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Abstract

Bundle recommendation aims to provide users with
a one-stop service by offering a collection of re-
lated items. However, these systems face a signifi-
cant challenge, where a small portion of bundles ac-
cumulate most interactions while the long-tail bun-
dles receive few interactions. This imbalance leads
to poor performance for long-tail bundles despite
their potential to satisfy diverse user needs. Exist-
ing long-tail item recommendation methods fail to
effectively address this problem, as long-tail bun-
dle recommendation requires not only capturing the
user-bundle interactions but also the item composi-
tions in different bundles. Therefore, in this paper,
we propose Composition-Aware Long-tail Bundle
Recommendation (CALBRec), which leverages the
inherent composition patterns shared across differ-
ent bundles as valuable signals for further repre-
sentation augmentation and recommendation en-
hancement. Specifically, to solve the complexity
of modeling shared composition patterns due to
the exponential explosion caused by the growing
number of items and bundle sizes, we first intro-
duce a composition-aware tail adapter to capture
the shared composition patterns and then adaptively
integrate them into individual bundle representa-
tions. Moreover, to mitigate the impact of noise in
user-bundle interaction data, we propose to map the
bundle representations into a set of learnable proto-
types, and we further propose a prototype learning
module to combine the composition patterns with
interaction signals for tail bundles. Extensive ex-
periments on three public datasets demonstrate that
our method can improve the performance on bun-
dle recommendation significantly, especially on the
long-tail bundles.

1 Introduction

Bundle recommendation aims to provide a collection of items
as a convenient option to meet specific user demands [Cao
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Figure 1: (a) Long-tail distribution of bundles (Bundle Count, blue
line) and recommendation performance (Recall @20, red) with vary-
ing interaction frequencies. (b) Illustration of composition patterns
between head and tail bundles which provide stable signals for en-
hancing tail bundle representations.

et al., 2017a; Chen et al., 2019a; Hu et al., 2020; Zheng
et al., 2021; Zheng et al., 2023]. Recently, bundle recom-
mendation has gained significance attention in many online
applications such as e-commerce and music streaming plat-
forms, as it offers one-stop convenience for users and aligns
with widely adopted marketing strategies [Ma et al., 2022;
Chang et al., 2023].

In recent years, bundle recommendation has seen substan-
tial progress mainly through matrix factorization-based ap-
proaches [Pathak ef al., 2017; Cao et al., 2017a; Chen ef al.,
2019b; Brosh et al., 2022; He et al., 2019] and graph learning-
based approaches [Deng et al., 2020; Zhang et al., 2022;
Yu et al., 2022; Wei et al., 2023b; Ren et al., 2023]. Two-
view graph-based modeling has emerged as an effective ap-
proach through a user-bundle view for modeling user-bundle
interactions and a user-item view for modeling items compo-
sitions in different bundles. However, these approaches face
critical limitations in handling long-tail bundle recommenda-
tion problem, which is very common in real-world scenar-
ios. As shown in Figure. 1(a), we observe a highly skewed
distribution of bundle interactions on Youshu [Chen et al.,
2019b] dataset, where a small portion of bundles (head bun-
dles) accumulates most interactions while the majority (tail
bundles) receives few interactions. The performance curve of
CrossCBR [Ma et al., 2022], which is a representative bundle
recommendation method, plotted in the same figure reveals
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significant performance disparity across bundles with vary-
ing interaction frequencies.

Indeed, some methods for long-tail item recommendation
have already been conducted. For example, data augmen-
tation methods adjust the training data distribution through
resampling [Zhang and Hong, 2021; Park and Tuzhilin,
2008] or synthetic data generation [Tang er al., 2020; Wu
et al., 2019] to enhance the interaction feature of tail items.
Methods incorporating auxiliary information leverage item
attributes [Zhu et al., 2020; Ouyang et al., 2021] or textual
descriptions [Liang et al., 2020] to enrich tail item features.
However, these approaches fail to address the unique chal-
lenges in long-tail bundle recommendations where both user-
bundle interactions and item compositions in different bun-
dles need to be jointly considered.

To solve the above problems, we explore the potential of
leveraging bundle composition patterns as a source of valu-
able signals for enhancing long-tail bundle recommendations.
Specifically, we observe that different bundles naturally share
common item composition patterns that reflect similar con-
sumption behaviors across various scenarios (e.g., shared
functional elements and usage contexts), as illustrated in Fig-
ure 1(b). Along this line, we propose to leverage these in-
herent patterns as stable signals for enhancing long-tail bun-
dle representations. To achieve this goal, we need to address
two notable challenges: (1)Composition Pattern Complex-
ity. The complexity stems from the exponential explosion
caused by the growing number of items and bundle sizes,
complicating the modeling of composition patterns that are
shared across different bundles. (2)Long-tail Noisy Feature
Integration. The limited interaction records of tail bundles
introduce noise from sparsity, leading to biased and under-
represented behavior features [Wei er al., 2023al. When in-
tegrating these noisy features into the modeling process, the
noise can propagate between different modeling views, which
can further distort the bundle representations and degrade the
model performance.

Therefore, in this paper, we propose Composition-Aware
Long-tail Bundle Recommendation (CALBRec), a novel
framework that jointly tackles the above challenges. Specifi-
cally, to address the Composition Pattern Complexity prob-
lem, we design a composition-aware tail adapter, which can
model the shared composition patterns across bundles and
adaptively integrate these patterns into bundle representa-
tions. Specifically, we employ an adaptive integration mecha-
nism that minimizes pattern influence for head bundles while
enhancing long-tail bundle representations, which ensures
that tail bundles can benefit from shared composition pat-
terns while preserving the effective representations of fre-
quently interacted bundles. To tackle the Long-tail Noisy
Feature Integration, we introduce a prototype learning mod-
ule. Through mapping bundle representations from dual
views into a set of learnable prototypes, this module achieves
robust feature integration by comparing bundle assignments
in a shared prototype space. This module enables effective
representation learning for long-tail bundles despite their lim-
ited and biased interaction data. Our contributions are sum-
marized as follows:

* Problem. We explicitly address the long-tail challenge in
bundle recommendation, a challenging problem of signifi-
cant impact in real-world scenarios.

* Method. We propose CALBRec, adaptively leveraging
item composition patterns across different bundles to en-
hance long-tail bundle recommendation.

* Experiments. Extensive experiments on three public
datasets validate that our method achieves significant im-
provements, particularly for long-tail bundles.

The code is available at https://anonymous.4open.science/r/
CALBRec-A291.

2 Related Works

Bundle Recommendation. Prior work in bundle recom-
mendation has mainly progressed along matrix factorization-
based methods [Pathak et al., 2017; Cao et al., 2017a] and
graph learning-based methods [Deng et al., 2020; Chang et
al., 2020; Bai er al., 2019]. Particularly, bundle recommen-
dation research has explored various tasks, including accu-
rate recommendation of existing bundles [Cao et al., 2017b],
personalized bundle creation [Deng et al., 20211, leveraging
conversational approaches [He et al., 2022], increasing diver-
sity [Jeon et al., 2023], and improving recommendations for
new bundles [Jeon er al., 2024]. However, the long-tail distri-
bution challenge in bundle recommendation, which is preva-
lent in real-world scenarios, remains under-investigated. Ex-
isting methods typically assume sufficient historical interac-
tions for all bundles, making it difficult to learn effective rep-
resentations for tail bundles with limited interactions, leading
to biased and underrepresented bundle features. Our work ad-
dresses this limitation by developing a framework specifically
designed for long-tail bundle recommendations.
Graph-based Long-tail Methods. The problem of long-
tailed distributions in recommendation systems has motivated
extensive research, with significant efforts made to address
the issue of insufficient interactions for tail items [He et al.,
2020; Liu et al., 2021; Deng et al., 2020; Zheng et al., 2022b;
Chang et al., 2023]. Existing solutions typically fall into
two categories: data augmentation methods and auxiliary
information-based methods. Data augmentation methods aim
to adjust the training data distribution to enhance the inter-
action features of tail items. Approaches such as resam-
pling [Zhang and Hong, 2021; Park and Tuzhilin, 2008] bal-
ance the interaction distribution, while synthetic data gen-
eration methods [Tang et al., 2020; Wu et al., 2019] cre-
ate additional samples to augment the characteristics of tail
items. In contrast, auxiliary information-based methods fo-
cus on enriching the features of tail items by incorporating
supplementary data, such as item attributes [Zhu et al., 2020;
Wu et al., 2024] or textual descriptions [Liang et al., 2020;
Zheng et al., 2022al, to improve their representation in the
recommendation process. However, existing long-tail meth-
ods are limited in bundle recommendation scenarios, as they
primarily focus on single-item interactions without consider-
ing the complex item compositions within bundles. Our work
addresses this gap by developing a framework that jointly
models both user-bundle interactions and bundle composition
patterns in the long-tail context.
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3 Preliminary

In this section, we present the problem formulation for bundle
recommendation and the foundational model structure with
dual-view design and embedding propagation mechanisms.

3.1 Problem Formulation

Given a set of users U = {uy,us, - ,up}, a set of
bundles B = {by,ba, -+ ,by}, and a set of items Z =
{i1,42, -+ ,i0}, where M, N, and O are the number of
users, bundles, and items, respectively. The user-bundle in-
teractions, user-item interactions, and bundle-item affiliations
are denoted as Xyrxny = {zw|u € U,b € B}, Yyuxo =
{yuilu € U,i € T}, and Znwo = {zpi|b € B,i € T}, re-
spectively. Tup, Yui, 26 € {0, 1}, where 1 represents an inter-
action between the user-bundle or user-item pair, or the item
belongs to a certain bundle. Note that since we deduplicate
the historical bundle and item interactions for each user, each
element of X and Y is a binary value rather than an integer.
In addition, X and Y are separately generated, where users
are allowed to directly interact with both bundles and individ-
ual items. Therefore, X and Y contain different information,
which heuristically enables the cooperative effect between the
two different views. The goal of bundle recommendation task
is to learn a model from the historical {X,Y, Z} and predict
the unseen user-bundle interactions in X.

3.2 Base Model

The base model employs a two-view graph structure to learn
representations through user-bundle interactions and user-
item interactions. Both views utilize LightGCN [He et al.,
2020] for embedding propagation, formalized as:

- % ™

where e( ) represents node embeddings at layer k, and N,
denotes the neighbor set of node v.

LightGCN(v, Ny, k)

User-bundle View. For user-bundle interactions, at layer
k, user and bundle embeddings hgk) and hgk) are obtained
through LightGCN propagation with their respective neigh-
bor sets AV, and N;,. The final embeddings are computed by:

hy Zk—i—l v Zk+1 ;"

k=0 k=0
where h,,, h, € R? represent user and bundle embeddings.

User-item View. Similarly for user-item interactions, em-

beddings a,(b and a( ) are obtained through LightGCN prop-
agation with nelghbor sets NV and N;, respectively. The final

embeddings are computed by:

u—zm 1(1k7

where a,,,a; € R? represent user and item embeddings, re-
spectively. For each bundle b, its representation a; is ob-
tained by averaging embeddings of its constituent items with
a, = ﬁ Y ic N7 s N denotes the set of items in bundle b.

K
1w

k+11’

ai—

Prediction Scores.
views, we compute:

hup = h, hy,

where h,; and a,,; denote the matching scores in user-bundle
view and user-item view, respectively.

Based on the embeddings from both

.
Aup = A, ayp, (D

4 Methodology

In this section, we outline the overall architecture of the
CALBRec framework (as shown in Figure 2) and provide
a detailed description of its key components. The main
idea of CALBRec is leveraging composition patterns between
head and tail bundles to enhance bundle representations for
long-tail bundle recommendation. Specifically, we develop a
composition-aware long-tail adapter that enhances tail bundle
representations by modeling shared composition patterns and
integrating them into bundle representations through an adap-
tive fusion mechanism. Furthermore, we propose to map the
bundle representations into a set of learnable prototypes and
introduce a prototype learning module to combine the compo-
sition patterns with interaction signals for tail bundles. These
modules are integrated into a unified learning framework.

4.1 Composition-aware Long-tail Adapter

We first model the shared compositional patterns across bun-
dles and then personalize feature fusion, enabling tail bundles
to benefit from patterns learned from head bundles while pre-
serving the strong features of frequently interacted bundles.

Compositional Pattern Modeling and Adaptive Integra-
tion. We first construct a global feature vector t, which is
learnable and shared across all bundles to capture general
composition patterns. Then, for each bundle b, we devise a
personalization function ¢ that transforms t into a localized
feature vector ty, by considering both the representation of
bundle b and its constituent items:

tf = ¢(hf,ak af ... af th), 2

lz ’ tm?
where h’bC is the representation of bundle b in the user-bundle
view at layer k, and a¥ represents the feature of item i in the
user-item view that constitutes bundle b.
To personalize the global patterns to each bundle, we use a
personalized function with complementary adaptation opera-
tions, while adjusting the degree of pattern integration:

tf = ¢ (hf,al,ak, ... af t5) = (vE+1) 0 th+ 6L,

where 'yb € R% modulates the importance of different pat-
tern dimensions through scaling, and ﬁf € R% provides
bundle-specific adjustments through shifting. The scaling
factor is centered around one through (vf + 1) to maintain

the original pattern information while allowing for adaptive
adjustments. These adaptation vectors are computed as:

v = LeakyReLU [ W5 hy + W5~ Z al |,

7
1€{i1,82,...,0m }

E k
a,; s

i€{i1,92,...,0m }

k, : k,
B = LeakyReLU | W5 'hy + W2
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Figure 2: Overview of CALBRec. The framework consists of a dual-view structure with user-bundle and user-item views for representation
learning, a composition-aware long-tail adapter for shared composition patterns modeling, and a dual-view prototype learning module that

integrates composition patterns with interaction signals.

where WH* € R *dx are Jearnable parameters that trans-
form the composition context into adaptation signals. This
design enables each bundle to flexibly harness shared pat-
terns, where the scaling operation governs the degree of pat-
tern integration, and the shifting operation allows for targeted
adjustments based on the compositional context.

However, not all bundles have the same need for com-
plementary features. Head bundles with abundant interac-
tions have already learned reliable representations from rich
user feedback, while tail bundles with limited interactions
can benefit more from the compositional patterns shared with
similar head bundles. In the following, we will describe how
CALBRec achieves differentiated control over feature fusion
for head and tail bundles.

Frequency-aware Enhancement Control. To achieve this
differentiated control, we design a frequency-aware enhance-
ment mechanism that applies distinct strategies to head and
tail bundles. For head bundles, we maintain their well-learned
representations by minimizing additional pattern influence:

Vb € Bpead : tp — 0.

This constraint ensures that the final representations of head
bundles primarily rely on their rich interaction signals.

For tail bundles, we enhance their representations through
controlled pattern integration: a, = a; + At,. Here, a; de-
notes the original representation and A controls the degree of
enhancement. This enhancement allows tail bundles to incor-
porate useful patterns while preserving their original charac-
teristics, with the user-item view score computed using the
enhanced representation for tail bundles as a,;, = aféb.

Through this frequency-aware control mechanism, we can ef-
fectively improve the representation quality of tail bundles
while maintaining the strong performance of head bundles.

4.2 Dual-view Prototype Learning

To mitigate the impact of noise in user-bundle interaction
data, we introduce a prototype learning module to map the
bundle representations into a set of learnable prototypes and
further combine the composition patterns with interaction sig-
nals for tail bundles.

First, we construct K trainable prototype vectors C &
REXD o represent shared features at the bundle level, where
D is the feature dimension. Instead of directly mapping bun-
dle embeddings to the prototypes with maximum dot similar-
ity, we use a soft assignment approach to assign bundles to
multiple prototypes, which can mitigate the impact of mis-
matched mappings for biased representations of tail bundles.
Specifically, we introduce assignment matrix Q € RE*XK,
where each element Qp ,,, represents the assignment strength
between the bundle b and prototype m. Then, we introduce
the following constraints:

1
Q'lp = }11{, Qlg = ElB,

where 15 and 1k represent vectors of ones in the number
of bundles and prototypes, respectively. These dual con-
straints ensure that each prototype receives equal total assign-
ment weight from bundles and each bundle distributes equal
weights across prototypes. This balanced assignment mech-
anism mitigates representation bias for tail bundles by avoid-
ing forced one-to-one prototype mappings and allowing them

1



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

to leverage interaction patterns from other bundles assigned
to the same prototypes.

The solution satisfying these constraints can be obtained
through the Sinkhorn-Knopp algorithm [Cuturi, 2013], which
achieves fast convergence through iterative row and column
normalization. Specifically, we establish initial assignment
relationships by computing dot-product similarity between
bundle embeddings and prototype vectors. Then we obtain
Q through the Algorithm 1.

For the obtained assignment matrix Q, we further convert
it into a probability distribution through a temperature-scaled
softmax operation:

L en(Qun/7)
K exp(Qup/T)

where Py, ,,, represents the probability of assigning bundle
b to prototype m, and the temperature parameter 7 controls
the concentration of the distribution: a smaller 7 produces
more concentrated distributions that help reduce noise im-
pact, while a larger 7 encourages uniform distributions to pre-
serve more association information.

The final prototype assignments are optimized through a
contrastive objective detailed in Section 4.3.

Algorithm 1 Sinkhorn-Knopp Algorithm

Require: Initial probability matrix Q € RF* X
Ensure: The optimal assignment matrix Q
while not converged do
Row normalization: Q <+ Qdiag(BQ%K)
Column normalization: Q <+ diag(zq;)Q
end while

Q< Q

4.3 Model Optimization

Recommendation Objective. The Bayesian Personalized
Ranking (BPR) loss [Rendle er al., 2012] is used as the
main loss. The prediction score combines both views as
Yub = hup + ayp, where hyp and ayy, are defined in Eq. (1).
The BPR loss is formulated as:

A A

»CBPR = —In U(gub‘*' N gub‘ )7
(u,bF,b= )~pdata
where pgqtq represents the user-bundle interaction distribu-
tion, bt and b~ denote the interacted and non-interacted bun-
dles, respectively.

Composition-aware Adaptation Objective. In order to
achieve the personalized composition pattern integration pro-
posed in Section 4.1, we introduce a corresponding optimiza-
tion objective. The loss function is defined as:

¢

L= > > [ty "3,
bEBpead k=1

where I is the indicator function for head bundles (1 for

head, O for tail), ¢ denotes the number of network layers, and

tf ~1 is the pattern representation obtained through the adap-
tive fusion mechanism in Section 4.1 at layer k& — 1.

Dataset  #U #1 #B #U-1 #U-B  #Avg.l/B
Youshu 8,039 32,770 4,771 138,515 51,377 37.03
NetEase 18,528 123,628 22,864 1,128,065 302,303  77.80

iFashion 53,897 42,563 27,694 2,290,645 1,679,708  3.86

Table 1: Dataset Statistics.

This objective implements the frequency-aware enhance-
ment control proposed in Section 4.1 by minimizing the pat-
tern representation norm of head bundles: for head bundles,
the influence of additional patterns is limited through Lo
norm constraints; for tail bundles, no constraints are imposed,
allowing them to fully utilize pattern enhancement obtained
through adaptive fusion.

Prototype Contrastive Objective. Following Section 4.2,
let Q" and Q® denote the assignment matrices for bun-
dles from the user-bundle view and user-item view, respec-
tively. The corresponding probability distributions after
temperature-scaled softmax normalization are denoted as P"
and P?, respectively. We formulate the prototypical con-
trastive loss between views as:

K
Zb(hba ab) = - Z Qg,m 1Og P;},Wm

m=1

The cross-entropy loss encourages bundle representations
from both views to be consistently assigned to the shared
prototype space, where each prototype serves as a learnable
center for capturing common patterns across bundles. By
minimizing the discrepancy between assignment distributions
Qh and P, we enable bundles with similar characteristics
to be mapped to similar prototypes, regardless of their inter-
action frequencies. The bidirectional consistency constraints
(hy — ap and a, — hy) further ensure that the learned proto-
types effectively integrate information from both interaction
patterns and compositional structures. The overall prototype
contrastive loss is formulated as:

1 n
['prolo = % Z[&)i (th 5 abqv) + €b1 (abi 3 hbz )}7

i=1

Overall Objective.
all three objectives:

The final objective function combines

L= £BPR + )\Eproto + 7£m7

where ) and «y are hyperparameters that balance different ob-
jectives. This multi-objective optimization framework both
ensures overall recommendation performance and addresses
the long-tail challenge through the two specially designed ob-
jectives. The hyperparameters are tuned on the validation set
to balance the contribution of different objectives.

5 Experiments

In this section, we first introduce the experimental settings
and then compare CALBRec with state-of-the-art methods.
We further analyze model components through ablation stud-
ies and examine key parameter effects.
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Youshu NetEase iFashion

Model Recall@20 nDCG@Q20 Recall@20 nDCG@20 Recall@20 nDCG@20

Head Tail All |Head Tail All |Head Tail All |Head Tail All |Head Tail All |Head Tail All
LightGCN 3001 .0606 .2425|.1666 .0276 .1382|.0664 .0339 .0496|.0391 .0186 .0254|.1261 .0830 .0837(.0789 .0611 .0612
Over-sampling |.2895 .0585 .2340|.1644 .0272 .1364|.0662 .0336 .0494|.0401 .0186 .0258|.1255 .0826 .0833|.0799 .0619 .0620
Down-sampling |.2683 .0542 .2169|.1321 .0219 .1096|.0610 .0298 .0461|.0352 .0170 .0221|.1184 .0779 .0786|.0757 .0586 .0587
MeLU 2828 0571 .2286|.1510 .0250 .1253|.0626 .0320 .0467|.0355 .0168 .0230|.1188 .0782 .0789|.0715 .0553 .0555
MIRec 2883 .0582 .2330|.1535 .0254 .1274|.0638 .0326 .0477|.0361 .0171 .0234|.1211 .0797 .0804|.0727 .0563 .0564
MGL 3109 .0628 .2513|.1756 .0291 .1457|.0743 .0379 .0555(.0439 .0208 .0285|.1410 .0928 .0937|.0885 .0685 .0686
BundleNet 2344 0473 .1895|.1356 .0225 .1125|.0484 .0098 .0391|.0242 .0040 .0201 |.0943 .0621 .0626|.0576 .0446 .0447
BGCN 3204 .0671 .2615|.1857 .0342 .1554|.0950 .0519 .0673|.0475 .0247 .0360|.1104 .0727 .0733|.0684 .0530 .0531
CrossCBR .3471 .0701 .2806|.2015 .0334 .1672|.1146 .0585 .0856|.0588 .0280 .0433|.1706 .1123 .1133|.1128 .0873 .0875
CoHeat .3305 .0585 .2676|.1898 .0262 .1576|.1181 .0561 .0771(.0598 .0270 .0455|.1741 .1146 .1156(.1129 .0874 .0876
CALBRec 3475 .0867 .2852|.2041 .0402 .1695|.1150 .0705 .0858|.0589 .0383 .0462|.1745 .1166 .1176|.1142 .0884 .0886

Table 2: Performance comparison of CALBRec and baseline methods on three real-world datasets. Bold and underlined values indicate the

best and the second best accuracies, respectively.

5.1 Experimental Setup

Datasets. We selected three real-world bundle recommenda-
tion datasets that represent diverse bundle recommendation
scenarios: Youshu [Chen et al., 2019b] for book bundles;
NetEase [Cao et al., 2017a] for music playlists, and iFash-
ion [Chen et al., 2019c] for fashion outfits. The detailed
statistics of the datasets are listed in Table 1. These datasets
were selected for their varying bundle sizes and interaction
sparsity patterns, enabling comprehensive evaluation of long-
tail bundle recommendation. Following [Ma et al., 2022;
Chang et al., 2020; Deng e al., 2020], we split each dataset
into training/validation/testing sets at a 7:1:2 proportion.
Evaluation Metrics. We evaluated the recommendation per-
formance using Recall@k and nDCG@*k. These metrics were
chosen because Recall@k directly measures hit rate in top
recommendations while nDCGQF considers ranking qual-
ity [Deng et al., 2020]. We set k to 20. Following the Pareto
Principle [Box and Meyer, 1986; Reed, 2001], we separated
bundles into head (top 20% most frequent) and tail (remain-
ing 80%) groups to analyze model performance with different
interaction frequencies. To ensure reliability, we conducted
each experiment 5 times with different random initializations
and reported average performance with standard deviations.

Baseline Methods. To fully demonstrate the effectiveness
of CALBRec on long-tail bundle recommendation, we com-
pared CALBRec with both bundle recommendation methods
and long-tail methods.

Bundle Recommendation Methods:

¢ BundleNet [Deng er al., 2020]: This method builds a user-
bundle item tripartite graph, leverages GCN to learn the
representations, and applies multi-task learning.

* BGCN [Chang et al., 2020; Chang et al., 2023]: This
method that leverages graph convolutional networks to cap-
ture the complex interactions in bundle recommendation.

e CrossCBR [Ma et al., 2022]: A bundle recommendation
method that integrates cross-domain information to im-
prove recommendation performance.

» Coheat [Jeon ef al., 2024]: A method designed for cold-

start settings, which aims to handle the challenge of recom-
mending new bundles with limited historical data.

Long-tail Recommendation Methods:

* Over-sampling [Amirruddin et al., 2022]: This strategy
samples from tail items and is more common in practice
since user feedback data is highly valuable.

* Down-sampling [He er al., 2008]: Tail items remain un-
changed and the head items are down-sampled.

e MeLU [Lee er al., 2019]: A meta-learning approach for
cold-start prediction, extended to implicit feedback.

* MIRec [Zhang et al., 2021]: A transfer learning framework
for long-tail recommendation in two-tower mode.

* MGL [Liu er al., 2020]: A meta-graph framework
for long-tail recommendation via auxiliary item relations
and popularity-aware contrastive meta-learning to address
skewness and ensure consistency.

Hyper-parameter Settings. For all methods, the embedding
size was set as 64, Xavier normal initialization was adopted,
the models were optimized using Adam optimizer with the
learning rate 0.001, and the batch size was set as 2048. We
applied a grid search to optimize hyperparameters. The pa-
rameters of baselines were set following their official imple-
mentations and optimal configurations reported in the corre-
sponding papers. All the models were trained using Pytorch
and NVIDIA Titan-V GPUs.

5.2 Opverall Performance

Comparison with Bundle Recommendation Methods. Ta-
ble 2 presents the comparative analysis between CALBRec
and baseline methods across three datasets. The results
demonstrate that CALBRec achieves strong performance on
tail bundles while maintaining competitive results across head
bundles and overall metrics. Among baseline methods, con-
trastive learning improves performance as shown by Cross-
CBR over BGCN, while dual-view models (CrossCBR, Co-
Heat) outperform the single-view BundleNet. Building on
these insights, CALBRec adopts a graph-based dual-view
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Figure 3: Ablation study in long-tail scenario.

architecture with contrastive learning. CALBRec signifi-
cantly outperforms existing methods in handling the perfor-
mance gap between head and tail bundles. Specifically on the
Youshu dataset, CrossCBR shows a Recall@20 gap of 0.277
between head and tail bundles, indicating that learning from
imbalanced interaction data leads to strong head bundle per-
formance but poor tail bundle recommendations. CALBRec
addresses this limitation, significantly narrowing the perfor-
mance gap by introducing composition pattern modeling,
which achieves a 23.7% improvement in Recall@20 for tail
bundles compared to CrossCBR and substantially reduces the
disparity between head and tail bundle recommendations.
Comparison with Long-tail Methods. The results show
that CALBRec consistently surpassed the baselines across the
tail-bundle scenario, verifying its superiority. Specifically,
CALBRec achieves significant improvements of 28.46% on
average on Youshu and NetEase datasets, while showing
moderate improvements on iFashion. This performance dif-
ferential can be explained by the dataset characteristics (Ta-
ble 1): iFashion has substantially smaller bundles (3.86 items)
while Youshu and NetEase contain larger bundles (37.03
and 77.80 items, respectively). The results suggest that our
composition pattern modeling and prototype learning mecha-
nisms are particularly effective when applied to bundles with
richer compositional structures, as evidenced by the superior
performance on Youshu and NetEase.

5.3 Ablation Study

To validate the effectiveness of each component of our
model, we conducted ablation studies comparing the full
model with four variants: (1) no-adapter: which elimi-
nated the composition-aware long-tail adapter module; (2)
no-prototype: which removed dual-view prototype learning
module; (3) no-sharing: which replaced the global pattern in
composition-aware adapter module with independently sam-
pled random vectors from standard normal distribution; (4)
no-comp: which removed bundle-specific pattern personal-
ization process by eliminating item vectors in Eq. 2. Fig-
ure 3 presents comparative results on Youshu and NetEase
datasets in the long-tail scenario. CALBRec demonstrates
consistent superior performance across all variants. Notably,
removing the long-tail adapter resulted in the most signifi-
cant degradation, with Recall@20 decreasing by 16.4% and
11.3% on Youshu and NetEase respectively, highlighting the
importance of composition-aware long-tail adapter in lever-
aging shared patterns between head and tail bundles.
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Figure 4: Effect of the number of prototypes and head bundle ratios
on Recall@20.

5.4 Effect of the Parameter

Impact of the Number of Prototypes. As shown in Fig-
ure 4(a), the impact of prototype numbers varies across
datasets. Specifically, the Youshu dataset shows notable per-
formance variations, with accuracy declining beyond 500
prototypes. This performance degradation occurs because
Youshu is relatively small (Table 1), where excess prototypes
begin to memorize individual bundle characteristics rather
than extracting generalizable composition patterns. Con-
versely, the larger NetEase and iFashion datasets maintain ro-
bust performance with increased prototypes. Based on these
empirical findings, we configure K as 300, 2000, and 2000
for Youshu, NetEase and iFashion, respectively.

Impact of the Ratio of Head Bundles. To investigate the im-
pact of the head-tail ratio, we evaluate CALBRec by varying
the head ratio from 10% to 50% on three datasets, as shown
in Figure 4(b). The experimental results reveal performance
degradation when the ratio increases to 50%, with Youshu
showing the largest decline of 7.61% from its peak at 20%,
followed by NetEase with 2.62% and iFashion with 0.51%.
The high ratio of 50% forces the model to treat a substan-
tial portion of tail bundles as head features, undermining our
strategy of distinctive enhancement for head and tail bundles
described in Section 4.1. Our empirical results indicate that a
moderate ratio of 20% achieves the optimal balance between
preserving head representations and enhancing tail features
across all evaluated datasets.

6 Conclusion

In this paper, we addressed the challenge of long-tail bun-
dle recommendation and proposed the Composition-Aware
Long-tail Bundle Recommendation (CALBRec) framework.
CALBRec aims to leverage the inherent composition pat-
terns across different bundles as valuable signals for rec-
ommendation enhancement. Specifically, we first designed
a novel composition-aware long-tail adapter that effectively
captures the shared composition patterns and enhances in-
dividual bundle representations adaptively. Additionally, a
prototype learning module was introduced to facilitate robust
feature integration against the noise in sparse interaction data.
Extensive experiments on three public datasets demonstrated
that CALBRec significantly improves recommendation per-
formance, particularly for long-tail bundles. In the future, we
will explore the potential of leveraging composition patterns
in more tasks such as personalized bundle creation, diversity
enhancement, and conversational bundle recommendations.
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