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Abstract
The inherent non-stationarity of time series in prac-
tical applications poses significant challenges for
accurate forecasting. This paper tackles the con-
cept drift problem where the underlying distribution
or environment of time series changes. To better
describe the characteristics and effectively model
concept drifts, we first classify them into macro-drift
(stable, long-term changes) and micro-drift (sudden,
short-term fluctuations). Next, we propose a unified
meta-learning framework called LEAF (Learning to
Extrapolate and Adjust for Forecasting), where an
extrapolation module is first introduced to track and
extrapolate the prediction model in latent space con-
sidering macro-drift, and then an adjustment module
incorporates meta-learnable surrogate loss to cap-
ture sample-specific micro-drift patterns. LEAF’s
dual-stage approach effectively addresses diverse
concept drifts and is model-agnostic, which can be
compatible with any deep prediction model. We
further provide theoretical analysis to justify why
the proposed framework can handle macro-drift and
micro-drift. To facilitate further research in this field,
we release three electric load time series datasets col-
lected from real-world scenarios, exhibiting diverse
and typical concept drifts. Extensive experiments
on multiple datasets demonstrate the effectiveness
of LEAF.

1 Introduction
Accurate time series forecasting [Hyndman and Athana-
sopoulos2018, Benidis et al.2022] is of great importance
in many domains, such as stock market [Cavalcante and
Oliveira2014, Shahi et al.2020], weather [Bi et al.2023],
energy [Yang et al.2023, Hong et al.2020], etc. The non-
stationary nature of the times series data in many scenar-
ios makes the model trained on the historical data outdated
and leads to unsatisfying forecasting on the new data [Liu et
al.2023b, Pham et al.2023]. Thus, there is a growing interest
in online time series forecasting, where the deployed model
can swiftly adapt to non-stationary environments over time.

In this paper, we address the challenge of concept drift in
online time series forecasting, a critical issue that arises when
the underlying data distribution or environment evolves con-
tinuously over time. The problem of concept drift has drawn
considerable attention in the literature, as reviewed in [Lu
et al.2019]. Traditionally, researchers have classified these
drifts based on observed data patterns. For example, [Liu et
al.2023b] categorizes concept drift into real and virtual drifts,
while other frameworks classify drifts as sudden, incremental,
gradual, or recurring [Lu et al.2019]. These categorizations
have historically been useful in distinguishing and understand-
ing different drift patterns in classification problems [Lu et
al.2019]. However, in time series forecasting, concept drifts of-
ten overlap and evolve within and across periods. For instance,
electric consumption may slowly increase year over year due
to gradual population growth and economic factors, while
abrupt changes might occur due to factors such as changes
in electricity pricing and holidays within the same annual cy-
cle. These complex drifts are typically interwoven, making it
challenging to classify them into existing categories.

Motivated by these observations, we propose a novel per-
spective on mitigating concept drift by distinguishing between
intra-period and inter-period drifts, which we term macro-
drift and micro-drift, respectively. As depicted in Figure 1,
macro-drift represents stable drifts that endure over relatively
long durations and across periods, where evolving trends may
be predictable—for instance, the demographic and economic
factors contributing to the monthly increase in traffic volume
at a crossroad. Conversely, micro-drift involves transient,
sample-level changes occurring within the broader context of
macro-drift, characterized by erratic and unpredictable varia-
tions from sample to sample. Instances of this include sudden
traffic surges during rainy days or holidays that fluctuate daily
within the same month.

The different characteristics of the drifts calls for differ-
ent learning strategies. Specifically, to address a stable, pre-
dictable, long-term macro-drift, we cannot simply apply the
current optimal model to future data, as the drift will carry
on, altering future data patterns. Therefore, we must investi-
gate the evolution of models over time and endeavor to pre-
dict the model to align with subsequent data. Most existing
works design different strategies, e.g., historical information
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Figure 1: (a) Illustration of Macro- and Micro-Drift of Time Series.
(b) Design Concept of LEAF.

retrieval [Arik et al.2022] and fast learning [Pham et al.2023],
to capture concept drifts within recent observed data failing to
adaptively update the model based on the influence range of
drifts and ignoring to adapt the model to the future data which
limits the generalization ability. On the other hand, addressing
micro-drifts, characterized by erratic and transient sample-
level changes within the same period based on macro-drift,
requires a more tailored approach. Close monitoring of data at
the sample level is crucial, necessitating real-time adjustments
to the model for each sample based on its divergence from the
current context. This meticulous monitoring allows for the
effective capture of sample-specific changes, ensuring that the
model remains responsive to rapid drifts within the period. In
this context, while numerous forecasting algorithms have been
proposed [Benidis et al.2022], there remains a pressing need
for a general and versatile model-agnostic approach capable
of effectively managing both macro-drifts and micro-drifts
across diverse prediction models.

In this paper, we tackle the concept drift problem in online
time series forecasting by addressing both macro-drifts and
micro-drifts through a unified meta-learning framework named
LEAF (Learning to Extrapolate and Adjust for Forecasting).
Designed to be model-agnostic, LEAF is compatible with a
variety of deep prediction models including MLPs, RNNs,
CNNs, and Transformer-based models. By learning a low-
dimensional latent embedding of the model parameters, LEAF
adeptly navigates the model dynamics in response to con-
cept drift, optimizing in a reduced space to both capture drift
characteristics and mitigate over-fitting. The framework is
articulated in two stages: an extrapolation stage to address
stable, long-term macro-drifts by learning and predicting their
evolving patterns, and an adjustment stage that responds to
unpredictable, short-term micro-drifts by adjusting model pa-
rameters with a sample-specific surrogate loss. Note that
macro-drift typically corresponds to the long-term dynamics
of time series, e.g., the dynamics of the trend or the seasonal
component. Unlike the naive seasonal-trend decomposition
which models these components directly, in the extrapolation
stage we model it by learning a more powerful and adaptive
meta-learned extrapolation network. This approach not only
helps to capture evolving trends and dynamics but also enables
real-time adjustment to abrupt changes, offering a comprehen-
sive solution to handling concept drift in online forecasting
scenarios. Our theoretical analysis, supported by empirical

evidence from real-world applications, underscores the effec-
tiveness of LEAF in improving forecasting accuracy in the
presence of concept drift. We test the LEAF framework on
various benchmark datasets extensively. It is incorporated into
different deep learning algorithms including MLP, RNN, CNN
and Transfornmer-based models. The experimental results
verify its universal effectiveness and robustness across various
scenarios and different forecasting algorithms 1.

2 Related Work

Following the early success of LSTM methods [Sutskever et
al.2014, Salinas et al.2020] and CNN-based methods (e.g.,
TCN [Bai et al.2018]), Transformer-based models have surged
to the forefront [Wen et al.2023] in forecasting, including
LogTrans [Li et al.2019], Reformer [Kitaev et al.2020], In-
former [Zhou et al.2021], Autoformer [Wu et al.2021], FED-
former [Zhou et al.2022], Quatformer [Chen et al.2022], etc.
Some recent developments with SOTA performance include
DLinear [Zeng et al.2023], PatchTST [Nie et al.2023], and
TimesNet [Wu et al.2022]. Unfortunately, all these deep learn-
ing algorithms cannot handle concept drift quite well.

A common approach to address concept drift involves
optimization-based meta-learning or model-based meta-
learning [Huisman et al.2021]. For example, DeepTime [Woo
et al.2022] treats different lookback windows and forecast
horizons as tasks, learning mappings from time indices to val-
ues that generalize effectively. [You et al.2021] treats historical
and future data as tasks and utilizes Model-Agnostic Meta-
Learning (MAML) [Finn et al.2017] to adapt the model’s
parameters. Techniques initially developed for sequential do-
main adaptation and generalization, such as DDG-DA [Li et
al.2022] and TDG [Liu et al.2023a], are also applicable to
online time series forecasting, where they adapt the model
to changing data distributions in various ways. In addition
to meta-learning approaches, self-adaptive methods [Arik et
al.2022] employ backcasting self-supervised objectives to en-
hance a model’s adaptability to future distributions during pre-
diction. FSNet [Pham et al.2023] introduces per-layer adapters
and associative memory to dynamically adjust layer outputs
and facilitate the learning of evolving patterns. SOLID [Chen
et al.2024] proposes a detection and adaptation framework,
which first quantifies model’s susceptibility to the distribution
shift, and then adapts the model with historical data sharing
similar contexts on the sample-level. RevIN [Nie et al.2023]
is a simple yet effective model-agnostic approach, which nor-
malizes input samples before modeling and then reverses the
process after making predictions. While these techniques col-
lectively offer rich strategies to mitigate the challenges posed
by concept drift, they fall short in adequately considering the
specialties of concept drift in time series data.

1Code, data and supplementary of the paper are available at https:
//github.com/vc12301/LEAF
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Figure 2: Illustration of online time series forecasting via LEAF.
LEAF is a meta-model that guides the optimization of the prediction
model fθ .

3 Methodologies
3.1 Problem Definition: Online Time Series

Forecasting via Meta-Learning
Time series forecasting. A time series is an ordered sequence
of observations denoted as Z = (z1, z2, · · · , zT ) ∈ RT×c,
where T is the total number of time steps, zi ∈ Rc, and c
is dimensionality. Time series forecasting aims at learning
a prediction model fθ to predict the next O-steps at time t

given a look-back window of length I as zt−I+1:t
f(·;θ)−−−→

zt+1:t+O, where θ is the model parameter. For simplicity, in
the remainder of the paper, we denote the input zt−I+1:t and
the output zt+1:t+O as x and y and a set of input and output
as X and Y, respectively.

Online time series forecasting. Time series data often
arrives in a streaming fashion with frequent concept drift. An
appropriate approach is to continuously update the model over
a sequence of periods. At each online forecasting period p, the
model accesses and learns from the most recent data available
and makes predictions for the future. Subsequently, the ground
truth is revealed, allowing for updating the model once again.
This cyclic process ensures that the model remains up-to-date
and adapts to the changing nature of the time series.

Meta-learning. Note that simply fitting a prediction model
to the most recent observed data is insufficient due to concept
drift, and the model needs to effectively generalize to future
data. Meta-learning, also known as learning to learn, is a
machine learning approach where a model learns how to learn
from experience or previous tasks, enabling it to quickly adapt
and generalize to new tasks. In the context of online time series
forecasting, our objective is to learn how to adapt to future
data. Our meta-learning based LEAF algorithm is trained
over a sequence of online forecasting periods, referred as the
meta-training phase, and evaluated over another sequence of
periods called the meta-test phase. The procedure is depicted
in Figure 2.

3.2 Learning to Extrapolate and Adjust
Model Overview. Formally, at each online forecasting period
p, we have a training set Dp

train = {Xp,Yp} and a test set
Dp

test = {X̃p, Ỹp}. Without loss of generality, we assume
that both the training set and the test set contain B samples.
Specifically, Xp = {x(i)

p }Bi=1 and X̃p = {x̃(i)
p }Bi=1. The main

objective of LEAF is to leverage knowledge gained from histor-

ical periods and generate model parameters to make accurate
forecasts on Dp

test in the presence of concept drift. To achieve
this goal, LEAF learns two functions: extrapolation E(·;ϕe)
and adjustment A(·;ϕa), addressing macro- and micro-drift,
respectively, to generate model parameters θp at period p. The
objective can be formulated as:

min
ϕe,ϕa

B∑
i=1

L(f(x̃(i)
p ;θ(i)

p ); ỹ(i)
p ),

s.t., θ(i)
p = A(θp, x̃

(i)
p ;ϕa), θp = E(θ∗

p−k:p−1;ϕe),

(1)

where the extrapolation function E(·;ϕe) is used to antici-
pate the macro-drift which takes as the optimal parameters
θ∗
p−k:p−1 from the previous k periods as input and infer pa-

rameters θp for period p, the adjustment function performs
sample-specific parameter adjustment considering micro-drift
within each sample, and L(·) is the prediction loss. Figure
3(b) illustrates the framework of LEAF.

Learning to Extrapolate in Latent Space
During the extrapolation stage, the meta-model LEAF aims
at inferring a prediction model based on previously optimal
models. To handle the possible concept drift especially macro-
drift, we need to update the model effectively. In practice,
we observe that often only a subset of patterns change in the
concept while the majority remain invariant. In other words,
we do not need to update all model parameters. To elegantly
model it, we introduce a latent embedding H , which can be
decoded to the model parameter θ, and the extrapolation is
performed on this latent space.

In period p, we have Dp
train = {Xp,Yp} and Dp

test =

{X̃p, Ỹp}. In particular, Dp
train is identical to the test data

Dp−1
test , as shown in Figure 2. In other words, if we optimize

the prediction model on Dp
train, we can obtain the optimal

model at period p− 1 in the latent space as follows:

H∗
p−1 = SGD(Hp−1,Ltrain,Dp

train), (2)

where SGD represents gradient descent on Dp
train with respect

to prediction loss. This optimization process leads to the opti-
mal latent embedding H∗

p−1. Subsequently, we introduce an
extrapolation network NN(·) that infers Hp based on the pre-
vious k optimal latent embeddings H∗

p−k:p−1 and a decoder
to generate model parameters, which can be formulated as:

Hp = NN(H∗
p−k:p−1), θp = Decoder(Hp). (3)

Moving forward period p + 1, Dp
test (or Dp+1

train) is revealed.
The above steps can be repeated to obtain H∗

p, Hp+1 and
θp+1. NN(·) can be any sequential model, e.g., LSTM and
Transformer. We utilize a simple LSTM here as default to
verify the capability of the framework itself. Besides, we
investigate the network selection of the extrapolation network
(see Supplementary A.6).

Learning to Adjust via Surrogate Loss
As the historical and forecast horizon of time series tend to
coexist within an identical domain, it is quite beneficial to per-
form model adaptation to capture the micro-drift at inference
(test) time according to the input X̃. To this end, we introduce
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Figure 3: Model Architecture. (a) Warm-up of the target prediction model. The initial latent embedding H init is randomly generated and
frozen during the warm-up phase, and the encoder is learned with prediction loss on warm-up dataset. (b) Meta-learning of LEAF which
consists of three meta-learnable modules: extrapolation, adjustment, and parameter decoder.

a meta-learnable surrogate loss that adjusts or modulates the
latent embedding Hp for each sample {x̃(i)

p }Bi=1 in Dp
test to

obtain sample-specific embeddings {H(i)
p }Bi=1. This surro-

gate loss is implemented using neural networks and applied
during the test phase, enabling the adjustment of the latent
embedding based on sample-specific characteristics.

The rationale behind this approach is that micro-drift is
often caused by external events, such as weather conditions or
holidays. Although data affected by micro-drift may exhibit
different patterns, they tend to deviate from their context in a
similar manner. For example, the electricity consumption pat-
tern during the summer typically differs from that in the winter,
while during holidays it tends to decrease regardless of the
season. By incorporating a meta-learnable surrogate loss, we
aim to capture and adjust for these sample-specific deviations
caused by micro-drift. Specifically, during the meta-training
phase, the surrogate loss is learned to capture and compen-
sate for different types of deviations. During the meta-testing
phase, the model utilizes the learned surrogate loss to adjust
the latent embedding based on the specific characteristics of
each individual sample. To achieve this, the loss network takes
into account the following three factors to capture sample-
specific micro-drift: 1) Sample and base prediction. The
sample itself x̃(i)

p and the base prediction with inferred model
parameters in extrapolation stage f(x̃

(i)
p ;θp) are introduced

as basic characteristics; 2) Base latent embedding. As we
optimize the model in a latent space, the inferred latent em-
bedding in the extrapolation stage Hp is passed to the loss
network, providing the contextual information and underlying
pattern; 3) Sample’s relationship to training data. Further-
more, we introduce a relation network to account for sample’s
relationship to its context. The relation network R(·) receives
embeddings of the sample x̃

(i)
p and training set Dp

train and
returns a vector representing their relationship:

R(i)
p = R

(
g(x̃(i)

p ),E
x
(j)
p ∼Dp

train

g(x(j)
p )

)
, (4)

where g(·) is an embedding function, and the training data

embedding is computed as the mean pooling of embeddings of
all samples in the training set. The relation network captures
the similarities or dissimilarities in their patterns, which is
valuable in capturing the micro-drift. To sum up, the final loss
network s(·) are defined as

Lsurrogate(x̃(i)
p ) = s

(
x̃(i)
p , f(x̃(i)

p ;θp),Hp,R
(i)
p

)
. (5)

The surrogate loss guides the adjustment of the latent embed-
ding for each sample using gradient descent, which can be
further decoded to obtain sample-specific model parameters:

H(i)
p = Hp − α∇Hp

Lsurrogate(x̃(i)
p ),

θ(i)
p = Decoder(H(i)

p ),
(6)

where α is the learning rate, and H(i)
p and θ(i)

p stand for
sample-specific latent embedding and model parameters, re-
spectively. Finally, the parameters are loaded to make forecasts
with f(x̃

(i)
p );θ(i)

p ).

Model Learning
In this subsection, we outline the training procedure of LEAF,
as depicted in Algorithm 1. We denote the parameters of
extrapolation module and adjustment module as ϕe and ϕa,
respectively. Additionally, ω represents the parameter of the
decoder.

At each period p, as shown in Figure 3(b), after extrap-
olation and adjustment stages (the “inner loop”), we make
predictions on Dp

test. The test set is then utilized to update
the parameters of meta-learners ϕa, ϕe, ω (the ”outer loop”).
More precisely, the optimization process of ”outer loop” is
performed by minimizing the following objective:

LLEAF = min
ϕe,ϕa,ω

B∑
i=1

Ltest(f(x̃(i)
p ;θ(i)

p ); ỹ(i)
p )

+ γ∥stopgrad(H∗
p)−Hp∥22,

(7)

where the first term is the prediction loss on the test set, the
second term regularizes the extrapolation in Eq. (3) to output
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Algorithm 1: Training Procedure of LEAF
Input: Number of meta-training periods P , data {Dp

train,D
p
test}

P
p=1,

learning rates η, α, µ, number of historical periods in extrapolation
stage k, prediction model f(·)

1 Randomly initialize the parameters ϕe, ϕa, and ω of LEAF ;
2 Letψ = {ϕe,ϕa,ω} ;
3 Randomly initialize the latent embeddingH0 ;
4 Create a queue Q of size k storing the recent k optimal latent embeddings;
5 Initialize Q as Q = [H0, · · · ,H0] ;
6 for p = 1, 2, · · · , P do
7 Evaluate inner-loop prediction loss Ltrain

p on training dataset Dp
train ;

8 Perform gradient descentH∗
p−1 =Hp−1 − η∇Hp−1

Ltrain
p ;

9 Q.Deque().Enque(H∗
p−1.detach())

10 ComputeHp and θp using Eq. (3); /* Extrapolation stage */
11 for x̃(i)

p in X̃p do
12 /* Adjustment stage: traverse all test inputs, and conduct

sample-specific adjustment */
13 Compute Lsurrogate(x̃(i)

p ) using Eq. (5);

14 H(i)
p =Hp − α∇HpL

surrogate(x̃(i)
p );

15 θ(i)
p = Decoder(H(i)

p ), and load θ(i)
p into f(·);

16 Evaluate prediction loss Ltest
p,i w.r.t. x̃(i)

p ;
17 end
18 Compute LLEAF using Eq. (7);
19 Perform gradient descentψ = ψ − µ∇ψLLEAF;
20 end

latent embedding that is close to the optimal latent embedding,
and γ is the coefficient of the regularization.

Recall that online forecasting often involves a warm-up
phase. Since we optimize the parameters of the prediction
model in the latent space, the traditional training strategy is
not directly applicable. To address this issue, we randomly
generate a latent embedding H init, which is then decoded into
parameters of prediction model using the decoder. During the
training procedure of the warm-up phase, H init remains fixed
and the decoder is trained using the prediction loss on warm-
up dataset. Subsequently, at the onset of the meta-learning,
we initialize H0 with H init and ω with the learned decoder
parameter from warm-up phase. Figure 3(a) illustrates the
warm-up strategy.

Remarks. LEAF generates the parameters for the last
few layers of the target prediction model. It is important to
note that LEAF is a model-agnostic framework, allowing dif-
ferent types of layers. For instance, when using DLinear as
the target prediction model, we could generate the parame-
ters for the linear layer. In the case of PatchTST, we could
generate the parameters for the last transformer block, which
includes the Query/Key/Value projection networks and a feed-
forward network. To apply LEAF to different types of layers,
we require the parameter shapes of the network layers. By
flattening the parameters to be generated, we can determine
the width of the decoder in LEAF. The generated parameters
are then appropriately reshaped and loaded into the respec-
tive layers, allowing for flexibility and compatibility across
different network architectures.

3.3 Theoretical Analysis
In this section, we provide a theoretical analysis for the sim-
plified scenarios to justify our LEAF framework, where we
assume a linear model ŷ = Wx for the forecasting task. Dur-
ing each online forecasting period p, the dataset {Xp,Yp}

is drawn from Pp, and we define that feature-target pair
z = [x;y]. Assuming that we need to forecast at the cur-
rent period P + 1, with optimal parameters obtained from
the preceding periods, and our objective is to learn weights
WP+1 that generalizes well at period P +1. In the simplified
analysis, we introduce two mild conditions to characterize
maco-drift and micro-drift.
Assumption 1 (Macro-drift). Pp+1, the data distribution for
period P + 1, is a composite of Pp and an unknown distribution P∆

that accounts for macro-drift and is independent of Pp.
Assumption 2 (Micro-drift). A transformed sample z′ =

f(z,P)+ϵ embodies micro-drift, and f(z,P) = z+αΣ− 1
2 (z−µ)

is a deterministic function with unknown scalar α responsible for the
incremental change within each sample considering its distribution
context; µ and Σ stand for mean and covariance of P; ϵ follows a
normal distribution N (0, diag(σ2)) denoting the stochastic noise.
We denote this data distribution as P ′.

We summarize the theoretical analysis results by the follow-
ing two propositions, with proofs provided in the Supplemen-
tary A.1.
Proposition 1. Given the complete datasets from preceding periods
{Xp,Yp}Pp=1, the associated optimal weights

{
W∗

p

}P

p=1
and the

input data {XP+1} for period P + 1. We approximate weights for
period P + 1 as

ŴP+1 = (X⊤
P+1XP+1)

−1(X⊤
PXPW

∗
P + Â), s.t.

Â = argmin
A

P−1∑
p=1

∥∥∥X⊤
p XpW

∗
p +A−X⊤

p+1Xp+1W
∗
p+1

∥∥∥2

F
.

This estimation exhibits much more generalization than the estimation
with the last period:

EPp+1

∥∥∥y − ŴP+1x
∥∥∥2

≪ EPp+1 ∥y −W∗
Px∥

2
.

Proposition 2. Considering the micro-drift, We possess the dataset{
X′

p,Y
′
p

}P

p=1
, the associated optimal weights

{
W∗

p

}P

p=1
and the

input data {X′
P+1} for period P + 1. A sample-level weight ad-

justment achieves less prediction error than weight estimation in
Proposition 1:

EP′
p+1

∥∥∥y′ − (ŴP+1 +Ψ)x′
∥∥∥2

< EP′
p+1

∥∥∥y′ − ŴP+1x
′
∥∥∥2

,

Ψ = Σ′
P+1,xx

− 1
2 eP+1e

⊤
P+1Σ

′
P+1,xx

− 1
2X′

P+1
⊤X′

P+1ŴP+1,

where eP+1 = x′ −µ′
P+1,x, µx and Σ′

xx are the mean and covari-
ance of X′

P+1, respectively.

Proposition 2 states that introducing a sample-dependent
weight modification can alleviate the micro-drift. It implies
that performing the sample-specific weight adjustment can re-
duce the prediction error in the context of sample-level micro-
drift.

Although our theoretical framework focuses on simplified
linear models, the insights are highly relevant to real-world
applications. This relevance is underscored by the fact that
in numerous practical scenarios, only the parameters in the
final linear layer of deep neural networks are updated, aligning
with our theoretical approach. Moreover, even for nonlinear
layers, practical evidence supports the effectiveness of our
extrapolation and adjustment principles, which is supported in
Table 3 in Supplementary where LEAF is applied to the last
linear layer of a complex deep model.
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Load-1 Load-2 Load-3 ETTh2 ETTm1 ECLModel Method MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

LSTM

Naı̈ve 2.0153 1.0274 1.8738 0.9860 3.9113 1.3920 0.8091 0.6315 2.2219 0.9526 0.1805 0.2726
Naı̈ve† 1.5716 0.8683 1.6839 0.9082 2.8948 1.1320 0.9067 0.6432 1.3905 0.7421 0.1527 0.2494
Retrain 1.4062 0.8158 1.5189 0.8562 2.7411 1.0829 0.8796 0.6367 1.2866 0.7109 0.1480 0.2449

Fine-tune 1.4352 0.8214 1.5186 0.8523 3.0643 1.1393 0.7684 0.6096 1.4441 0.7449 0.1546 0.2459
ER 1.4358 0.8215 1.5081 0.8482 3.0211 1.1323 0.7662 0.6072 1.4106 0.7352 0.1511 0.2441

DER++ 1.4338 0.8215 1.5012 0.8454 2.9956 1.1297 0.7541 0.6042 1.3953 0.7311 0.1509 0.2443
SOLID* 1.3790 0.7935 1.5009 0.8480 2.7509 1.0718 0.7574 0.6018 1.4257 0.7396 0.1461 0.2408
LEAF 0.6111 0.4728 0.6414 0.5057 1.7328 0.7993 0.7202 0.5874 0.7392 0.5447 0.1264 0.2187

DLinear

Naı̈ve 0.6664 0.4974 0.6507 0.4855 1.9434 0.8767 0.6790 0.5597 0.7506 0.5410 0.1277 0.2134
Naı̈ve† 0.6381 0.4805 0.6287 0.4766 1.8153 0.8191 0.7531 0.5738 0.6615 0.4982 0.1228 0.2075
Retrain 0.6240 0.4738 0.6098 0.4735 1.8067 0.8121 0.7448 0.5722 0.6652 0.4990 0.1224 0.2072

Fine-tune 0.7231 0.5210 0.6809 0.5095 2.1164 0.9080 0.6461 0.5491 0.7226 0.5220 0.1261 0.2106
ER 0.7135 0.5152 0.6756 0.5059 2.0879 0.8992 0.6603 0.5511 0.7083 0.5165 0.1248 0.2093

DER++ 0.7053 0.5100 0.6709 0.5026 2.0617 0.8907 0.6567 0.5495 0.6990 0.5131 0.1244 0.2093
SOLID* 0.6792 0.5046 0.6711 0.5004 1.9939 0.8700 0.6453 0.5482 0.7048 0.5078 0.1249 0.2092
LEAF 0.6039 0.4602 0.5866 0.4564 1.7172 0.7773 0.6450 0.5487 0.6128 0.4818 0.1144 0.2055

PatchTST

Naı̈ve 2.2288 1.0823 0.9735 0.6846 2.5516 1.0626 0.8103 0.6225 1.5935 0.7805 0.1429 0.2274
Naı̈ve† 0.7442 0.5700 0.6716 0.5250 1.8921 0.8887 0.7247 0.5813 0.6426 0.5089 0.1140 0.2081
Retrain 0.6614 0.5262 0.6233 0.5074 1.7995 0.8471 0.7206 0.5789 0.6412 0.5032 0.1130 0.2069

Fine-tune 0.9613 0.6424 0.8540 0.6193 2.7340 1.0980 0.6894 0.5736 0.8871 0.5940 0.1238 0.2142
ER 0.8658 0.6154 0.7813 0.5891 2.3152 0.9931 0.6901 0.5716 0.8088 0.5631 0.1199 0.2114

DER++ 0.8285 0.5972 0.7538 0.5731 2.2190 0.9625 0.6824 0.5677 0.7712 0.5479 0.1193 0.2104
SOLID* 0.8733 0.6188 0.7536 0.5801 2.3169 0.9946 0.6878 0.5706 0.7473 0.5435 0.1161 0.2095
LEAF 0.6466 0.5132 0.6233 0.5072 1.9230 0.8787 0.6746 0.5654 0.6673 0.5070 0.1154 0.2046

TCN

Naı̈ve 1.1432 0.7265 1.2994 0.8000 3.2940 1.2296 0.8959 0.6784 1.8551 0.8710 0.1541 0.2676
Naı̈ve† 0.9074 0.6417 1.0625 0.6972 2.6903 1.0952 0.8996 0.6648 1.2383 0.7156 0.1390 0.2534
Retrain 0.8590 0.6176 1.0154 0.6898 2.7245 1.0872 0.8790 0.6605 1.3906 0.7427 0.1368 0.2503

Fine-tune 0.9880 0.6590 1.1706 0.7359 3.0837 1.1796 0.8148 0.6391 1.4536 0.7633 0.1387 0.2523
ER 0.9416 0.6381 1.1591 0.7295 2.9623 1.1467 0.8189 0.6400 1.3063 0.7238 0.1413 0.2529

DER++ 0.9417 0.6337 1.1357 0.7160 2.9769 1.1511 0.8099 0.6381 1.2877 0.7141 0.1366 0.2504
FSNet 0.8114 0.5607 0.7315 0.5524 2.2620 0.9506 1.4667 0.8277 0.9732 0.6370 0.1655 0.2778

SOLID* 0.9589 0.6395 0.9836 0.6806 2.8407 1.1169 0.7643 0.6153 1.2735 0.7058 0.1333 0.2509
LEAF 0.6834 0.5222 0.6539 0.5200 1.8516 0.8474 0.7093 0.5827 0.9201 0.5976 0.1171 0.2327

TimesNet

Naı̈ve 1.2964 0.7812 0.9809 0.6851 2.3778 1.0097 0.9144 0.6737 1.8664 0.8842 0.2125 0.2962
Naı̈ve† 1.2444 0.7687 0.9790 0.6854 2.3823 1.0276 0.8817 0.6536 1.3899 0.7641 0.1794 0.2702
Retrain 1.1212 0.7375 0.9849 0.6911 2.2698 0.9986 0.8677 0.6510 1.3588 0.7469 0.1719 0.2646

Fine-tune 1.1328 0.7352 0.9965 0.6951 2.3408 1.0173 0.7952 0.6298 1.4097 0.7638 0.1656 0.2864
ER 1.1054 0.7347 0.9832 0.6905 2.3589 1.0131 0.8137 0.6369 1.3645 0.7526 0.1636 0.2549

DER++ 1.1816 0.7571 0.9677 0.6858 2.3132 1.0037 0.7981 0.6318 1.3786 0.7542 0.1655 0.2568
SOLID* 1.1053 0.7282 0.9418 0.6805 2.2778 1.0034 0.7384 0.6092 1.2052 0.7087 0.1607 0.2504
LEAF 0.6601 0.5029 0.6328 0.5053 1.7931 0.8247 0.6939 0.5806 0.7668 0.5486 0.1226 0.2186

Table 1: The final comparison performance averaged over meta-test and five random seeds. The bold values are the best results.

4 Experiments
In this section, we conduct experiments to answer two ques-
tions: (RQ1) Can LEAF outperform SOTA model-agnostic
concept drift adaptation methods in online time series forecast-
ing scenarios? (RQ2) How do different components of LEAF
contribute to resolving concept drift problems?

4.1 Experimental Settings
Datasets. We evaluate our method on six time series fore-
casting datasets. (1) ETT-small2 [Zhou et al.2021] dataset
contains observations of oil temperature along with six power
load features over two years. For ETTh2, the model update
interval (number of timesteps in each Dtrain) is 288, the look-
back window is 96 and the forecast horizon is 24. For ETTm1,
the model update interval is 672, the look-back window is
288 and the forecast horizon is 24. (2) ECL3 dataset records
hourly electricity consumption of 321 users over three years.
We randomly sample 12 users. The model update interval is
288, the look-back window is 96 and the forecast horizon is
24. (3) Load dataset contains three real-world univariate elec-
tric load benchmarks in different types of areas at 15-minute
intervals from 2020 to 2022. Figure 4 and Figure 5 ( in Sup-
plementary A.2) visually demonstrate the presence of concept
drift within each benchmark, including various types of macro
and micro drifts. More details of the dataset are included in
Supplementary A.2. Results with different forecast horizons

2https://github.com/zhouhaoyi/ETDataset
3https://archive.ics.uci.edu/dataset/321/

electricityloaddiagrams20112014

(ranging from 48 to 336) are shown in Table 5. Results on
more datasets (NASDAQ-100 and WTH from economic and
meteorological domains, respectively) are included in Supple-
mentary A.3 and case studies on the forecast abilies of LEAF
under concept drift are included in Supplementary A.8.

Baselines. We compare our method with multiple model-
agnostic baselines, including: (1) Naı̈ve: it only warms-up the
model and then freezes henceforth; (2) Naı̈ve†: it trains on
warm-up and meta-train dataset and then freezes at meta-test;
(3) Retrain: it updates the last few layers of backbone model
at each period by gradient descent using all available data; (4)
Fine-tune: it updates the last few layers of backbone model
at each period by gradient descent using only the data in the
period; (5) ER [Chaudhry et al.2019]: it employs a mem-
ory bank of most recent samples; (6) DER++ [Buzzega et
al.2020]: a variate of ER with knowledge distillation; and (7)
SOLID [Chen et al.2024]: a detection and adaptation frame-
work that first quantifies model’s susceptibility to distribution
shift and then adapts the model with historical data sharing
similar contexts on the sample-level. Since the original work
employs an offline approach, we implement a variant SOLID*
that continually fine-tunes the model parameters for fair com-
parison. We also compare our method with FSNet [Pham et
al.2023], a recent SOTA for concept drift in online time series
forecasting that uses TCN [Bai et al.2018] as the backbone and
incorporates an experience replay. More details of baselines
are included in Supplementary A.5.

Implementation Details. For all benchmarks, we split
the data into warm-up/meta-train/meta-test by the ratio of
0.1/0.6/0.3. In warm-up phase, we use Adam [Kingma and
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Ba2014] with fixed learning rate of 0.001 to optimize the
prediction model wrt the mean squared loss. The warm-up
epoch is 10 and warm-up batch size is 32. In meta-training
and meta-testing phases, at each period p, we use Adam with
learning rate of 0.001 to obtain the optimal latent embedding
and update parameters of meta-learners, the update epoch is 50
and 1, respectively. We implement Decoder, relation network
R(·), and loss network s(·) with MLPs. We perform cross-
validation on meta-train to select appropriate hyper-parameters
for all methods. We notice that LEAF is able to achieve com-
petitive results with minor hyperparameter tuning. We report
the hyperparameter sensitivity in Supplementary A.6. Besides,
all baselines are well-tuned using Bayesian optimization from
Neural Network Intelligence toolkit4. All experimental results
are the average of the five independent trials with different
random seeds.

4.2 Performance Comparison (RQ1)

The results of comparison performance are shown in Table 1
and the standard deviations are shown in Table 11. We apply
model-agnostic methods to five types of prediction models,
including LSTM [Hochreiter and Schmidhuber1997], DLin-
ear [Zeng et al.2023], PatchTST [Nie et al.2023], Times-
Net [Wu et al.2022] and TCN [Bai et al.2018]. We place
FSNet [Pham et al.2023] in TCN category since it employs a
TCN-based backbone. More details of backbone prediction
models are included in Supplementary A.5. We use mean
squared error (MSE) and mean absolute error (MAE) as eval-
uation metrics and they are averaged over meta-test periods.
From Table 1, we can observe that: (1) our proposed LEAF sig-
nificantly improves forecast performance in almost all cases,
especially in Load benchmarks, for different types of predic-
tion models. Overall, LEAF has a 14.4% reduction in error
compared with second-best method. Especially, LEAF has
an average decrease of 35.4% in MSE when using LSTM as
prediction model, 29.5% when using TimesNet; (2) LEAF
performs surprisingly well on Load-1, Load-2, and ETTm1
datasets, while the advantage is not so obvious on ECL dataset.
This is because time series from Load-1, Load-2, and ETTm1
datasets exhibit much stronger and more complex concept
drift; (3) Retrain, ER and DER++ show competitive perfor-
mance in ECL dataset, as time series in this dataset holds
strong seasonality and recurring patterns. These methods
incorporate a memory of samples which helps alleviate catas-
trophic forgetting and remembering recurring patterns in his-
tory. We note here ER and its variant are orthogonal to our
work which can be embedded easily into LEAF. Moreover,
we report the running time complexity of different fine-tune
methods in Tables 7, 8 and 9, wherein LEAF is not signif-
icantly more computationally expensive than Fine-tune, de-
spite its superior performance compared to Fine-tune. Besides,
sample-specific adjustment does not significantly contribute
to the computational burden, as the adjustment is performed
on latent space for one iteration. The complete running time
comparison experiments are in Supplementary A.4.

4https://nni.readthedocs.io/en/stable

Load-1 ETTm1Model Method MSE MAE MSE MAE

DLinear

Fine-tune 0.7231 0.5210 0.7226 0.5220
Latent fine-tune 0.6683 0.5057 0.7019 0.5196

Latent fine-tune + A 0.6562 0.5045 0.6745 0.5295
EN 0.6578 0.4931 0.6723 0.5066

EN + A 0.6039 0.4602 0.6128 0.4818

PatchTST

Fine-tune 0.9613 0.6424 0.8871 0.5940
Latent fine-tune 0.8103 0.6068 0.7546 0.5473

Latent fine-tune + A 0.6783 0.5198 0.6823 0.5143
EN 0.7539 0.5800 0.7334 0.5410

EN + A 0.6466 0.5132 0.6673 0.5070

Table 2: Ablation study results on Load-1 and ETTm1 with prediction
models of DLinear and PatchTST. The bold values are the best results.

4.3 Ablation Studies (RQ2)

We conduct ablation studies to validate the effectiveness of
extrapolation and adjustment modules. We evaluate the perfor-
mance of five variants of LEAF upon DLinear and PatchTST.
Considering that LEAF can be treated as an advanced method
of fine-tuning, we begin with the most basic fine-tuning
method and gradually incorporate designed modules in LEAF
to construct thevariants. The variants include: (1) Fine-tune
that is foundation of LEAF and is performed in the parameter
space; (2) Latent fine-tune performs fine-tuning in the latent
space that uses an average of last five H∗ instead of the ex-
trapolated latent embedding H; (3) EN that introduces the
extrapolation module; (4) Latent fine-tune + A that incorpo-
rates the adjustment stage; and (5) EN + A that incorporates
the adjustment stage on extrapolation module and is identical
to standard LEAF.

The results are shown in Table 2. We observe first that
fine-tuning model in the latent space (Latent fine-tune) can
significantly improve the forecast performance in almost all
benchmarks. This outcome verifies that optimizing model in
a low-dimensional latent space is rational. Furthermore, EN
introducing our proposed extrapolation module surpasses the
performance of Latent fine-tune, thereby confirming its effec-
tiveness in extrapolating the macro-drift. Lastly, the inclusion
of the sample-specific adjustment yields a further enhancement
in predictive performance, demonstrating the effectiveness of
this stage in alleviating micro-drift. Moreover, we plot predic-
tion results of different variants in Figure 7 (see Supplementary
A.7).

5 Conclusion and Future Work
In conclusion, our proposed LEAF framework offers a promis-
ing solution to the concept drift problem in online time series
forecasting. By integrating meta-learning, LEAF enhances
the capabilities of deep prediction models by acquiring the
ability to extrapolate and adapt to macro- and micro-drift, re-
spectively. This model-agnostic framework can be applied to
various deep prediction models, making it versatile and appli-
cable in different domains. In the future, we plan to extend our
framework to handle more intricate concept drift scenarios,
and one potential direction is the combination of LEAF and
continual learning methods.
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