into identical predictions, and thus, it is
possible to enhance each other by minimizing their distances
in the shared latent space. Therefore, we introduce two paral-
lel decoders that sequentially aggregate cross-modal features
in inverse orders (V→G and G→V) but are enhanced through
mutual distillation at each time step. This eventually achieves
one-to-one knowledge transfer and fully leverages comple-
mentary cross-modal information from both directions. Fig. 1
highlights the differences between our GCM and other preva-
lent approaches, and our contributions are listed as follows:

- We achieve structure-aware handwritten text recognition
via graph-enhanced cross-modal mutual learning (GCM).
Notably, cross-modal methods that fuse both geometric
graphs and visual appearances remain under-explored,
and we are also among the first to introduce mutual learn-
ing for graph-enhanced cross-modal fusion in HTR.

- We propose a novel bidirectional cross-modal mutual
learning strategy that sequentially aggregates cross-modal
features in inverse orders (V→G and G→V) and further

enhances each other through mutual distillation. Notably,
only one decoding branch is activated in inference, thus
avoiding the increase of model parameters and computa-
tion costs for testing and deployment.

- Extensive experiments demonstrate that the proposed
GCM surpasses previous state-of-the-art (SOTA) meth-
ods for HTR on benchmarks such as IAM, RIMES, and
ICDAR-2013 when no extra training data is utilized.

2 Related Work
2.1 Handwritten Text Recognition
It has witnessed significant progress in HTR in recent years,
which can be briefly divided into CTC-based and attention-
based methods. For CTC-based methods, [Graves et al.,
2008; Graves and Schmidhuber, 2008] proposed to utilize
recurrent neural networks (RNNs) [Lipton et al., 2015] for
segmentation-free HTR. Furthermore, [Coquenet et al., 2020;
Ingle et al., 2019] adopted convolutional neural networks
(CNNs) to model the sequential handwritten texts in paral-
lel. Recently, attention-based methods have emerged for HTR
with promising performance [Yousef et al., 2020]. [Kang et
al., 2022; Li et al., 2023] further introduced Transformers for
HTR due to their better ability to model global context re-
lationships. Moreover, [Gan et al., 2023] proposed to view
handwriting characters as geometric graphs and further em-
ployed graph Transformers to recognize those graphs. Nev-
ertheless, most existing methods for HTR simply operate a
single modality alone, while leaving the multi-modal meth-
ods that fuse visual and geometric properties under-explored.

2.2 Mutual Learning for Handwriting Analysis
Mutual learning [Zhang et al., 2018; Zhu et al., 2018;
Guo et al., 2020] refers to a learning process in which an en-
semble of networks learn collaboratively and teach each other
via knowledge transfer. However, very few methods have at-
tempted to utilize mutual learning for handwriting analysis.
Nevertheless, we are among the first to adopt mutual learning
into multi-modal methods for HTR with promising results.
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Figure 2: Overview of GCM for HTR. The proposed GCM consists of a shared cross-modal encoder and two parallel inverse decoders.
Specifically, 1) the multi-modal encoder first extracts cross-modal features from both images and graphs respectively, and 2) the cross-
modal decoders fuse multi-modal features under the guidance of cross-modal contexts through the hybrid multi-modal fusion and cascaded
attention aggregation, 3) finally, two parallel decoders sequentially aggregate cross-modal features in inverse orders (V→G and G→V) but
are enhanced through mutual distillation at each time step, which involves one-to-one knowledge transfer and adequate cross-modal fusion.

3 Methodology
As shown in Fig. 2, we propose a graph-enhanced cross-
modal mutual learning network (GCM) to achieve structure-
aware handwritten text recognition, which explicitly ex-
ploits both visual and geometric characteristics of handwrit-
ten texts. Given a handwritten text image v, we first con-
vert it into a skeleton-based graph g and then adopt the
recognition model to produce the target character sequence
y = (y1, · · · , yl, · · · , yL) with the maximal probability, i.e.,

y∗ = argmaxyP (y|v,g), (1)

where each character yl ∈ A is in the alphabet set A.

3.1 Graph Construction from Images
Following [Gan et al., 2023], we first extract skeletons from
handwriting images and then resample the key points in iden-
tical intervals while keeping their original connections as

Figure 3: Graph construction from visual images.

shown in Fig. 3. Eventually, we obtain geometric graphs from
visual images without introducing any extra annotation costs.

3.2 Independent Multi-Modal Encoding
To exploit characters’ visual and geometric properties, it is
important to first encode the multi-modal data into a shared
latent representation space for effectively capturing comple-
mentary information from each other. Since geometric graphs
and visual images of characters have distinct data organiza-
tion, a more appropriate way is to utilize two independent
multi-modal encoders (i.e., the graph encoder and visual en-
coder) for extracting the cross-modal features separately.

Visual Encoder We adopt the most prevalent convolutional
recurrent network (CRN) [Shi et al., 2016] to directly extract
the visual information from handwriting images, which is a
hybrid network that fully integrates the advantages of both
CNNs and RNNs. Given a handwriting image v, a visual
encoder V is utilized to extract visual features as ṽ = V(v).
Graph Encoder To fully exploit the geometric structures
of handwritten texts, we utilize the pyramid graph Trans-
former (PyGT) [Gan et al., 2023] to process character
graphs, which is stacked by multiple graph-enhanced atten-
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tion blocks. Given a character graph g, the graph encoder G is
adopted to exploit the local topology structures as g̃ = G(g).

3.3 Graph-Enhanced Cross-Modal Decoding
Considering that geometric and visual features are essentially
complementary, the graph context can guide the decoding
process on the visual regions of characters (from G→V), and
similarly, visual context can also guide the decoding process
on geometric features in the inverse direction (from V→G).
To fully integrate the cross-modal features of characters, we
introduce novel graph-enhanced cross-modal decoders in two
inverse directions through hybrid multi-modal fusion and cas-
caded attention aggregation.

Graph → Visual Graph-Enhanced Decoder
G→V decoding branch aggregates geometric context from
character graphs and further employs it to guide the cover-
age attention over visual images.
Graph Guidance The geometric context is captured as
the graph guidance for the later decoding on visual images.
Specifically, a graph recurrent cell RG→V

g first calculates the
decoding context cGl of l-th character based on its previous
graph hidden state hG

l−1 and the previous character yl−1 as

cGl = RG→V
g (hG

l−1, yl−1). (2)

The graph hidden state hG
l is then updated based on the ge-

ometric feature g̃ and decode context cGl via attention-based
aggregation as

hG
l = Softmax(g̃ · cGl )⊤ · cGl , (3)

where ⊤ is the transpose operation. The obtained graph hid-
den state hG

l can be considered as the graph guidance.
Graph-Guided Cross-Modal Decoding The graph guid-
ance hG

l is integrated to guide the decoding process on vi-
sual regions of characters based on the hybrid multi-modal
fusion and cascaded attention aggregation. Specifically, the
visual recurrent cell RG→V

v computes the current decoding
state cG→V

l depending on its previous visual hidden state
hG→V
l−1 as well as the previous character yl−1, and also fuses

the graph guidance hG
l at the early stage, i.e.,

cG→V
l = RG→V

v (hG→V
l−1 + αgh

G
l , yl−1), (4)

where αg is a learnable fusion parameter. Then, the visual
hidden state hG→V

l is updated through attention-based ag-
gregation as

hG→V
l = Softmax(ṽ · cG→V

l )⊤ · cG→V
l , (5)

where ṽ denotes visual features. Finally, we fuse the cross-
modal contexts at the late stage as

OG→V
l = F([hG→V

l ,hG
l ]), (6)

where OG→V
l is the discriminative pattern in the G→V

branch, and F is a fully connected layer. Finally, the prob-
ability of producing the l-th character in the G→V branch is
calculated as

PG→V (yl|y<l, ṽ, g̃) = Softmax(OG→V
l ), (7)

where y<l denotes the previous l − 1 characters.

Visual → Graph Visual-Enhanced Decoder
Similarly, we can also aggregate the visual context to guide
the coverage attention over geometric structures of characters
with the V→G decoding branch.
Visual Guidance Similarly, the visual context is computed
through a visual recurrent cell RV→G based on the visual fea-
tures ṽ, previous visual hidden state hV

l−1, and the previous
character yl−1 as

cVl = RV→G
v (hV

l−1, yl−1), (8)

hV
l = Softmax(ṽ · cVl )⊤ · cVl , (9)

where the visual context hV
l is treated as the visual guidance.

Visual-Guided Cross-Modal Decoding We similarly
compute the discriminative pattern in the V→G branch as

cV→G
l = RV→G

g (hV→G
l−1 + αvh

V
l , yl−1), (10)

hV→G
l = Softmax(ṽ · cV→G

l )⊤ · cV→G
l , (11)

OV→G
l = F([hV

l ,h
V→G
l ]). (12)

Lastly, the probability of producing the l-th character in the
V→G branch is calculated as

PV→G(yl|y<l, ṽ, g̃) = Softmax(OV→G
l ). (13)

Eventually, we obtain the probabilities of the l-th character yl
in inverse directions at each time step.

3.4 Bidirectional Cross-Modal Mutual Learning
Since the cross-modal representations are complementary to
each other, the cross-modal discriminative patterns from two
inverse directions (i.e. OV→G

l and OG→V
l ) should produce

the identical character yl at each decoding step. Therefore,
the cross-modal patterns in inverse fusion directions can en-
hance each other via one-to-one knowledge transfer, which
is achieved by minimizing their distances in the shared la-
tent space with better multi-modal alignment. Specifically,
we introduce Kullback-Leibler (KL) divergency [Zhang et
al., 2018] to quantify the difference in prediction distribu-
tions between OV→G

l and OG→V
l . The objective is to mini-

mize the distance between the probability distributions of two
branches at each decoding step through mutual distillation as

LKL =
L∑

l=1

ϵ(OV→G
l , T )log

ϵ(OV→G
l , T )

ϵ(OG→V
l , T )

, (14)

where ϵ(O∗
l , T ) = Softmax(O∗

l /T ) is the soft probabilities
with the temperature T . This eventually achieves one-to-one
knowledge transfer between inverse branches and fully lever-
ages the complementary cross-modal information from both
directions.

3.5 End-to-End Optimization Objectives
Given the target sequence ỹ = (ỹ1, · · · , ỹl, · · · , ỹL), the
model first minimizes the cross-entropy losses over multi-
modal features in two inverse branches as

LG→V
M =

L∑
l=1

−ỹllog
exp(OG→V

l,ỹl
)∑

yl
exp(OG→V

l,yl
)
, (15)

LV→G
M =

L∑
l=1

−ỹllog
exp(OV→G

l,ỹl
)∑

yl
exp(OV→G

l,yl
)
, (16)
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where OV→G
l,yl

and OG→V
l,yl

are the logits of yl-th class. More-
over, we further introduce the uni-modal learning objectives
besides multi-modal joint learning to alleviate the uncoordi-
nated modality convergence issue [Huang et al., 2022b] as

LG→V
U = LV |G→V

CE + LG|G→V
CE , (17)

=
∑

∗∈{V,G}

L∑
l=1

−ỹllog
exp(O∗|G→V

l,ỹl
)∑

yl
exp(O∗|G→V

l,yl
)
,

(18)

where LCE is the cross-entropy loss, and O∗|G→V
l,ỹl

denotes
the uni-modal logits of the G→V branch, i.e., either the visual
modal logit OV |G→V

l,ỹl
or the graph modal logit OG|G→V

l,ỹl
as

OV |G→V
l,ỹl

= F(hG→V
l ), OG|G→V

l,ỹl
= F(hG

l ). (19)

Similarly, the uni-modal learning objective is calculated as

LV→G
U = LV |V→G

CE + LG|V→G
CE (20)

with the uni-modal logits of the V→G branch as

OV |V→G
l,ỹl

= F(hV
l ), OG|V→G

l,ỹl
= F(hV→G

l ). (21)

Finally, the overall training objective is summarized as

LTotal = LG→V
M +LG→V

M +LV→G
U +LV→G

U +λLKL, (22)
where λ is the hyperparameter that controls the significance
of the cross-modal mutual learning.

4 Experiments
4.1 Experiment Settings
Datasets All used datasets are publicly available and have
the official dataset splits or proportions, which includes:
+ IAM [Marti and Bunke, 2002] is the most widely used

public handwritten English text dataset, which contains
1539 handwritten pages comprising 115,320 words.

+ RIMES [Grosicki et al., 2009] is a public French hand-
writing dataset, which is contributed by over 1300 people
with 12,723 pages corresponding to 5605 mails.

+ IAHEW-UCAS2016 [Gan and Wang, 2019] is a public
in-air handwriting English word dataset, which contains
150,480 samples covering 2280 English words.

+ ICDAR2013 [Yin et al., 2013] is the most widely used
Chinese handwriting dataset, which contains 3755 classes
of Chinese characters with 224,419 handwriting samples.

Evaluation Metrics We use the most widely used Charac-
ter Error Rate (CER) and Word Error Rate (WER) to evaluate
the performance of handwriting recognition models.
Implementation Details The whole architecture is imple-
mented with the PyTorch [Paszke et al., 2017] deep learning
framework. The model is optimized via the Adam [Kingma
and Ba, 2015] algorithm with a batch size of 64. We set the
initial learning rate to 0.001 and the hyperparameter of mu-
tual learning λ to 0.75 by default, and the training process is
terminated when the model reaches convergence. We set the
beam width to 64 during the decoding stage. All experiments
are conducted on a workstation with an Intel(R) Core(TM) i9-
11900K CPU, 64GB RAM, and an RTX-4090 24GB GPU.

Method Input IAM (%) RIMES (%)
CER WER CER WER

[Espana et al., 2010] V 9.8 22.4 - -
[Luong et al., 2015] V 10.8 35.1 6.8 28.5
[Bluche, 2016] V 7.9 24.6 2.9 12.6
[Sueiras et al., 2018] V 8.8 23.8 4.8 15.9
[Bhunia et al., 2019] V 8.4 17.2 6.4 10.5
[Zhang et al., 2019] V 8.5 22.2 - -
[Wang et al., 2020] V 6.4 19.6 2.7 8.9
[Cascianelli et al., 2022a] V 6.8 24.7 4.0 13.7
[Kang et al., 2022]∗ V 7.6 24.5 - -
[Cascianelli et al., 2022b]∗ V 7.3 37.5 - -

PyGT + ATTN (baseline) G 10.2 21.7 5.7 11.7
CRN + ATTN (baseline) V 7.1 17.1 3.4 8.1
+ GCM (ours) G&V 5.8 14.9 2.4 6.5

Table 1: Results for offline HTR on IAM and RIMES. Notably, only
the methods without using the extra training data are compared. In
the table, V and G denote the visual and graph inputs respectively,
and * denotes the Transformer-based models for HTR.

4.2 Comparison with Prior Works
To demonstrate the effectiveness of our method, we compare
the proposed GCM with previous SOTA methods for HTR
on public benchmarks. It is worth noting that our GCM can
recognize both online and offline handwritten texts.
Results for Offline Handwritten Text Recognition As
listed in Table 1, we compare our GCM with previous SOTA
methods for HTR on two public offline handwritten text
datasets IAM and RIMES. For a fair comparison, we only
compare the methods without utilizing the extra synthetic or
training data in Table 1. It can be observed that most previous
methods are only based on the image modality, while graph-
enhanced multi-modal methods are rarely explored. More-
over, our method also outperforms previous SOTA methods
for offline HTR when no extra training data is utilized. Ex-
periments demonstrate that it can achieve better performance
for HTR by exploiting both visual and geometric information
of characters, especially for scenarios with limited data.
Results for Online Handwritten Text Recognition It is
worth noting that the proposed GCM can be feasibly extended
to online HTR. As listed in Table 2, we extended GCM to

Method CER
(%)

WER(%)
Lexicon None

RNN-CTC [Graves et al., 2008] 2.87 3.79 11.47
RNN-ATTN [Gan and Wang, 2019] 3.14 3.39 11.37
CNN-ATTN [Gan et al., 2019] 2.55 3.28 11.58
GCN-CTC [Gan et al., 2023] 2.67 2.77 11.08
GCN-ATTN [Gan et al., 2023] 1.61 2.72 5.13
GCN&CRN-ATTN [Chen et al., 2024] 1.29 2.58 3.76

GCM (ours) 1.04 1.89 3.14

Table 2: Results for online HTR on IAHEW-UCAS2016.
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Method Input Seq. Acc(%)
Human Performance [Yin et al., 2013] V × 96.13
DFE-DLQDF [Liu et al., 2013] V × 92.72
HCCR-GoogleNet [Zhong et al., 2015] V × 96.26
DirectMap-CNN [Zhang et al., 2017] V × 96.95
M-RBC + IR [Yang et al., 2017] V × 97.37
PyGT [Gan et al., 2023] G × 96.49

DenseRAN [Wang et al., 2018] V ✓ 96.66
FewshotRAN [Wang et al., 2019] V ✓ 96.97
HDE-Net [Cao et al., 2020] V ✓ 97.14
HCRN [Huang et al., 2022a] V ✓ 96.70
CUE [Luo et al., 2023] V ✓ 96.96

PyGT + RAN (baseline) G ✓ 95.20
DenseRAN∗ (baseline) V ✓ 96.74
+ GCM (ours) G&V ✓ 97.12

Table 3: Results for handwritten Chinese character recognition on
ICDAR2013. In the table, “Seq.” denotes whether the recognition
method is radical-based, and * denotes our re-implementation.

online HTR on IAHEW-UCAS2016, in which each sample
is written in mid-air with a single stroke. Additionally, we
mainly compared GCM with prior prevalent approaches, in-
cluding RNN-CTC, RNN-ATTN, etc. It can be observed that
our multi-modal GCM outperforms the uni-modal models
(such as RNN-Decoder & GCN-Decoder) and has achieved
the new SOTA performance on IAHEW-UCAS2016, demon-
strating its effectiveness for online HTR.

Results for Handwritten Chinese Character Recognition
We demonstrate that GCM is also effective for radical-based
handwritten Chinese character recognition (HCCR), in which
handwritten Chinese characters are recognized as radical se-
quences. As shown in Table 3, we compare the GCM with
previous SOTA methods for HCCR on ICDAR-2013. It
is worth noting that radical-based methods generally per-
form inferior to conventional class-based methods, since it is
more challenging to simultaneously recognize both individ-
ual structures and radicals of Chinese characters. Experimen-
tal results demonstrate that our GCM has achieved the SOTA
performance among radical-based approaches for HCCR.

4.3 Ablation Study of Proposed Method
To investigate the contributions of individual parts of GCM,
we have conducted extensive ablation studies of different
modules or learning strategies. For a fair comparison, we ap-
plied greedy decoding for testing in all ablation studies.

Effectiveness of Cross-Modal Fusion As shown in Ta-
ble 4, we compare the performance of different network con-
figurations by integrating different modalities of data. The
experimental results reveal several key insights: (i) directly
processing images achieves high accuracy, as spatial infor-
mation plays a crucial role in handwriting recognition; simi-
larly, decoding geometric graphs also yields comparable ac-
curacy, suggesting that geometric structures can also ben-
efit handwriting recognition; (ii) the cross-modal encoder-
decoder frameworks can achieve better performance than uni-

Method Modality IAM (%) RIMES (%)
Image Graph CER WER CER WER

Image Only ✓ × 7.06 17.05 3.35 8.11
Graph Only × ✓ 10.20 21.68 5.68 11.68

Uni-G→V ✓ ✓ 7.01 16.91 3.40 7.43
Uni-V→G ✓ ✓ 6.61 15.66 2.79 6.71

Bi-G→V ✓ ✓ 6.18 15.26 2.63 6.84
Bi-V→G ✓ ✓ 6.17 15.34 2.65 6.80

Table 4: Ablation study on the cross-modal fusion. In the table,
“Uni-” denotes the uni-decoder models and “Bi-” denotes the bi-
decoder models.

Method Fusion Direct. IAM (%) RIMES (%)
G→V V→G CER WER CER WER

Uni-G→V ✓ × 7.01 16.91 3.40 7.43
Uni-V→G × ✓ 6.61 15.66 2.79 6.71

Twin-G→V ✓ × 6.84 16.07 2.96 7.32
Twin-V→G × ✓ 6.32 15.57 2.74 6.96

Bi-G→V ✓ ✓ 6.18 15.26 2.63 6.84
Bi-V→G ✓ ✓ 6.17 15.34 2.65 6.80

Table 5: Ablation study on the bidirectional mutual learning. In
the table, “Twin-” denotes the bi-decoders with identical directions,
“Bi-” denotes the bi-decoders with inverse directions, and “Fusion
Direct.” denotes the fusion direction of cross-modal features.

modal ones, since the former explicitly leverages both the
geometric structures and spatial information of handwritten
characters; (iii) it can achieve better performance by enhanc-
ing the cross-modal fusion and multi-modal learning.

Effectiveness of Bidirectional Mutual Learning As
shown in Table 5, we compare the performance of cross-
modal models with different fusion directions. It can be ob-
served that: (i) the single-direction fusion (either G→V or
V→G) can achieve satisfactory performance, since both ge-
ometric and visual features can benefit handwriting recogni-
tion; (ii) moreover, fusing cross-modal data with two identi-
cal directions can also improve the recognition performance
via one-to-one knowledge transfer, but its improvement may
become marginal since the branches with identical directions
attain mirror differences; (iii) instead, the branches with the
inverse directions can learn more distinguishing patterns and
thus can be more complementary via mutual learning.

Necessity of Uni-Modal Learning Objectives As shown
in Table 6, we compare the performance of cross-modal de-
coders with or without utilizing LU . It is worth noting that ex-
isting multi-modal fusion generally suffers from imbalanced
multi-modal learning problems due to the conflicts of multi-
modal optimization directions. However, such a problem can
be effectively alleviated by adding uni-modal learning objec-
tives besides multi-modal joint learning. As shown in Table 6,
the models jointly optimized with both uni-modal and multi-
modal objectives can achieve better performance.
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Method Uni-Modal
LU

IAM (%) RIMES (%)
CER WER CER WER

Uni-G→V × 10.14 21.56 5.44 10.46
✓ 7.01 16.91 3.40 7.43

Uni-V→G × 10.46 22.40 5.61 10.64
✓ 6.61 15.66 2.79 6.71

Bi-G→V × 9.70 21.71 4.57 10.61
✓ 6.18 15.26 2.63 6.84

Bi-V→G × 9.57 21.31 4.58 10.43
✓ 6.17 15.34 2.65 6.80

Table 6: Effectiveness of uni-modal learning objective.

Figure 4: Sensitivity analysis of hyperparameters T and λ in LKL.

Hyperparameter Sensitivity Analysis of LKL We also
perform the sensitivity analysis on the hyperparameters λ and
T in LKL, which control the impact of the mutual learning
loss between two inverse branches. As shown in Fig. 4, LKL

with λ = 0.75 and T = 2 achieved the best performance.

4.4 Qualitative Analysis
Visualization of Cross-Modal Attention To demonstrate
the effectiveness of cross-modal fusion, we compare the
attention matrices and visualization results between cross-
modal and uni-modal methods as shown in Fig. 5 & 6. It
can be observed that uni-modal methods suffer from more
served attention drift problems than cross-modal ones. More-
over, the cross-modal guidance can help the attention mod-
ule more precisely locate the corresponding character regions,
thus demonstrating the effectiveness of cross-modal fusion.
Visualization of Feature Distribution To demonstrate that
GCM can learn more discriminative features, we further vi-
sualize feature distributions of lowercase characters between
the cross-modal and uni-modal methods as shown in Fig. 7.

Visual Attention Graph Attention

U
ni
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od

al
C

ro
ss

-M
od

al

Figure 5: Comparison of cross-modal attention matrices.
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Figure 6: Comparison of cross-modal attention visualization.

Visual Only Graph Only Bidirectional G"V

Figure 7: Comparison of feature distribution visualization.

We can observe that cross-modal methods can learn more dis-
criminative feature distributions.

5 Conclusion
Most existing approaches for HTR typically operate on the
visual modality alone, while ignoring the importance of the
intrinsic geometric structures of characters. Instead, this pa-
per aims to achieve a structure-aware handwriting recognition
method that explicitly incorporates both geometric structures
and visual appearances of characters. Particularly, we pro-
pose a novel graph-enhanced cross-modal mutual learning
network GCM for handwritten text recognition, which can
fully process handwriting images alongside their correspond-
ing geometric graphs. Specifically, GCM first extracts both
visual and geometric information from the cross-modal in-
puts, and then it utilizes two parallel decoders to sequentially
aggregate cross-modal features in inverse orders (V→G and
G→V). Furthermore, the two inverse branches can further
enhance each other via bidirectional mutual learning, which
involves one-to-one knowledge transfer and fully leverages
complementary cross-modal information. Notably, only one
decoding branch of GCM will be activated in inference, thus
avoiding the increase of the model parameters and computa-
tion costs for testing and deployment. Extensive experiments
demonstrate the effectiveness of the proposed GCM for HTR.

6 Limitation
The proposed GCM is unsuitable for recognizing complex
scene texts, since it is challenging to obtain geometric graphs
from scene text images when compared to handwriting im-
ages. Nevertheless, we leave this problem as our future work.
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