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Abstract

Point cloud completion is a crucial task in 3D com-
puter vision. Multi-modal completion approaches
have gained attention among the popular two-stage
point cloud completion methods. However, there
is a notable lack of research focused on accurately
aligning data from different modalities within these
methods. Additionally, in other point cloud-based
tasks, edge point information often provides unex-
pected positive contributions. In this paper, we pro-
pose a novel point cloud completion method that
leverages edge point information for the first time
in the completion task, which also addresses the
precise alignment of multi-modal data. In particu-
lar, we implement a two-step local-to-global mod-
ule to achieve better alignment of multi-modal data
during the preliminary point cloud generation pro-
cess. Besides, we introduce a new spatial represen-
tation structure capable of extracting a fixed num-
ber of edge points. Moreover, with the assistance
of edge information, we further design an inverse
edge-aware upsampler to refine the point cloud. We
evaluate our method on three typical datasets, and
the results demonstrate that our IE-PMMA outper-
forms the existing state-of-the-art methods quanti-
tatively and visually.

1 Introduction

The development of scanner technology has led to the
widespread use of 3D point clouds in various applica-
tions. However, the point clouds from scanners are often
sparse and incomplete[Geiger et al., 2013] due to limited
perspectives[Jia et al., 2024] and scanner resolution. This
makes it challenging to use them directly in applications
like reconstruction of archaeological[Jakli¢ et al., 2015], au-
tonomous vehicle detection[Ma et al., 2022], virtual real-
ity scan modeling[Kim et al., 2019], and other point-based
downstream tasks[Tesema et al., 2023]. As a result, complet-
ing point clouds has become an increasingly important task
in 3D computer vision.

Currently, mainstream point cloud completion methods are
typically based on a two-stage framework. In the first stage, a
coarse point cloud with a complete shape (referred to as seed

points) is generated from the input partial points, known as
the seed points generation step. In the second stage, based on
the extracted point cloud features, the seed points are upsam-
pled to the target resolution in order to generate a complete
and dense point cloud. This stage is referred to as the seed
points upsampling step.

With the widespread application of multi-modal ideas, 2D
images have become common as supplementary data in point
cloud completion tasks. ViPC[Zhang et al., 2021] is the pio-
neer in the use of 2D data for completion tasks, taking the
missing crucial global structure information from an extra
single-view image. CSDN[Zhu et al., 2023c] estimates the
global and local geometric information of point clouds from
2D images through a dual-refinement network. Nevertheless,
these methods usually use projection relations or attention
mechanisms to fuse multimodal data. Such fusion methods
can be limited and imprecise, not fully taking advantage of
the correlation between 2D and 3D data.

Therefore, inspired by the feature fusion method in
BEV[Chen et al., 2022] tasks, we propose a two-stage precise
multi-modal data alignment method, which is divided into
two steps: local feature alignment and global feature fusion.
Firstly, the projection depth maps under different viewpoints
are obtained through the partial points, and the 2D image fea-
tures are extracted. At the local scale, the image features
corresponding to each point in the point cloud are obtained
through projection relations and bilinear interpolation. Then,
the scale factor adjusts the feature’s magnitude to get accu-
rate 2D features. The 3D features are extracted directly via
PointNet++[Qi et al., 2017b]. At the global scale, we con-
tinue to use the attention mechanism-based fusion method in
previous work to further fuse features.

In addition, we notice that in many works related to point
cloud, edge information has been introduced as a way to
augment metadata, such as point cloud generation[Liu et al.,
2022], classification[Wu et al., 20231, and other tasks. Many
works suggest that the edge points have rich geometric de-
tails, which can provide more information about the local
structure of the point cloud. Therefore, we hope to introduce
the idea of edge-aware to the point cloud completion task.

To achieve edge-aware completion, we first design a
new spatial representation method for extracting edge points
called Edge Probability Volume (EPV). This method divides
the space containing the point cloud into grids. Each voxel
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contains two values: the coordinates of the point within that
voxel and the probability of the voxel being an edge voxel.

We applied the edge points extracted by EPV during the
seed points upsampling process. Calculate the chamfer dis-
tance between edge points and seed points, as well as be-
tween input points and seed points, to represent edge im-
portance and missing importance, respectively. The self-
attention module is employed to achieve edge-aware upsam-
pling. However, in practice, we discover that inverse edge-
aware upsampling is more effective. Specifically, the closer
a point is to the edge points, the less important it is as a
seed point. By utilizing the cross-attention operation between
the extracted aware features and the input partial point fea-
tures, we obtain the displacement of point cloud coordinates
through two decoders and MLP layers.

We experiment with our method on three common datasets:
PCN, ShapeNet34/55, and KITTI. The results show that
our method achieves SOTA in metrics of chamfer distance,
density-aware chamfer distance, and F1 score. Our main con-
tributions can be summarized as:

1. We propose a local-to-global feature extraction module
based on precise multi-modal data alignment. This mod-
ule fully integrates 2D and 3D features and effectively
leverages the information contained in the depth map.

2. We introduce an edge point extraction method that can
extract a fixed number of edge points, effectively reduc-
ing the impact of point cloud noise and adapting to the
point cloud completion task.

3. We apply edge point information to the point cloud com-
pletion task for the first time. We utilize edge infor-
mation during the upsampling process of seed points to
achieve inverse edge-aware upsampling.

2 Related Work

2.1 Two-Stage Point Cloud Completion

The existing point cloud completion methods based on deep
learning are generally two-stage completion frameworks.
Firstly, a complete seed point cloud is generated from the in-
put partial point cloud, and then the final completion result is
obtained through the upsampling process. PCN[Yuan et al.,
2018] is an outstanding contribution to the two-stage point
cloud completion framework, which uses the PointNet[Qi
et al., 2017a] layer to extract global features and gener-
ate seed points with MLPs, then uses Folding-based[Yang
et al., 2018] upsampling block to upsample seed points.
PoinTr[Yu et al., 2021] uses a lightweight DGCNN[Wang et
al., 2019] to extract point cloud features, a geometry-aware
Transformer to predict missing point proxies, and upsamples
seed points using Folding block as in PCN. Snowflakenet[Xi-
ang et al., 2021] uses PointNet++[Qi er al., 2017b] to ex-
tract features and generate seed points with point-wise split-
ting operations and MLPs. SeedFormer[Zhou et al., 2022],
AnchorFormer[Chen et al., 2023], and ProxyFormer[Li ez al.,
2023] design unique point cloud representations to improve
the ability to extract local geometric information around seed
points. ODGNet[Cai et al., 2024] designed a shape prior
dictionary-guided seed point generation U-Net, and used the

Upsampling Transformer in SeedFormer for seed points up-
sampling. SVDFormer[Zhu et al., 2023b] applies the depth
projection of the partial points to the point cloud comple-
tion and uses the two-dimensional depth map to complete.
On this basis, GeoFormer[Yu et al., 2024] applies the rich
features contained in the three-channel canonical coordinate
maps to improve the multi-modal point cloud completion. T-
CorresNet[Duan et al., 2025] generates point proxies with the
help of the Gaussian spherical template and upsamples them
with the Folding block.

These methods can effectively complete the missing parts
of the point cloud, but the current completion works have rel-
atively few studies that incorporate multi-modal data, espe-
cially those that focus on further aligning data from different
modalities. Furthermore, current research lacks exploration
of the usage of the edge points.

2.2 Point Cloud Edge Extraction

The method of point cloud edge extraction can be divided
into geometry-based methods and learning-based methods.
Geometry-based methods are mainly based on local geo-
metric features, such as the eigenstructure of the covari-
ance matrix[Gumhold et al., 2001], normals[Weber et al.,
2010], curvatures[Hackel er al, 2016], or other statisti-
cal metrics[Zhu et al., 2023al. There are also some point
cloud edge feature extraction methods based on graph Fourier
transform[Chen et al., 2017; Deng et al., 2022]. These
geometry-based methods are able to extract approximate edge
points, but they are less accurate.

With the development of deep learning, learning-based
point cloud edge extraction methods have emerged. The ear-
liest methods are based on point cloud classification. PIE-
Net[Wang et al., 20201, EDC-Net[Bazazian and Parés, 20211,
and PCEDNet[Himeur et al., 2021] classify point clouds
into edge points, non-edge points, and corner points based
on the sharpness labels of points in the dataset to extract
edge points and parametric lines. EC-Net[Yu et al., 2018]
and DEF[Matveev et al., 2022] regress the distance between
the sampled points and the feature line to extract the iden-
tified edge points. These methods are explicit methods that
are easily affected by point cloud noise[Zhu ef al., 2023al.
NerVE[Zhu et al., 2023a] divides the point cloud space into
grids and binary classifies whether each voxel is an edge
voxel or not. NEF[Ye et al., 2023] used the image of the ob-
ject model to extract edge information and designed an edge
neural radiance field. PBWR[Huang et al., 2024] extracts the
edge of LiDAR point clouds through a transformer to obtain
edge regression results.

These methods can extract edge points better than
geometry-based methods, but the number of edge points is
not fixed, making them unsuitable as a data augmentation
scheme for downstream point cloud tasks.

3 Method

3.1 Overview

We follow the commonly used two-stage point cloud com-
pletion paradigm, first generating the seed points with a com-
plete shape from the input partial points and then upsampling
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Figure 1: The pipeline of our method. Firstly, the input partial points are fed into the Precise Multi-Modal Alignment Module to extract
the global feature, while the complete seed points are obtained by a decoder. The edge points of seed points are extracted through the Edge
Probability Volume. Then, they are inputted into the Inverse Edge-aware upsampler, together with the seed points and global feature. The
dense and complete point cloud is finally obtained by a two-step upsampling process.
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Figure 2: The architecture of the local PMMA module. At the local
scale, the PMMA module first realizes the point-to-pixel local fea-
ture alignment through camera projection relationship and bilinear
interpolation, then shrinks the features through the scale factor.

the seed points to the target resolution, as shown in Figure 1.
Specifically, the global feature is extracted from input partial
points through the Precise Multi-Modal Alignment feature
extractor (called PMMA module). The 3D coordinates of the
seed points are regressed by a group of MLP layers. In or-
der to take advantage of the information on the edge points,
we first obtain the edge seed points through the pre-trained
Edge Probability Volume (called EPV module). The partial
points, seed points, edge seed points, and global feature are
taken as input of the Inverse Edge-aware upsampler (called
IEup module), for the upsampling of seed points. In line with
other coarse-to-fine upsampling methods, our IEup module
is also performed twice to achieve the coarse-to-fine upsam-
pling of seed points.

3.2 Seed Points Generation With Precise
Multi-Modal Feature Alignment

The first stage of the two-stage completion framework is the
generation of seed points with a completed shape. Currently,
multi-modal data is used in many point cloud completion
works. Among them, the works represented by [Zhu et al.,
2023b] project the partial point cloud, and the obtained depth
maps are used as the image modal data. The alignment be-
tween the 3D point cloud features and the 2D image fea-
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Figure 3: The architecture of the global PMMA module. The atten-
tion mechanism achieves feature alignment at the global scale.

tures is then achieved through the cross-attention mechanism.
This approach only aligns features on a global scale and can’t
achieve the local accurate point-to-pixel feature alignment.
Inspired by AutoAlignv2[Chen er al., 2022], we design a
local-to-global feature fusion module, which enables precise
multi-modal feature alignment.

At the local scale, as show in Figure 2, firstly, the input
partial point cloud is projected according to the coordinates of
viewpoints as the camera position to obtain the depth map D,
in three directions, ¢ indicates the number of viewpoints. Af-
terward, use 2D Backbone to extract features from the depth
map and obtain a low-resolution coarse feature map C;. The
2D Backbone here is a simplified ResNet18[He er al., 2016].
Then, the low-resolution basic feature map is upsampled to
the fine feature map J; through bilinear interpolation, which
is consistent with the resolution of the depth map D;. At
the same time, the point cloud is projected according to three
viewpoints to calculate the sub-pixel coordinates correspond-
ing to each point. The image feature P corresponding to
each point is extracted on the fine feature map through bilin-
ear interpolation, while j represents the index of the point.

The extracted features are scaled through scale factor 7,
and the processed features are fed into the max pooling layer
for aggregation and obtaining the image features .A; that are
accurately aligned with the coordinates of the 3D points. The
formula of this process can be expressed as:

N
: 1
A = MaxPool(vZ’Pf),wherei =0,1,2and vy = v (1)

j=1

where N represents the number of points. Then cascad-
ing A; from all viewpoints to get the final 2D feature.
The corresponding 3D features are directly extracted through
PointNet++[Qi et al., 2017b]. Finally, these two different di-
mensional features and the viewpoints are inputted into the
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Global Fusion Module to get the global feature G.

At the global scale, as shown in Figure 3, we use the atten-
tion mechanism[Zhu et al., 2023b] to achieve the re-fusion of
multi-view 2D image features and 3D point cloud features.
First, the 3D features are duplicated and concatenated with
the 2D features. The view features are added to the 2D & 3D
concatenation features to serve as the Key and Query of the
multi-head self-attention, while the concatenation features as
the Value. The alignment features obtained by the max pool-
ing layer are then concatenated with the 3D features to obtain
the global feature G, which is fed into MLP layers to regress
the coordinates of seed points.

3.3 Edge Points Extraction Based on Edge
Probability Volume

In the fields of point cloud generation [Liu et al., 2022], clas-
sification, retrieval [Wu et al., 2023; Wen et al., 2023], and
reconstruction [Wen et al., 20231, the edge information of the
point cloud can enhance the metadata. This is due to the fact
that the edge points contain a wealth of sharp details. It can
be inferred that the edge information of the point cloud has
a positive effect on a variety of point cloud tasks. Therefore,
we hope to use the edge information of the point cloud as a
new exploration in the point cloud completion task.

To adapt to the point cloud completion task, we propose
a new representation called Edge Probability Volume (EPV)
to predict and rank the probability of whether one point is an
edge point. This section mainly introduces the definition of
EPV and the method of extracting edge points.

To solve the problem that the classification-based point
cloud edge extraction methods [Wang et al., 2020; Bazazian
and Parés, 2021; Himeur et al., 2021] are susceptible to noise,
NerVE [Zhu et al., 2023a] follows the voxel representation
of a 3D shape [Choy et al., 2016] to discretize continuous
3D curves into a volumetric grid. On this basis, we improve
the binary classification of edge points to probabilistic regres-
sion, which realizes the orderliness of point cloud probability
so that a fixed number of edge points can be obtained.

As shown in Figure 4, a simplified PointNet++[Qi ef al.,
2017b] module and a 3D CNN module are used to obtain the
feature grid of the point cloud, which has the same resolution
as EPV output. After that, two individual decoders are used
to predict the attributes of each voxel. In the first step, one
MLP regresses the probability p; ;. of whether a voxel is an
edge voxel. In the second step, the other MLP calculates the
coordinates X; ; . of the point in each voxel. The process can
be expressed as:

Pijk = MLPprop(Eij k) 2
Xi ik = MLP;DOS(SZ'J’]@%WI’ICI'G Dijk > f 3)

where &; ; 1, is the voxel feature and £ is the threshold. Only
voxels with a probability greater than the threshold will pro-
ceed to the coordinate prediction step.

Since the ABC dataset[Koch et al., 2019] we used for train-
ing only labels the sharpness of each point, without the proba-
bility of whether a point is an edge point. Therefore, we have
to define the calculation method of the probability to get the
ground truth of the probability.

MLPyop
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Feature Grid Edge Probability Volume
Figure 4: Composition of the spatial representation of the Edge
Probability Volume. The EPV module divides the space into grids
and extracts the corresponding feature grid. Each voxel is regressed
by two different MLPs to obtain the probability that the current voxel
is an edge voxel and the coordinates of the edge point in it.

According to the first law of geography, the closer a point
cloud is to an edge point, the higher the probability that it is an
edge point. As the distance from the edge point increases, the
probability of the point cloud being an edge point decreases.
Therefore, for each voxel v; ; i, first retrieve the nearest edge
voxel e, . to it, then define the distance between them as:

dijr=\Ji—a? +G-b2+(k—c? @

In order to convert the distance into a probability in the range
of (0, 1], we can use the function f(z) = e~*. In this way, the
converted distance f(d;,; «) is the ground truth of probability
pf’tjk In the training process, we chose MSE and L1 loss
as the loss function to train the probability and coordinates
prediction model, respectively , which can be expressed as:

N
1 2
Lprob = N3 > 0~ pig) o)
i,5,k=0
1
£pos BT Z ng,tj,k — Xij,k ‘1 (6)
HX%]ka i >E
i,7.k

where NN represents the resolution of the EPV in one di-
rection, Lop represents the probability prediction loss, and
L0s represents the coordinate prediction loss.

With the pre-trained EPV model, we can predict the prob-
ability of whether a voxel is an edge voxel. After sorting the
probability values, we can extract the first M voxels with the
highest probability value. The points in those voxels are taken
as the edge points of the point cloud. M can be modified
according to the requirements of the point cloud completion
task. In this paper, we choose 32 x 32 x 32 as the resolution
to pre-train the EPV model.

3.4 Seed Points Upsampling Based on Inverse
Edge-Aware Upsampler

In the previously mentioned point cloud tasks, the premise
of introducing point cloud edge information to enhance the
point cloud data is the integrity of the point cloud. The edges
of the point cloud are meaningful only if the point cloud is
complete. In the two-stage point cloud completion method,
the input of the seed point generation stage is an incomplete
point cloud, and the input of the upsampling stage is the seed
points with a relatively complete overall shape. Therefore,
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Figure 5: The architecture of Inverse Edge-aware upsampler. The
chamfer distances between the seed points and the edge points, as
well as the partial points, are calculated to realize the inverse edge-
aware feature extraction. The aware features and partial features are
fed into two decoders to regress the displacement of seed points.

we chose to introduce point cloud edge information in the
upsampling process, as shown in Figure 5.

Specifically, for the generated seed points, we first apply
the EPV described in 3.3 to extract the edge points. The
first step of upsampling is the Missing & Inverse Edge-aware
Self-Attention Module. We define the missing importance as
the chamfer distance between the seed points and the partial
points, and the greater the chamfer distance from the input
point cloud, the greater the missing importance. Similarly,
we define the inverse edge importance as the chamfer dis-
tance between the seed points and the edge points, and the
greater the chamfer distance from the edge points, the greater
the inverse edge importance.

It is speculated that point clouds near edge points should
be given greater importance based on their impact on other
applications. However, our practical findings indicate that us-
ing inverse edge importance can actually enhance point cloud
completion performance. In other words, the farther a point
cloud is from the edge point, the greater importance it is as-
signed. The missing importance and inverse edge importance
can be expressed as:

MI (ps) = pmlg Hps 7pin||> ps € Pseed (7)

in in

IEI (ps) = ) min ||ps — pell, ps € Prseed ®)

e € Pedge
where the p, represents the point in the set of seed points
Pseed, pin represents the point in the set of input points
Py put» De represents the point in the set of edge points Pegge.
M I represents the Missing Importance of a point, while I E'J
represents the Inverse Edge Importance. The Aware Impor-
tance can be expressed as:

Al = Sin (; (MI (ps)+1IEI (ps))> , Ps € Pseea (9)

where p is a scaling coefficient set as 0.2, Sin is the sinu-
soidal function[Vaswani, 2017]. The aware feature is ob-

tained through multi-head attention layers, which can be ex-
pressed as:
Fa=MHSA(F_1,AI) (10)
The aware feature F4 and partial feature F;,, which is
extracted from the input point cloud, are fed in the cross-
attention layer to obtain the local feature Fr. Fa and Fp,
are fed in two decoders respectively to obtain the upsampled
features 7, and F;. The coarse feature F; of the [-th up-
sampling process is obtained by cascading F’y and F. The
coarse features are fed into the MLP layers to obtain the dis-
placement of point cloud coordinates at the [-th step. Such a
process will be performed twice to achieve the coarse-to-fine
upsampling.

3.5 Loss Function

As with other methods, we use the chamfer distance as the
loss function. CD loss is defined as follows:

1 1
CD =) min flo—glz+ 5= > minfo—gl; (1D
0€O geGT

where O is the predicted point cloud with Ny points. GT
is the ground truth point cloud with Ny points. As in the
previous work, we also use CD-L1 and CD-L2 as the loss
functions for different datasets, respectively, where CD-L2 is
the same as CD, and CD-L1 takes the square root of L2-Norm
and divides it by 2. The total loss is defined as:

L= CD(Pseeda FPS(Pgt; Ne)) (12)
+ CD(P;=1,FPS(P,;, N1)) + CD(P,=2,FPS(Py, N2))
The FPS represents the farthest point sampling function, the
first parameter represents the point cloud to be sampled,
and the second parameter represents the number of sampling
points. Ps..q represents the seed point cloud, Py, represents
the ground truth, and P,—; and P;_5 represent the correspond-

ing point clouds obtained through two upsampling stages.

4 Experiments

4.1 Dataset and Evaluation Metrics

Dataset. In order to verify the point cloud completion effect
of our IE-PMMA in different scenarios, we tested it on com-
mon datasets PCN, ShapeNet34/55 and KITTI and evalu-
ated them with a number of evaluation metrics. PCN[Yuan
et al., 2018] dataset is a subset of the ShapeNet[Chang et al.,
2015] dataset, which contains 8 types of objects and 30,974
point clouds. ShapeNet34/55 is proposed by PointTr[Yu er
al., 2021]. The ShpeNet55 dataset contains 55 categories
of point cloud data, and the ShapeNet34 dataset contains 34
visible category point clouds and 21 invisible category point
clouds. We further tested our results on the KITTI[Geiger et
al., 2013] dataset. Following the previous method, we only
focus on the points in the bounding box of the object marked
as a car, with a total of 2483 incomplete point clouds and no
ground truth.

Metrics. In order to comprehensively evaluate our method,
we used Chamfer Distance (CD), Density Chamfer Dis-
tance(DCD), and F1 Score as evaluation metrics on the PCN
and ShapeNet34/55 datasets. For the KITTI dataset, we used
Fidelity and Minimal Matching Distance (MMD) as the met-
rics since KITTI is without ground truth.
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CD-8categories),

Methods CD-Avg| DCD-Avg| FI1
Plane Cabinet Car Chair Lamp Couch Table Boat

GRNEet[ECCV’20] 6.45 1037 945 941 796 1051 844 8.04 8.83 0.622 0.708
PMP-Net++[TPAMI’23]  4.39 9.96 853 8.09 6.06 9.82 7.17  6.52 7.56 0.611 0.781
PoinTr[ICCV’21] 4.75 1047 886 939 775 1093 778 7.29 8.38 0.611 0.745
SnowFlake[PAMI’23] 4.29 9.16 8.08 7.89  6.07 9.23 6.55 640 7.21 0.585 0.801

ProxyFormer[CVPR’23]  4.01 9.01 788 7.1 5.35 8.77 6.03 5.98 6.77 0.577 -
SeedFormer[ECCV’22] 3.85 9.05 8.06 7.06 5.21 8.85 6.05 5.85 6.74 0.583 0.818
SVDFormer[ICCV’23] 3.62 8.79 746 691 5.33 8.49 590 5.83 6.54 0.536 0.841
ODGNet[AAAI’24] 3.77 8.77 756 6.84 5.09 8.47 5.84 5.66 6.50 0.542 0.833
Ours 3.67 8.66 737 690 531 8.32 590 5.72 6.48 0.532 0.844

Table 1: The quantitative results on the PCN dataset (CD-L1 x 107%).
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Figure 6: The visualization results on the PCN dataset.

4.2 Comparison With SOTA Methods

Evaluation on PCN dataset. We conduct experiments on
the PCN dataset and compare them with 8 recent point cloud
completion methods as shown in Table 1. The results show
that IE-PMMA exhibits SOTA results on all metrics. Es-
pecially on the DCD, our method is 1 x 10~2 higher than
ODGNet. Figure 6 shows the visual comparison results of
our method and other methods on the PCN dataset. Our IE-
PMMA works best on table legs, aircraft engines, chair backs,
and car tails. This is due to the fact that the IEup module
makes the model pay more attention to the global structure.
At the same time, the PMMA module promotes the genera-
tion of the local detailed structure.

Evaluation on ShapeNet34/55 dataset. To investigate
the generalization of the method, we test I[E-PMMA on
ShapeNet34/55. The first is the ShapeNet55 dataset with 55
categories of objects, as shown in Table 2. Our method out-
performs the SOTA methods on three representative metrics.
As for the ShapeNet34-21 dataset, we surpass the SOTA ap-
proach on CD metrics as shown in Table 3. Figure 7 shows the
visualization of our method on the Shapenet55 dataset. In ad-
dition to visualizing the point cloud results, we also used the
ball pivoting algorithm to reconstruct the surface to reflect the
representation power of the point cloud. Compared with the
SOTA methods, our method is able to accurately recover the
local structure of the point cloud, such as the armrests of the
chair and the detailed wings of the aircraft. From the results
of surface reconstruction, the point clouds completed by our

V.

Input  ODG(Point) ODG(Mesh) Ours(Point) Ours(Mesh) GT

Figure 7: The visualization results on the ShapeNet55 dataset.

Methods CD-S| CD-M| CD-H| CD-Avg]l DCD-Avg| FI1
PCN 1.94 1.96 4.08 2.66 0.618 0.133
GRNet 1.35 1.71 2.85 1.97 0.592 0.238
PoinTr 0.58 0.88 1.79 1.09 0.575 0.464
ProxyFormer  0.49 0.75 1.55 0.93 0.549 0.483
SeedFormer 0.50 0.77 1.49 0.92 0.558 0.472
SVDFormer 0.438 0.70 1.30 0.33 0.541 0.451
ODGNet 0.47 0.70 1.32 0.83 0.583 0.437
Ours 0.42 0.60 1.07 0.70 0.527 0.480

Table 2: The quantitative results on the ShapeNet55 dataset.

method also have a stronger geometric representation ability.

Evaluation on KITTI dataset. To verify the effectiveness
of our method on the real-world scanned dataset, we conduct
experiments on the KITTI dataset. We train on the car cate-
gory of the PCN dataset and recover the full shape from the
scanned incomplete vehicle point cloud. Our method sur-
passes the SOTA methods on the Fidelity metric, as shown
in Table 4. Figure 8 shows that our point clouds have more
complete shapes and less noise.

4.3 Ablation Experiments

Ablation on IEup Module. In order to verify the role of
the Inverse Edge-aware upsampler in the point cloud comple-
tion process, we perform ablation experiments corresponding
to model A and model B in Table 5. After adding the IEup
module, all of the metrics have been significantly improved.
In order to show the execution of the IEup module more con-
cretely, we visualize the importance of the point cloud during
the upsampling process and the edge points extracted by EPV
in Figure 9. The orange points are the edge points, while ma-
genta indicates the greater importance of point clouds, and
cyan is the opposite. It can be found that the Inverse Edge-
aware upsampler gives more importance to the point cloud far
away from the sharp edge of the point cloud, which makes the
upsampling process pay more attention to the global shape of
the object, rather than over-fitting the local details during the
training process. In addition, the EPV spatial representation



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

34 seen categories

Methods
CD-S|; CD-M| CD-H| CD-Avg] DCD-Avg] FI11

PCN 1.87 1.81 2.97 2.22 0.624 0.150
GRNet 1.26 1.39 2.57 1.74 0.600 0.251
PoinTr 0.76 1.05 1.88 1.23 0.575 0.421
ProxyFormer  0.44 0.67 1.33 0.81 0.556 0.466
SeedFormer 0.48 0.70 1.30 0.83 0.561 0.452
SVDFormer 0.46 0.65 113 0.75 0.538 0.457
ODGNet 0.44 0.64 1.14 0.74 0.581 0.451
Ours 0.44 0.63 1.13 0.73 0.539 0.468

Methods 21 unseen categories

CD-S|, CD-M| CD-H| CD-Avg] DCD-Avgl FI11

PCN 3.17 3.08 5.29 3.85 0.644 0.101
GRNet 1.85 2.25 4.87 2.99 0.625 0.216
PoinTr 1.04 1.67 3.44 2.05 0.604 0.384
ProxyFormer  0.60 1.13 2.54 1.42 0.583 0.415
SeedFormer 0.61 1.07 2.35 1.34 0.586 0.402
SVDFormer 0.61 1.05 2.19 1.28 0.554 0.427
ODGNet 0.59 1.01 2.26 1.29 0.597 0.415
Ours 0.61 1.03 2.16 1.27 0.558 0.414

Table 3: The quantitative results on the ShapeNet-34 dataset.

Metrics/Methods | TopNet PCN  GRNet SeedFormer ODGNet | Ours
FD(x10%)] 5.354 2235 0816 0.151 1.28 0.063
MMD(x10%)| 0.636  1.366  0.568 0.516 0.299 | 0.571

Table 4: The quantitative results on the KITTI dataset.

Viewl
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Figure 8: The visualization results on the KITTI dataset.

module can also extract the edge points effectively.

Ablation on PMMA Module. The Model B, C, and D in
Table 5 verify the effectiveness of the PMMA module. Model
C only adds a point-to-pixel feature projection module to
Model B, which leads to worse results. This is because Model
B directly extracts a set of image features from ResNet, while
the image features in Model C are composed of A sets of
features. The magnitude of the image features in Model C
is much larger than that of Model B, resulting in the features
not being able to function normally in the subsequent steps.
For Model D, the scaling factor is added, which can shrink
the groups of features extracted from Model C and restore
the feature vectors to the normal magnitude. In Figure 10,
we visualize the density of the point clouds generated by the
four sets of models. Compared with Model D, Model C has
a higher density of complete point clouds around the input
points, such as the edge of the hull and the back of the chair,
which indicates that unscaled features will affect the distribu-
tion of global features and lead to an imbalanced density of
point clouds.

4.4 Model Complexity and Resource Costs

The detailed complexity and resource cost analyses are shown
in Table 6. While the two-step alignment does incur addi-
tional computational costs and the EVP module requires more
parameters, these design choices were carefully considered to

274 Step Final GT 2nd Step Final GT

o,

A

Edge Points ~ Low High

Figure 9: The visualization results of inverse edge-aware impor-
tance. The bigger orange points represent the edge points, while
the smaller points represent the general points. The magenta repre-
sents higher importance, while the cyan represents the lower one.

¢ General Points

preer AN
L&wﬂ

]

Partial Model D GT

Model C

Model A Model B

Figure 10: The visualization results of the ablation experiment for
each module. The magenta represents higher density, while the
cyan represents the lower one.

PMMA

Model ‘ IEup ‘ CDJ)

DCD| FIt

Project  Scaled
A o o o 6.54 0536 0.841
B v o o 6.51 0532 0.843
C v v o 6.72  0.547 0.829
D v v v 6.48 0.532 0.844

Table 5: The ablation study of each component.

Methods Params FLOPs | CD] DCD] FIt
GRNet 76.71IM  25.88G | 8.83 0.622 0.708
PoinTr 31.28M  10.60G | 838 0.611 0.745

SeedFormer | 3.31M  53.76G | 6.74 0.583 0.818
SVDFormer | 32.63M 39.26G | 6.54 0.536 0.841
Ours 60.88M 75.86G | 6.48 0.532 0.844

Table 6: The parameters and FLOPs between different methods.

achieve the demonstrated performance improvements, which
reduce CD by 0.06 x 1073 over the baseline.

5 Conclusion and Discussion

In this article, we propose IE-PMMA, which is the first
point cloud completion method that takes into account the
edge information of the point cloud. The PMMA module
achieves precise point-to-pixel alignment, significantly im-
proving upon previous coarse feature matching methods. The
novel inverse weighting approach in the IEup module prior-
itizes global shape coherence to prevent local detail overfit-
ting. The EPV module’s probabilistic volume representation
offers enhanced noise robustness and broader applicability.
Various experiments show that [E-PMMA achieves the most
advanced performance in the point cloud completion task.
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