
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Relational Decomposition for Program Synthesis

Céline Hocquette1 and Andrew Cropper2

1University of Southampton
2University of Oxford

c.m.e.j.hocquette@soton.ac.uk; andrew.cropper@cs.ox.ac.uk

Abstract
We introduce a relational approach to program syn-
thesis. The key idea is to decompose synthesis tasks
into simpler relational synthesis subtasks. Specif-
ically, our representation decomposes a training
input-output example into sets of input and output
facts respectively. We then learn relations between
the input and output facts. We demonstrate our
approach using an off-the-shelf inductive logic pro-
gramming (ILP) system on four challenging synthe-
sis datasets. Our results show that (i) our represen-
tation can outperform a standard one, and (ii) an
off-the-shelf ILP system with our representation can
outperform domain-specific approaches.

1 Introduction
The goal of program synthesis is to automatically generate
a computer program from a set of input-output examples
[Shapiro, 1983; Gulwani et al., 2017], such as a LISP [Sum-
mers, 1977], Prolog [Shapiro, 1983], or Haskell [Katayama,
2008] program. For instance, consider the examples shown in
Table 1. Given these examples, we want to learn a program
that inserts the letter a at position 2 in the input list to produce
the corresponding output list.

Input Output

[l, i, o, n] [l, a, i, o, n]
[t, i, g, e, r] [t, a, i, g, e, r]

Table 1: Input-output examples.

The standard approach to program synthesis is to search
for a sequence of actions [Cropper and Dumančić, 2020;
Curtis et al., 2022; Aleixo and Lelis, 2023; Lei et al.,
2024] or functions [Lin et al., 2014; Ellis et al., 2018;
Kim et al., 2022; Ameen and Lelis, 2023; Witt et al., 2025;
Rule et al., 2024] to map entire inputs to their corresponding
entire outputs. For instance, given the examples in Table 1
and the functions head, tail, and cons, a system could learn
the following program where x is an input:

def f(x):
return cons(head(x),cons('a',tail(x))

Whilst the standard approach is effective for simple programs,
it can struggle when learning programs that require long se-
quences of actions/functions. For instance, to insert the letter
a at position 3, a system could synthesise the program:
def f(x):
return cons(head(x),cons(head(tail(x)),

cons('a',tail(tail(x)))))

This program is long and difficult to learn because the search
complexity in program synthesis is exponential with the search
depth [Gulwani et al., 2017; Witt et al., 2025]. Therefore,
most existing approaches struggle to learn long sequences of
actions/functions.

Rather than learn a sequence of actions/functions to map
an entire input to an entire output, our key contribution is to
introduce a representation that decomposes synthesis tasks
into simpler relational synthesis subtasks. Specifically, our
representation decomposes a training input-output example
into sets of input and output facts. We then learn relations
between the input and output facts.

To illustrate this idea, consider the first input-output exam-
ple in Table 1. Rather than represent the example as a pair of
lists, [l,i,o,n] 7→ [l,a,i,o,n], we represent the input as a set of
facts of the form in(I,V)1, where each fact states that the input
value at index I is V:
in(1,l). in(2,i). in(3,o). in(4,n).

Similarly, rather than represent the output as a list, we repre-
sent the output as a set of facts of the form out(I,V)1, where
each fact states that the output value at index I is V:
out(1,l). out(2,a). out(3,i). out(4,o). out(5,n).

We then try to generalise the out facts given the in facts and
additional background knowledge, which encodes additional
information about the examples. For instance, by decomposing
the examples in Table 1, our approach learns the following
rules as a solution:

out(I,V):- I<2, in(I,V).
out(2,a).
out(I,V):- I>2, in(I-1,V).

The first rule says that the output value at index I is the input
value at index I for indices strictly smaller than 2. The second

1We also prefix each fact with an example identifier but omit it
for brevity.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Input Output

Figure 1: Input-output example for the ARC task 3bd67248.

rule says that the output value at index 2 is a. The third rule
says that the output value at index I is the input value at index
I − 1 for indices I strictly greater than 2. We can learn similar
rules for insert at position k by learning different indices.

As a second illustrative scenario, consider the task shown in
Figure 1, which is from the Abstraction and Reasoning Corpus
(ARC) [Chollet, 2019]. The goal is to learn a function to map
the input image to the output image. Rather than treat the input
and output as entire images, we reason about individual pixels.
Specifically, we represent the input image as a set of facts of
the form in(X,Y,C), where each fact states that the input pixel
at row X and column Y has colour C:
in(1,1,blue). in(2,1,blue). in(3,1,blue).
in(4,1,blue). in(5,1,blue). in(6,1,blue).

We use a set of facts of the form empty(X,Y) to indicate that
the input pixel at row X and column Y is empty/uncoloured:

empty(1,2). empty(1,3). empty(1,4).
empty(2,2). empty(2,3). empty(2,4).

Similarly, we represent the output image as a set of facts of the
form out(X,Y,C), where each fact states that the output pixel at
row X and column Y has colour C:

out(1,1,blue). out(7,2,yellow). out(1,7,red).
out(2,1,blue). out(7,3,yellow). out(2,6,red).

We then try to generalise the out facts given the in and empty
facts and additional background knowledge. For instance, we
can learn the rules:
out(X,Y,C):- in(X,Y,C).
out(X,Y,yellow):- empty(X,Y), height(X).
out(X,Y,red):- empty(X,Y), height(X+Y-1).

The first rule says that any coloured pixel in the input image
is the same colour in the output image. The second rule
says that any uncoloured pixel in the bottom row of the input
image is yellow in the output image. The last rule states
that any uncoloured pixel in the input image is red in the
output image if its coordinates X and Y sum to H + 1, where
H is the height (number of rows) of the image, i.e. if it is
located on the diagonal. In other words, our representation
concisely expresses the concept of a line without being given
the definition.

Our representation offers several benefits. Foremost, it
decomposes a task into smaller ones by decomposing each
training example into multiple examples. Therefore, instead
of learning a program to map an entire input list or image
at once, we learn a set of rules, each generalising some list
elements or image pixels. The key benefit is that we can learn
each rule independently and then combine them [Cropper
and Hocquette, 2023]. For instance, solving the list function

task insert at position 3 with a program that processes entire
examples requires at least 8 sequential actions. In contrast, our
approach only needs 3 rules, each with at most 3 literals. Since
each rule is smaller, the search space is reduced, making the
overall program easier to learn. The Blumer bound [Blumer
et al., 1987] explains why searching smaller spaces leads to
better generalisation. This result says that given two search
spaces, searching the smaller one is more likely to produce
higher accuracy, assuming that a good program is in both.

To demonstrate our idea, we use inductive logic program-
ming (ILP) [Muggleton, 1991; Cropper and Dumančić, 2022].
Given background knowledge and examples, the goal of ILP
is to find a program that generalises the examples with respect
to the background knowledge. ILP represents data and learned
programs as logic programs and is therefore a relational ap-
proach to program synthesis.

Contributions. Our main contribution is to show that pro-
gram synthesis tasks can be solved more easily if decomposed
into relational learning tasks. The second contribution is to
show that an off-the-shelf ILP system with our representation
and a domain-independent bias can achieve high performance
compared to domain-specific approaches on four varied and
challenging datasets.

Overall, we make the following contributions:
• We introduce a relational representation that decomposes

a synthesis task into multiple relational subtasks.
• We evaluate our representation using an off-the-shelf ILP

system on four challenging datasets, including image rea-
soning, string transformations, and list functions. Our
empirical results show that (i) our relational representa-
tion can drastically improve learning performance com-
pared to a standard state/functional representation, and
(ii) an off-the-shelf ILP system with our representation
can outperform domain-specific approaches.

2 Related Work
Program synthesis. Deductive program synthesis approaches
[Manna and Waldinger, 1980] deduce programs that exactly
satisfy a complete specification. By contrast, we focus on
inductive program synthesis, which uses partial specifications,
typically input-output examples [Shapiro, 1983; Gulwani et
al., 2017]. Hereafter, program synthesis refers to the inductive
approach. While most approaches learn functional programs
[Ellis et al., 2019; Shi et al., 2022; Witt et al., 2025; Rule et
al., 2024], we learn relational (logic) programs.

Domain specific. There are many domain-specific ap-
proaches to program synthesis, including for strings [Gulwani,
2011], 3D shapes [Tian et al., 2019], list functions [Rule,
2020], and visual reasoning [Wind, 2022; Xu et al., 2023;
Lei et al., 2024]. For instance, ICECUBER [Wind, 2022] is
a symbolic synthesis approach for ARC. It uses 142 hand-
crafted functions designed by manually solving the first 100
tasks, achieving a performance of 47%. By contrast, our ap-
proach is versatile, generalises to multiple domains, and uses
an off-the-shelf general-purpose ILP system.

State-based synthesis. Most synthesis approaches learn a
sequence of actions or functions to transform an input state
to an output state. Some approaches evaluate the distance to

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

the desired output [Ellis et al., 2019; Cropper and Dumančić,
2020; Ameen and Lelis, 2023]. By contrast, we decompose
examples and reason about elements or pixels.

LLMs. Directly comparing symbolic program synthesis
to large language models (LLMs) is difficult. As Wang et al.
[2024] state, LLMs need large pretraining datasets, which may
include test data. For instance, LLMs approaches for ARC use
datasets such as ARC-Heavy (200k tasks) or ARC-Potpourri
(400k tasks) [Li et al., 2024], additional training examples
[Hodel, 2024], or data augmentations [Franzen et al., 2024].
The ARChitects [Franzen et al., 2024], winners of the ARC-
AGI challenge, pretrained their solution on 531,318 examples.
By contrast, our approach requires no pretraining and uses
only the 2-10 training examples provided for each task.

Lists and images. Our experiments focus on synthesis tasks
over lists and images. Lists are a simple yet expressive domain,
well-suited to representing observations in many domains such
as computational biology, where proteins, genes, and DNA
are typically represented as strings [Raedt, 2008]. As Rule
[2020] explains, lists use numbers in multiple roles (sym-
bols, ordinals, and cardinals) and support recursive structures.
Lists naturally align with familiar psychological concepts, en-
compass classic concept learning domains, and are formally
tractable. Similarly, image tasks, like those in the ARC [Chol-
let, 2019], capture a wide range of abstract concepts, including
shapes, patterns, and spatial relationships. They offer high task
diversity and align well with human core knowledge priors.

ILP. Many ILP approaches use state representations [Lin et
al., 2014; Cropper and Dumančić, 2020]. Related approaches
with decomposed representations include Silver et al. [2020]
and Evans et al. [2021]. These approaches are specifically
designed for learning game policies from demonstrations and
dynamics from temporal sequences, respectively. By con-
trast, we use a general-purpose off-the-shelf ILP system and
consider program synthesis tasks.

Decomposition. Some approaches partition the training
examples into subsets, learn programs for each subset, and
combine them into a global solution [Cropper and Hocquette,
2023]. By contrast, we decompose each training example into
multiple examples. BEN [Witt et al., 2025] decomposes ex-
amples into objects, aligns them through analogical reasoning,
and synthesises programs for the resulting subtasks. We differ
in many ways. First, while BEN uses domain-specific rules
to decompose an example into objects, we simply decompose
lists and images into individual elements. Second, BEN relies
on hand-engineered functions, such as border(s), which draws
a border of size s and denoise(s), which denoises an object
in the ARC domain, whereas we use only basic arithmetic
operations like addition. Finally, BEN synthesises functional
programs that manipulate object-based states, whereas we
learn relational rules between input and output elements.

Representation change. Representation change refers to
changing the language used to represent knowledge, including
the examples [Cohen, 1990]. Bundy [2013] argues that finding
the right representation is the key to successful reasoning. We
contribute to this view by showing that simply looking at a
problem differently can greatly improve learning performance.

3 Problem Setting
We formulate the synthesis problem as an ILP problem. We
assume familiarity with logic programming [Lloyd, 2012]
but provide a summary in the appendix. We use the term
rule synonymously with definite clause. A definite program
is a set of definite clauses with the least Herbrand model
semantics. We refer to a definite program as a logic program.
A hypothesis space is a set of hypotheses (logic programs)
defined by a language bias, which restricts the syntactic form
of hypotheses [Cropper and Dumančić, 2022].

We use the learning from entailment setting of ILP [Raedt,
2008]. We define an ILP task:
Definition 1 (ILP task). An ILP task is a tuple
(E+, E−, B,H, costB,E+,E−), where E+ and E− are sets of
ground atoms denoting positive and negative examples respec-
tively, B is a logic program denoting the background knowl-
edge, H is a hypothesis space, and costB,E+,E− : H 7→ N is
a function that measures the cost of a hypothesis.
We define an optimal hypothesis:
Definition 2 (Optimal hypothesis). For an ILP task
(E+, E−, B,H, costB,E+,E−), a hypothesis h ∈ H is op-
timal when ∀h′ ∈ H, costB,E+,E−(h) ≤ costB,E+,E−(h′).
In this paper, we assume a noiseless setting. We search for a
hypothesis h which entails all examples in E+ (∀e ∈ E+, h∪
B |= e) and no example in E− (∀e ∈ E−, h ∪ B ̸|= e). A
hypothesis has an infinite cost if it does not entail all positive
examples or if it entails any negative examples. Otherwise, its
cost is equal to its size (number of literals in the hypothesis).

4 Decomposing Examples
Rather than learn a sequence of actions/functions to map an
entire input to an entire output, we introduce a representation
that decomposes synthesis tasks into simpler relational sub-
tasks. Specifically, our representation decomposes a training
input-output example into input and output facts.

Algorithm 1 shows our algorithm for decomposing exam-
ples. It takes as input a set of examples E and a domain D
of element values. E is a set of input-output examples of the
form i 7→ o, where i is an n-dimensional array and o is an
m-dimensional array. Algorithm 1 returns a tuple (E+, E−,
B). We consider each example i 7→ o in turn, and define an
identifier id for the current example (line 5). For each element
x in i, we generate the fact in(id,I1,...,In,V), where (I1,...,In)
is the position of x in i and V its value. We add this fact to
the background knowledge B (line 9). For each element y in
o, we generate the fact out(id,I1,...,Im,V), where (I1,...,Im)
is the position of y in o and V its value. We add this fact
to the positive examples E+ (line 13). We reason under the
closed-world assumption [Reiter, 1977] to generate negative
examples. For each element y in o and for each value W in
the domain of V , where W ̸= V , we generate the negative
example out(id,I1,...,Im,W), where (I1,...,Im) is the position
of y in o and V its value. We add this fact to the negative
examples E− (line 16).

In the next section, we empirically show that using a de-
composed representation can substantially improve learning
performance.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Algorithm 1 Example Decomposition
1 def decompose(E, D):
2 E+, E−, B = {}, {}, {}
3 id = 0
4 for i 7→ o in E:
5 id += 1
6 for x in i :
7 let (I1, . . . , In) be the position of x in i
8 let V be the value of x in i
9 B += in(id,I1,...,In,V)

10 for y in o:
11 let (I1, . . . , Im) be the position of y in o
12 let V be the value of y in o

13 E+ += out(id,I1,...,Im,V)
14 for W in D:
15 if W ̸= V :
16 E− += out(id,I1,...,Im,W)
17 return E+, E−, B

5 Evaluation
To test our claim that decomposing a synthesis task can im-
prove learning performance, our evaluation aims to answer the
question:

Q1 Can our decomposed representation outperform a stan-
dard state/functional representation?

To answer Q1, we compare the learning performance of an
ILP system with a decomposed representation (Algorithm 1)
against a state/functional representation. We use the same ILP
system so the only difference is the representation.

To test our claim that our decomposed representation is
competitive with domain-specific approaches, our evaluation
aims to answer the question:

Q2 Can a general-purpose ILP system with a decomposed
representation outperform domain-specific approaches?

To answer Q2, we compare the learning performance of a
general-purpose ILP system with a decomposed representation
against domain-specific approaches.

5.1 Datasets
We use the following diverse and challenging datasets.

1D-ARC. The 1D-ARC dataset [Xu et al., 2024] is a one-
dimensional adaptation of ARC.

ARC. The ARC dataset [Chollet, 2019] evaluates to per-
form abstract reasoning and problem-solving from a small
number of examples. The goal of each task is to transform
two-dimensional input images into their corresponding output
images. The tasks are widely varied, including pattern recog-
nition, geometric transformations, colour manipulation, and
counting. We use the training subset and report top-1 accu-
racy, following related work [Witt et al., 2025; Xu et al., 2023;
Xu et al., 2024; Wang et al., 2024].

Strings. The goal is to learn string transformation pro-
grams [Lin et al., 2014]. This real-world dataset gathers user-
provided examples from online forums and is inspired by a
dataset of user-provided examples in Microsoft Excel [Gul-
wani, 2011].

List functions. This dataset [Rule, 2020; Rule et al., 2024]
evaluates human and machine learning ability. The goal of
each task is to identify a function that maps input lists to
output lists, where list elements are natural numbers. The
tasks range from basic list functions, such as duplication and
removal, to more complex functions involving conditional
logic, arithmetic, and pattern-based reasoning.

5.2 Decomposed Representation
We use a purposely simple bias formed of the decomposed
training examples and basic relations for arithmetic addition
and value comparison. We describe our bias for each domain.

1D-ARC. We decompose a one-dimensional image into
a set of pixel facts. The fact empty(I) holds if the pixel at
index I is a background pixel (an uncoloured pixel). We allow
integers between 0 and 9, representing the 10 different colours,
as constant symbols.

ARC. We decompose a two-dimensional image into a set of
pixel facts. The fact empty(X,Y) holds if the pixel at row X and
column Y is a background pixel. We allow integers between
0 and 9 as constant symbols. We use the relations height and
width to identify the dimensions of the image, midrow and
midcol to locate the middle row and column, respectively, and
different to determine colour inequality.

Strings. We decompose a string into a set of character facts.
The fact end(I) denotes the end position of an input string. We
use the relation changecase to convert a lowercase letter to
uppercase or vice versa.

List functions. We decompose a list into a set of element
facts. The fact end(I) denotes the end position of an input list.
Following Rule [2020], we allow integers between 0 and 9 for
the first 80 problems and integers between 0 and 99 for the
remaining ones.

5.3 Existing Representations
We compare our approach against three standard (undecomo-
posed) representations from the literature.

Undecomposed list (UD-List). We use a functional repre-
sentation designed for list functions tasks [Rule, 2020] which
contains the relations head, tail, empty, and cons.

Undecomposed element (UD-Elem). We extend the UD-
List representation with the relations element at and empty at
to extract elements/pixels in lists/images.

Undecomposed string (UD-Str). We use a functional rep-
resentation designed for string transformation tasks [Lin et al.,
2014] which recursively parses strings left to right .

We also use the same arithmetic relations and constant sym-
bols as in the decomposed representation for each domain.
Although we aim to provide similar relations for all repre-
sentations, the biases in these undecomposed representations
differ from those in the decomposed representation.

5.4 Systems
We use the following systems.

POPPER. We use the ILP system POPPER [Cropper and
Morel, 2021] because it can learn large programs, especially
programs with many independent rules [Cropper and Hoc-
quette, 2023].

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

ARGA. ARGA [Xu et al., 2023] is an object-centric approach
designed for ARC. ARGA abstracts images into graphs and
then searches for a program using a domain-specific language.
ARGA uses 15 operators, such as to rotate, mirror, fill, or
hollow objects.

METABIAS (MB). The ILP system METABIAS [Lin et al.,
2014] uses a functional representation specifically designed
for the string transformations dataset that we consider in our
experiments. It uses 11 operators, such as to copy a word and
convert a word to uppercase or lowercase.

BEN. BEN [Witt et al., 2025] decomposes images into
objects and learns a functional program. It uses 15 object
features and 11 relations for ARC, and 14 features and 11
relations for strings2. See Section 2 for more details on BEN.

HL. Hacker-Like (HL) [Rule, 2020; Rule et al., 2024] is
an inductive learning system designed for the list functions
dataset and using Monte Carlo tree search. HL aims to repro-
duce human learning, rather than outperform it. However, it
outperforms other program synthesis approaches on the list
functions dataset such as METAGOL [Muggleton et al., 2015],
ROBUSTFILL3 [Devlin et al., 2017], CODEX [Chen et al.,
2021], and FLEET [Yang and Piantadosi, 2022]. Among these,
only HL and FLEET achieve human-level performance, while
the others greatly struggle.

5.5 Experimental Setup
We measure predictive accuracy (the proportion of correct
predictions on test data). For our decomposed representation,
a prediction is correct only if all output elements/character-
s/pixels are correct. For the strings and list functions datasets,
we perform leave-one-out cross-validation. For tasks 81 to
250 in the list functions dataset, due to the large number of
constant values, we sample 10,000 negative examples per task.
We repeat each learning task 3 times and calculate the mean
and standard error. The error values in the tables represent the
standard error. We use an Intel compute node with dual 2.0
GHz Intel Xeon Gold 6138 processors, 40 CPU cores, and 192
GB of DDR4 memory. Each system uses a single CPU. We
describe our experimental setup for each research question.

Q1. We compare POPPER with our decomposed representa-
tion against POPPER with undecomposed representations.

Q2. We compare POPPER with our decomposed representa-
tion against domain-specific approaches (ARGA, METABIAS,
BEN, and HL).

5.6 Results
Q1: Can our decomposed representation outperform a
standard state/functional representation?
Table 2 shows the results. It shows that our decomposed rep-
resentation outperforms all undecomposed ones on all four
domains and for all maximum learning times except UD-Str
on the strings dataset. A McNeymar’s test confirms the statis-
tical significance (p < 0.01) of the difference. For instance,

2The code of BEN is not publicly available, and the authors were
unable to share it with us. As a result, we show the results reported in
their paper. Since the evaluation was performed on different hardware,
the comparison should be viewed as indicative only.

3ROBUSTFILL required 3 days of training which highlights the
search efficiency of our approach.

POPPER with our decomposed representation achieves 71%
accuracy on strings compared to 21% for UD-List.

Dataset Time UD-List UD-Elem UD-Str Decom

1DARC
1 0 ± 0 0 ± 0 0 ± 0 59 ± 7

10 0 ± 0 0 ± 0 0 ± 0 63 ± 7
60 0 ± 0 0 ± 0 0 ± 0 69 ± 6

ARC
1 0 ± 0 0 ± 0 0 ± 0 15 ± 1

10 0 ± 0 0 ± 0 0 ± 0 20 ± 1
60 0 ± 0 0 ± 0 0 ± 0 22 ± 1

Strings
1 15 ± 2 11 ± 2 55 ± 3 54 ± 3

10 17 ± 2 16 ± 2 77 ± 2 68 ± 2
60 21 ± 2 19 ± 2 79 ± 2 71 ± 2

Lists
1 10 ± 1 8 ± 1 2 ± 1 27 ± 2

10 12 ± 1 11 ± 1 2 ± 1 46 ± 2
60 14 ± 1 13 ± 1 2 ± 1 52 ± 2

Table 2: Predictive accuracy (%) of POPPER with our decomposed
representation versus undecomposed representations for different
maximum learning times (mins).

One reason for the performance improvement is that our
representation decomposes a task into multiple subtasks. For
instance, consider the ARC task 253bf280 shown in Figure
2. The goal is to colour in green pixels in between two blue
pixels in the input image. Our approach learns the rules:

out(X,Y,blue):- in(X,Y,blue).
out(X,Y,green):- in(X,Y1,blue), in(X,Y2,blue), Y1<Y<Y2.
out(X,Y,green):- in(X1,Y,blue), in(X2,Y,blue), X1<X<X2.

The first rule says that an out pixel is blue if it is blue in the
input. The second rule says that an out pixel is green if it is
between two blue pixels in the same row in the input. The
third rule says that an out pixel is green if it is between two
blue pixels in the same column in the input. In other words,
our approach learns one rule for the permanence of blue pixels,
one for horizontal lines, and one for vertical lines. Moreover,
our approach learns this perfect solution without being given
the definition of a line. By contrast, POPPER cannot solve this
task with any of the undecomposed representations tested.

Input Output

Figure 2: ARC task 253bf280.

Similarly, consider the string task 117 shown in Table 3.
The goal is to capitalise the first letter of both the first and last
names. For this task, our approach learns the rules:
out(1,C):- in(1,C1), changecase(C1,C).
out(I,C):- in(I,C1), changecase(C1,C), in(I-1,' ').
out(I,C):- in(I,C), in(I-1,C1), changecase(C1,C2).

The first rule says that the out character at index 1 is the
in character at index 1 uppercased. The second rule says

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

that the out character at index I is the in character at index I
uppercased if the in character at index I−1 is a space. The last
rule says that the out character at index I is the in character
at index I if the in character at index I − 1 is a lowercase
letter. In other words, our approach learns three rules: one for
uppercasing the first letter of the first name, one for the last
name, and one for copying the remaining lowercase letters.
It learns this program without being given the definition of a
word. By contrast, POPPER cannot solve this task with any of
the undecomposed representations tested.

Input Output

joanie faas Joanie Faas
oma cornelison Oma Cornelison

Table 3: String task 117.

Another reason for the performance improvement is that our
decomposed representation allows programs to be expressed
more compactly. In program synthesis, the search space grows
exponentially with the size of the target program. By using a
more compact representation, we reduce the size of the search
space. The Blumer bound [Blumer et al., 1987] theoretically
explains why searching smaller spaces leads to better generali-
sation. This result says that given two search spaces, searching
the smaller one is more likely to produce higher accuracy,
assuming that a good program is in both. For instance, the
goal of the ARC task 6d75e8bb (Figure 3) is to colour in red
empty pixels within the rectangle delimited by blue pixels.
Our approach learns the rules:
out(X,Y,C):- in(X,Y,C).
out(X,Y,red):- empty(X,Y), in(X,Y1,C), in(X1,Y,C).

The first rule says that an out pixel has colour C if it has colour
C in the input. The second rule says that an out pixel is red if it
is empty in the input and if there are a pixel in the same row (X)
and a pixel in the same column (Y) with the same colour (C)
in the input. In other words, our approach compactly captures
the concept of a rectangle without being given the definition
in the background knowledge.

Input Output

Figure 3: ARC task 6d75e8bb.

POPPER struggles with our decomposed representation to
solve some tasks due to our purposely simple bias. For in-
stance, the goal of the ARC task 5582e5ca is to learn a program
that colours the output image with the majority colour from
the input image. However, we do not include a counting mech-
anism in our bias and POPPER struggles to learn how to count,
as it requires reasoning over all pixels.

Overall, these results suggest that the answer to Q1 is yes:
our decomposed representation can outperform an undecom-
posed one.

Q2: Can a general-purpose ILP system with a
decomposed representation outperform domain-specific
approaches?
Table 4 shows the results. It shows that the general-purpose
ILP system POPPER with our decomposed representation is
competitive with, and can outperform, domain-specific ap-
proaches. Notably, it outperforms ARGA on ARC, METABIAS
on strings and HL on lists. A McNeymar’s test confirms the
significance (p < 0.01) of these differences. We discuss the
results for each dataset in turn.

Dataset Time ARGA BEN MB HL Decom

1DARC
1 93±6 na 0±0 0±0 59±7
10 94±6 na 0±0 0±0 63±7
60 94±6 na 0±0 0±0 69±6

ARC
1 8±1 6±na 0±0 0±0 15 ±1
10 11±2 25±na 0±0 0±0 20±1
60 12±2 na 0±0 0±0 22±1

Strings
1 0±0 85±na 25±2 0±0 54±3
10 0±0 na 25±2 0±0 68±2
60 0±0 na 26±2 0±0 71±2

Lists
1 0±0 na 0±0 31±2 27±2
10 0±0 na 7±1 33±2 46±2
60 0±0 na 8±1 35±3 52±2

Table 4: Predictive accuracy (%) of our decomposed representation
versus domain-specific systems for different maximum learning times
(mins)4.

1D-ARC ARGA outperforms our decomposed representation
on the 1D-ARC dataset (94% vs 69% predictive accuracy with
a maximum learning time of 1h). This result is unsurprising
because ARGA is designed for image reasoning tasks and uses
domain-specific operators, such as the ability to fill, mirror,
and hollow objects. This background knowledge is particularly
useful for tasks such as fill, mirror, and hollow. By contrast,
our decomposed representation is not designed for these tasks
and does not include domain-specific relations.

Our decomposed representation significantly outperforms
HL on the 1D-ARC dataset (69% vs 0% predictive accuracy
with a maximum learning time of 1h). Although these tasks
involve identifying list functions, HL struggles on them. We
asked the authors of HL for potential explanations and they
explained that HL does not perform as well on problems requir-
ing a recursive solution as it does on non-recursive problems.
For instance, the task denoise (Figure 4) requires learning
a recursive solution with an undecomposed representation,
which is difficult for HL. By contrast, our approach learns the
non-recursive rule:
out(I,C):- in(I1,C), in(I1+1,C), I2<2, I1+I2=I.

This rule says that an out pixel at index I has colour C if there
are two adjacent pixels with colour C in the input image (at
indices I1 and I1 + 1), where one of these pixels is at index
I (if I2 = 0, then I1 = I , and if I2 = 1, then I1 + 1 = I),
i.e. the pixel at index I has an adjacent pixel with the same

4We report results for 1 and 10 minutes for ARC and 1 min for
strings for BEN, as they are the only ones provided in the paper.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

colour. This rule generalises perfectly to the test data. Notably,
unlike ARGA and BEN, which both use a denoise operator, our
approach learns this rule without domain-specific operators.

Input Output

Figure 4: The denoise task from 1D-ARC.

ARC POPPER with our decomposed representation out-
performs ARGA on the ARC (22% vs 12% accuracy with a
maximum learning time of 1h). ARGA struggles, partly be-
cause it assumes input and output images have identical sizes,
preventing it from solving 138/400 tasks with different sizes.

HL assumes inputs and outputs are one-dimensional lists,
so it struggles on ARC. METABIAS uses a bias for string
manipulation, such as skipping words or converting them to
uppercase, so struggles on both 1D-ARC and ARC, where
values are all digits.

BEN achieves 25% accuracy given a 10 mins search timeout.
BEN uses a hand-designed domain-specific function to decom-
pose images into objects. Without this function, the accuracy
of BEN drops to 6%. Moreover, BEN uses hand-designed
ARC-specific functions, such as mirror, inner, and denoise.
By contrast, we only use general background knowledge, such
as how to add two numbers.

Strings ARGA achieves default performance (0%) because
it cannot identify any object. Similarly, HL achieves only
default performance, as it assumes constants are numbers and
cannot handle characters.

POPPER with our decomposed representation significantly
outperforms METABIAS on the string dataset and achieves
71% vs 26% with a maximum learning time of 1h. The reason
is that POPPER outperforms METAGOL on which METABIAS
is based [Cropper and Hocquette, 2023].

BEN outperforms POPPER with our representation (85%
versus 54% in 1min). BEN uses domain-specific background
functions, such as capitalising the first character, dropping the
first n characters, and adding a white space, as well as features,
such as the number of digits, uppercase and lowercase letters.
By contrast, we only use general background knowledge.

List functions POPPER with our decomposed represen-
tation significantly outperforms ARGA on the list functions
dataset (52% vs 0% in 1h). ARGA struggles because it re-
quires inputs and outputs of identical size, which prevents it
from solving 188/250 tasks. Additionally, ARGA is designed
for object-centric tasks so struggles when it cannot identify
meaningful objects. Finally, ARGA uses operators designed for
image reasoning, which do not generalise well to list functions.
By contrast, our approach generalises to a broader range of
problems, partly because we use a domain-independent bias.

POPPER with our decomposed representation significantly
outperforms HL (52% vs 35% in 1h). Since HL is designed
to reproduce human learning, it is understandable that our
approach performs better. For instance, the goal of the list
function task 194 (Table 5) is to reverse the input list and add
its length at the start and end. Humans achieve less than 25%
accuracy on this task [Rule, 2020] and HL achieves 0%. By
contrast, we achieve 100% accuracy with the rules:

out(1,E-1):- end(E).
out(I,V):- end(E), add(I,I1,E+1), in(I1,V).
out(E+1,E-1):- end(E).

The first rule says that the out element at index 1 is E − 1,
where E is the index of the first empty position in the input
list. The last rule says that the out element at index E + 1 is
E − 1, where E is the index of the first empty position in the
input list. The second rule says that the out element at index I
is the in element at index I1, where I + I1 = E + 1. In other
words, this second rule compactly expresses the concept of
reverse and move by one position.

Input Output

[81, 43] [2, 43, 81, 2]
[1, 63, 21, 16] [4, 16, 21, 63, 1, 4]

Table 5: List function task 194.

Overall, the results suggest that the answer to Q2 is yes: a
general-purpose ILP system with a decomposed representation
can outperform domain-specific approaches.

6 Conclusions and Limitations
We have introduced a representation that decomposes syn-
thesis tasks into smaller relational subtasks. Our empirical
results on four domains show that our decomposed repre-
sentation substantially outperforms an undecomposed one.
Moreover, we show that an off-the-shelf ILP system using our
decomposed representation with little domain-specific bias
is competitive with, and in some cases outperforms, highly
engineered domain-specific approaches. More broadly, our
results show that simply representing a problem differently
can greatly improve learning performance.

6.1 Limitations
Bias. In our evaluation, we use a purposely simple bias formed
of raw input (elements or pixels) and basic arithmetic relations.
While this simple bias achieves good performance, it is limit-
ing for some tasks. For instance, by adding relations describ-
ing the ordinality of some characters in the strings domain,
we improve the predictive accuracy by 9% and 4% with maxi-
mum learning times of 1 minute and 60 minutes, respectively.
Future work should explore adding general-purpose concepts,
such as counting, to further improve performance.
ILP system. We have shown that an off-the-shelf ILP system
is competitive with domain-specific approaches. However, this
system struggles on some tasks, where a good solution exists
in the search space but the system cannot find it within the
time limit. This limitation is due to the system we use and not
our representation. However, our decomposed representation
is system-agnostic, so we could use alternative ILP systems.
Moreover, because we use an off-the-shelf ILP system, our
approach naturally benefits from any developments in ILP.

7 Appendices, Code, and Data
A longer version of this paper with the appendices is available
at https://arxiv.org/pdf/2408.12212. The experimental code
and data are available at https://github.com/celinehocquette/
ijcai25-relational-decomposition.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://arxiv.org/pdf/2408.12212
https://github.com/celinehocquette/ijcai25-relational-decomposition
https://github.com/celinehocquette/ijcai25-relational-decomposition

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgements
The authors acknowledge the use of the IRIDIS High Perfor-
mance Computing Facility at the University of Southampton
in completing this work.

References
[Aleixo and Lelis, 2023] David S. Aleixo and Levi H. S.

Lelis. Show me the way! bilevel search for synthesizing
programmatic strategies. In AAAI 2023, pages 4991–4998,
2023.

[Ameen and Lelis, 2023] Saqib Ameen and Levi H. S. Lelis.
Program synthesis with best-first bottom-up search. J. Artif.
Intell. Res., 77:1275–1310, 2023.

[Blumer et al., 1987] Anselm Blumer, Andrzej Ehrenfeucht,
David Haussler, and Manfred K. Warmuth. Occam’s razor.
Inf. Process. Lett., (6):377–380, 1987.

[Bundy, 2013] Alan Bundy. The interaction of represen-
tation and reasoning. Proceedings of the Royal Soci-
ety A: Mathematical, Physical and Engineering Sciences,
469(2157):20130194, 2013.

[Chen et al., 2021] Mark Chen, Jerry Tworek, Heewoo Jun,
Qiming Yuan, et al. Evaluating large language models
trained on code. CoRR, abs/2107.03374, 2021.

[Chollet, 2019] François Chollet. On the measure of intelli-
gence. CoRR, abs/1911.01547, 2019.

[Cohen, 1990] William W. Cohen. An analysis of representa-
tion shift in concept learning. In Machine Learning, Pro-
ceedings of the Seventh International Conference on Ma-
chine Learning, Austin, Texas, USA, June 21-23, 1990,
pages 104–112. Morgan Kaufmann, 1990.

[Cropper and Dumančić, 2020] Andrew Cropper and Sebasti-
jan Dumančić. Learning large logic programs by going be-
yond entailment. In IJCAI 2020, pages 2073–2079, 2020.

[Cropper and Dumančić, 2022] Andrew Cropper and Sebasti-
jan Dumančić. Inductive logic programming at 30: A new
introduction. J. Artif. Intell. Res., 74:765–850, 2022.

[Cropper and Hocquette, 2023] Andrew Cropper and Céline
Hocquette. Learning logic programs by combining pro-
grams. In ECAI 2023, pages 501–508, 2023.

[Cropper and Morel, 2021] Andrew Cropper and Rolf Morel.
Learning programs by learning from failures. Mach. Learn.,
110(4):801–856, 2021.

[Curtis et al., 2022] Aidan Curtis, Tom Silver, Joshua B.
Tenenbaum, Tomás Lozano-Pérez, and Leslie Pack Kael-
bling. Discovering state and action abstractions for gen-
eralized task and motion planning. In AAAI 2022, pages
5377–5384, 2022.

[Devlin et al., 2017] Jacob Devlin, Jonathan Uesato, Surya
Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and
Pushmeet Kohli. Robustfill: Neural program learning under
noisy I/O. In ICML 2017, volume 70, pages 990–998, 2017.

[Ellis et al., 2018] Kevin Ellis, Lucas Morales, Mathias
Sablé-Meyer, Armando Solar-Lezama, and Josh Tenen-
baum. Learning libraries of subroutines for neurally-guided

bayesian program induction. In NeurIPS 2018, pages 7816–
7826, 2018.

[Ellis et al., 2019] Kevin Ellis, Maxwell I. Nye, Yewen Pu,
Felix Sosa, Josh Tenenbaum, and Armando Solar-Lezama.
Write, execute, assess: Program synthesis with a REPL. In
NeurIPS 2019, pages 9165–9174, 2019.

[Evans et al., 2021] Richard Evans, José Hernández-Orallo,
Johannes Welbl, Pushmeet Kohli, and Marek J. Sergot.
Making sense of sensory input. Artif. Intell., 293:103438,
2021.

[Franzen et al., 2024] Daniel Franzen, Jan Disselhoff, and
David Hartmann. The llm architect: Solving arc-agi is
a matter of perspective. 2024.

[Gulwani et al., 2017] Sumit Gulwani, Oleksandr Polozov,
Rishabh Singh, et al. Program synthesis. Foundations
and Trends® in Programming Languages, 4(1-2):1–119,
2017.

[Gulwani, 2011] Sumit Gulwani. Automating string process-
ing in spreadsheets using input-output examples. In POPL
2011, pages 317–330, 2011.

[Hodel, 2024] Michael Hodel. RE-ARC: Reverse-
engineering the abstraction and reasoning corpus,
2024.

[Katayama, 2008] Susumu Katayama. Efficient exhaustive
generation of functional programs using monte-carlo search
with iterative deepening. In PRICAI 2008, pages 199–210,
2008.

[Kim et al., 2022] Subin Kim, Prin Phunyaphibarn,
Donghyun Ahn, and Sundong Kim. Playgrounds
for abstraction and reasoning. In NeurIPS 2022 Workshop
on Neuro Causal and Symbolic AI (nCSI), 2022.

[Lei et al., 2024] Chao Lei, Nir Lipovetzky, and Krista A.
Ehinger. Generalized planning for the abstraction and rea-
soning corpus. In AAAI 2024, pages 20168–20175, 2024.

[Li et al., 2024] Wen-Ding Li, Keya Hu, Carter Larsen,
Yuqing Wu, Simon Alford, Caleb Woo, Spencer M Dunn,
Hao Tang, Michelangelo Naim, Dat Nguyen, et al. Com-
bining induction and transduction for abstract reasoning.
arXiv preprint arXiv:2411.02272, 2024.

[Lin et al., 2014] Dianhuan Lin, Eyal Dechter, Kevin Ellis,
Joshua B. Tenenbaum, and Stephen Muggleton. Bias refor-
mulation for one-shot function induction. In ECAI 2014,
pages 525–530, 2014.

[Lloyd, 2012] John W Lloyd. Foundations of logic program-
ming. Springer Science & Business Media, 2012.

[Manna and Waldinger, 1980] Zohar Manna and Richard J.
Waldinger. A deductive approach to program synthesis.
ACM Trans. Program. Lang. Syst., 2(1):90–121, 1980.

[Muggleton et al., 2015] Stephen H. Muggleton, Dianhuan
Lin, and Alireza Tamaddoni-Nezhad. Meta-interpretive
learning of higher-order dyadic Datalog: predicate inven-
tion revisited. Mach. Learn., (1):49–73, 2015.

[Muggleton, 1991] Stephen H. Muggleton. Inductive logic
programming. New Gener. Comput., 8(4):295–318, 1991.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Raedt, 2008] Luc De Raedt. Logical and relational learning.
Cognitive Technologies. Springer, 2008.

[Reiter, 1977] Raymond Reiter. On closed world data bases.
In Logic and Data Bases, Symposium on Logic and Data
Bases, Centre d’études et de recherches de Toulouse,
France, 1977, pages 55–76, New York, 1977.

[Rule et al., 2024] Joshua S. Rule, Steven T. Piantadosi, An-
drew Cropper, Kevin Ellis, Maxwell Nye, and Joshua B.
Tenenbaum. Symbolic metaprogram search improves learn-
ing efficiency and explains rule learning in humans. Nature
Communications, 15(1):6847, 2024.

[Rule, 2020] Joshua Stewart Rule. The child as hacker: build-
ing more human-like models of learning. PhD thesis, MIT,
2020.

[Shapiro, 1983] Ehud Y. Shapiro. Algorithmic Program De-
Bugging. Cambridge, MA, USA, 1983.

[Shi et al., 2022] Kensen Shi, Hanjun Dai, Kevin Ellis, and
Charles Sutton. Crossbeam: Learning to search in bottom-
up program synthesis. In International Conference on
Learning Representations, 2022.

[Silver et al., 2020] Tom Silver, Kelsey R. Allen, Alex K.
Lew, Leslie Pack Kaelbling, and Josh Tenenbaum. Few-
shot bayesian imitation learning with logical program poli-
cies. In AAAI 2020, pages 10251–10258, 2020.

[Summers, 1977] Phillip D. Summers. A methodology for
LISP program construction from examples. J. ACM,
24(1):161–175, 1977.

[Tian et al., 2019] Yonglong Tian, Andrew Luo, Xingyuan
Sun, Kevin Ellis, William T. Freeman, Joshua B. Tenen-
baum, and Jiajun Wu. Learning to infer and execute 3d
shape programs. In ICLR 2019, 2019.

[Wang et al., 2024] Ruocheng Wang, Eric Zelikman, Gabriel
Poesia, Yewen Pu, Nick Haber, and Noah Goodman. Hy-
pothesis search: Inductive reasoning with language models.
In ICLR 2024, 2024.

[Wind, 2022] J. S. Wind. 1st place solution. https://
www.kaggle.com/c/abstraction-and-reasoning-challenge/
discussion/154597, 2022. Kaggle Forums, accessed 21
May 2025.

[Witt et al., 2025] Jonas Witt, Sebastijan Dumancic, Tias
Guns, and Claus-Christian Carbon. A divide, align and
conquer strategy for program synthesis. J. Artif. Intell. Res.,
82:1961–1997, 2025.

[Xu et al., 2023] Yudong Xu, Elias B. Khalil, and Scott San-
ner. Graphs, constraints, and search for the abstraction and
reasoning corpus. In AAAI 2023, pages 4115–4122, 2023.

[Xu et al., 2024] Yudong Xu, Wenhao Li, Pashootan
Vaezipoor, Scott Sanner, and Elias Boutros Khalil. LLMs
and the abstraction and reasoning corpus: Successes, fail-
ures, and the importance of object-based representations.
Transactions on Machine Learning Research, 2024.

[Yang and Piantadosi, 2022] Yuan Yang and Steven T. Pianta-
dosi. One model for the learning of language. Proceedings
of the National Academy of Sciences, 119(5):e2021865119,
2022.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://www.kaggle.com/c/abstraction-and-reasoning-challenge/discussion/154597
https://www.kaggle.com/c/abstraction-and-reasoning-challenge/discussion/154597
https://www.kaggle.com/c/abstraction-and-reasoning-challenge/discussion/154597

