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Abstract
In group decisions or deliberations, stakeholders are
often confronted with conflicting opinions. We in-
vestigate a logic-based way of expressing such opin-
ions and a formal general notion of a middle ground
between stakeholders. Inspired by the literature
on preferences with hierarchical and lexicographic
models, we instantiate our general framework to
the case where stakeholders express their opinions
using preference statements of the form I prefer ‘a’
to ‘b’, where ‘a’ and ‘b’ are alternatives expressed
over some attributes, e.g., in a trolley problem, one
can express I prefer to save 1 adult and 1 child to 2
adults (and 0 children). We prove theoretical results
on the existence and uniqueness of middle grounds.
In particular, we show that, for preference state-
ments, middle grounds may not exist and may not
be unique. We also provide algorithms for deciding
the existence and finding middle grounds.

1 Introduction
High stake decisions or moral dilemmas, such as medical
triage or the trolley problem, may prompt stakeholders to have
strong opinions with little flexibility. The need to solve such
decisions in real life requires the deliberation and consolida-
tion of such possibly conflicting opinions. In this paper, we
aim to break down stakeholder statements (e.g. statements
about their moral preferences) into an agreeable set of state-
ments — a middle ground. Efforts in defining such a notion
of a middle ground have recently been made by Ozaki et
al. (2024). However, their notion is designed for Horn logic.
We propose a notion of middle ground for a generic logic
formalized as a satisfaction system [Aiguier et al., 2018] and
provide a case study for a logic that expresses preferences.

Finding a middle ground between stakeholders can be an
important first step to understanding and creating solutions for
conflicting opinions. Applications of our work are thus mani-
fold. Freedman et al. (2020), e.g., investigate human values
in kidney exchanges, where patients are described by features
of age, health, and drinking behaviour. Unsurprisingly, the
289 participants of their survey did not agree on the prioritisa-
tion of patients. Many other real-life scenarios may provoke
conflicting opinions or values: end-of-life medical decisions,

decisions prompting trade-offs between economic advantages
and preservation of nature, or hiring where the roles in a hiring
committee warrant emphasis of different applicant features.

The application scenarios above often include stakeholders
who express preferences over alternatives. We concentrate our
case study on satisfaction systems similar to those described
by Wilson et al. (2015), with a language of comparative state-
ments of the form “I prefer a to b.”, where alternatives a and b
are vectors of values from given variable domains. Models are
then lexicographic or hierarchical orders, i.e., total pre-orders
on the set of alternatives. That is, we assume stakeholders have
(unknown) orders of importance for the features, by which
they compare alternatives. These satisfaction systems transfer
well to the Moral Machine Experiment [Awad et al., 2018].
Example 1. In the Moral Machine Experiment, participants
(stakeholders) are asked to choose one out of two groups of
individuals (alternatives) to save from a car accident. The
participant’s choices can be interpreted as comparative pref-
erence statements like “I prefer saving 1 adult, 4 children,
and 0 dogs, to saving 2 adults, 3 children, and 3 dogs.”, in
symbols, (1, 4, 0) > (2, 3, 3). This could, e.g., be modelled by
the lexicographic model (child, adult, dog), which prioritizes
children, over adults, and adults over dogs, or by the hier-
archical model ({adult, child}, child) where alternatives are
first compared on the number of humans, and only if they are
equal (there are 5 humans in both groups), is the number of
children considered (4 in the first group, 3 in the second). The
number of dogs is disregarded in the second model.

Inspired by these scenarios, this paper contributes with the
following theoretical results.
General Notion of Middle Ground (MG): We provide a
general definition of middle ground for satisfaction systems
(Section 3.1), show conditions for existence of a MG (Sec-
tion 3.2) and an algorithm for construction (Section 3.3).
Case Study for Preference Statements: We describe a sat-
isfaction system similar to that of Wilson et al.(2015) for
modelling preferences (Section 4.1), prove that existence and
uniqueness of a MG is not guaranteed under this system (Sec-
tion 4.2), and complexity results of deciding the consistency
of preferences and existence of a MG (Section 4.3) for hierar-
chical models and the special case of lexicographic models.

Section 5 concludes. More proof details and discussions
can be found in a longer version on Arxiv under the same title.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

2 Related Work

There has been several logic-based approaches exploring the
task of aggregating information and resolving conflicts in dif-
ferent fields such as non-monotonic reasoning [Horty, 1994;
Delgrande and Schaub, 1997], belief merging [Gärdenfors,
1986], argumentation [Liao et al., 2023], ontology re-
pair [Moodley et al., 2011], and normative reasoning in ethical
and legal contexts [Ju et al., 2020; Kollingbaum et al., 2008].

Our work is most similar to that by Ozaki et al. (2024) which
defines a middle ground notion for Horn logic and considers
the Moral Machine Experiment [Awad et al., 2018]. However,
while the postulates (P’1-P’6) in their definition explicitly use
structural aspects of Horn expressions like the antecedent and
consequent, we facilitate a more general definition with postu-
lates (P1-5) for satisfaction systems. When interpreting their
notion of coherence as the counterpart of consistency, then the
two liken each other in spirit. The middle ground is a set of
statement that is in it self coherent / consistent (P’1 / P1), if
possible equivalent to the union of all stakeholders’ statements
(P’2 / P2) and otherwise at least not in direct opposition to a
stakeholders statement (P’3 / P3). Further, all statements in the
middle ground should be motivated by stakeholder statements
and retain their statements as close as possible (P’4-6 / P4-5).
The work by Konieczny and Pérez (2011) in belief merging
contains some postulates that resemble the notion of a middle
ground. There, an operator takes possibly conflicting beliefs
from multiple sources as input and returns the belief base that
is closest to the input and some integrity constraints. This
differs from middle ground in that they require more proper-
ties to hold. In particular, integrity constraints expressed in
propositional logic need to be satisfied and the operator needs
to compute the closest belief base (which may not exist or
be unique for middle ground). Within social choice theory,
Botan et al. (2023) investigate egalitarianism in judgement
aggregation using propositional logic. Adler (2016) considers
preference aggregation, arguing that preferences are more suit-
able than judgment for moral aggregation. As a fundamental
difference, a middle ground might be insufficient on its own
for subsequent decision making but maintains some agreement
of all stakeholders that a compromise or aggregation found by
means of social choice methods cannot facilitate.

Previous attempts to model preferences include weighted
sums over features (which are restrictive w.r.t. to the nature
of such features)[Wilson and Montazery, 2016], Pareto mod-
els which lead to only partial orders [George and Wilson,
2016], and perhaps most convincingly but also less tractable
Conditional Preference Networks [Boutilier et al., 2004] and
the expressive prototypical preference logic [Bienvenu et al.,
2010]. Here, we lean our case study of preference statements
onto the satisfaction systems described in [Wilson et al., 2015].
Preferences are modelled by some kind of hierarchical mod-
els which are represented by importance orders on variables/
features of alternatives. One drawback of these models is that
they require variables to be non-repeating in the importance
order. Instead, we consider models that are non-empty and
allow for repeating variables at several importance levels.

3 Middle Grounds for Sets of Statements
In this section we consider a general notion of middle ground
for sets of statements and establish sufficient conditions for its
existence. To make the presentation as general as possible, we
first recall the notion of a satisfaction system [Aiguier et al.,
2018; Delgrande et al., 2018; Guimarães et al., 2023].

Definition 1 (Satisfaction System). A satisfaction system is a
triple (L, |=,M), where L is a language, M a set of models,
and |= a satisfaction relation on M × L. The relation |=
contains pairs of the form (π, ϕ) with model π satisfying ϕ.

Given Φ ⊆ L, π |= Φ iff π |= ϕ for all ϕ ∈ Φ. Given
Φ,Φ′ ⊆ L, we say that Φ entails Φ′, written Φ |= Φ′ if, for all
π ∈ M, π |= Φ implies π |= Φ′. Let mod(Φ) denote the set
of models that satisfy Φ ⊆ L.

Satisfaction systems have the following properties [Aiguier
et al., 2018]: if Φ ⊆ Φ′ then (1) mod(Φ′) ⊆ mod(Φ); and (2)
Φ′ |= Φ (monotonicity). In this work, we consider satisfaction
systems with finite L. We may treat ϕ in L and singleton set
{ϕ} interchangeably. Elements of L are called statements. A
set of statements Φ ⊆ L is consistent if mod(Φ) ̸= ∅ and
falsifiable if mod(Φ) ̸= M. Also, Φ is non-trivial if it is
consistent and falsifiable.

Throughout this section, we consider an arbitrary satisfac-
tion system (L, |=,M) and omit explicit references to it.

3.1 Notion of Middle Ground
Before we provide a formal definition of middle ground, we
motivate it by considering a scenario where stakeholders have
conflicting statements. Recall Example 1, suppose another
participant prefers the second alternative, that is, to save 2
adults, 3 children, and 3 dogs, in symbols, (1, 4, 0) < (2, 3, 3).
Is there a middle ground for these two participants? The
union of their preferences is clearly inconsistent but perhaps by
“weakening” the second alternative, e.g., to (2, 3, 0) and also
making the preference of the first participant non-strict, we can
find an agreeable statement. That is, intuitively, (1, 4, 0) ≥
(2, 3, 0) is “between” the preferences of both participants. This
intuition is what we aim at capturing with middle grounds.

Definition 2 (Middle Ground). Let Φ1, . . . ,Φn be non-trivial
sets of statements, each associated with a stakeholder i ∈
{1, . . . , n}. A set of statements Φ is a middle ground for
Φ1, . . . ,Φn if it satisfies each of the following postulates:

(P1) Φ is non-trivial;

(P2) if
⋃n

i=1 Φi is consistent, then Φ ≡
⋃n

i=1 Φi;

(P3) for each ϕ ∈ Φ and for all i ∈ {1, . . . , n} and all ϕi ∈
Φi, there is π ∈ M such that π |= ϕ and π |= ϕi;

(P4) for each ϕ ∈ Φ, there is i ∈ {1, . . . , n} with Φi |= ϕ;

(P5) there is no Φ′ such that Φ′ |= Φ and Φ ̸|= Φ′ and Φ′

satisfies (P1)-(P4).

Considering the postulates in turn, we give an intuition
behind the formalisation. The first postulate, P1, merely ex-
presses that the statements in the middle ground should in
itself make sense and be non-trivial. The second postulate,
P2, expresses that whenever the stakeholders statements are
not contradictory, the middle ground should simply consist
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of a union of their statements or a logical equivalent (≡). P3
expresses that any statement in the middle ground should be
consistent with any individual statement of any of the stake-
holders. Though, the middle ground might still oppose a
collection of stakeholder preferences. P4 demands that any
statement in the middle ground is justified by a stakeholder
who’s statements demand it. This is to prevent adding unneces-
sary statements to the middle ground. Finally, P5 ensures that
among the sets of statements that satisfy P1-P4, the middle
ground is maximal in the sense that it cannot be implied by
another (non-equivalent) set.

To check that a middle ground is well defined, we need to
consider the case of consistent stakeholders. It is easy to see
that their joint statements satisfy the middle ground postulates.
Proposition 1. If

⋃n
i=1 Φi is consistent, then

⋃n
i=1 Φi is a

middle ground (Definition 2), that is, it satisfies P1-P5.

3.2 Existence of Middle Ground
The satisfaction of P1-P4 is sufficient for the existence. For
this, we note that the |=-relation is transitive, i.e., for Φ |= Φ′

and Φ′ |= Φ′′ we have Φ |= Φ′′. Thus, |= is acyclic for
non-equivalent statements, i.e., there exists no chain of non-
equivalent sets of statements Φ1, . . . ,Φk such that Φi |= Φi+1

for i = 1, . . . , k − 1 and Φk |= Φ1. In consequence, since we
assume L is finite, there exists a dominating set Φ such that
there exists no other non-equivalent set Φ′ |= Φ. Restricting
|= to sets of statements that satisfy P1-P4 preserves this. Using
this observation and Proposition 1 the following holds.
Proposition 2. Let Φ1, . . . ,Φn be non-trivial sets of state-
ments. If there exists a set of statements Φ that satisfies P1,
P3, and P4 then a middle ground exists for Φ1, . . . ,Φn.

Further, by using that π |= Φ implies π |= ϕ for ϕ ∈ Φ
and transitivity of |=, we can show that to check existence of
a middle ground it is sufficient to consider single statements
rather than sets of statements.
Proposition 3. Let Φ1, . . . ,Φn be non-trivial sets of state-
ments. If there exists a set of statements Φ that satisfies P3
and P4 for Φ1, . . . ,Φn then any statement φ such that ϕ |= φ
for some ϕ ∈ Φ satisfies P3 and P4.

Similarly, one can also show that anyφwith Φ |= φ satisfies
P3 if Φ satisfies P3. The same is not true for P4.

However, if their union is consistent then we can show that
it satisfies P1-P4 and thus, since they individually satisfy P5,
they must be logically equivalent. Thus, middle grounds are
either equivalent or inconsistent together.
Proposition 4. Let Φ and Φ′ be two sets of statements that are
middle grounds for stakeholder statements Φ1, . . . ,Φn. Then
either Φ ≡ Φ′ or Φ ∪ Φ′ is inconsistent.

3.3 Construction of Middle Grounds
We can show that we can construct a middle ground with the
help of the following algorithm, if there exists one. While not
computationally efficient in general, this algorithm exploits
the result of Proposition 3 by only considering satisfaction
of P1, P3 and P4 for single statements rather than sets. This
makes Algorithm 1 tractable for cases in which consistency
and deduction problems are efficient.

Algorithm 1: Middle Ground for Statements
Input :Non-trivial statement sets Φ1, . . . ,Φn ⊆ L
Output :Set of all middle grounds (up to equivalence).

1 if
⋃n

i=1 Φi is consistent then return {
⋃n

i=1 Φi} ;
2 Ψ1 := {φ ∈ L | φ non-trivial} ;
3 Ψ3 := {φ ∈ L | ∀φ′ ∈

⋃n
i=1 Φi : {φ,φ′} consistent} ;

4 Ψ4 := {φ ∈ L | ∃i ∈ {1, . . . , n} : Φi |= φ} ;
5 return the set of all cardinality-maximal consistent

subsets of Ψ1 ∩Ψ3 ∩Ψ4 (possibly empty) ;

Theorem 5. Algorithm 1 returns the (possible empty) set of
all middle grounds (up to logical equivalence) for non-trivial
sets of stakeholder statements.

Proof Sketch. If
⋃n

i=1 Φi is consistent, then by Line 1 the
algorithm returns

⋃n
i=1 Φi which, by P2 is the only middle

ground (up to logical equivalence). Then, assume
⋃n

i=1 Φi

is inconsistent. In Lines 2-4, Algorithm 1 constructs the sets
Ψi of ϕ ∈ L that, individually, satisfies Pi, with i ∈ {1, 3, 4}.
We show that Φ is a middle ground iff Φ is equivalent to a
cardinality-maximal consistent subset of Ψ := Ψ1 ∩Ψ3 ∩Ψ4,
returned by Algorithm 1 (Line 5) (note that Ψ can be empty).

One can argue with the help of the postulates P1-4 and
Proposition 3, that if Φ is a middle ground then Φ is equivalent
to a consistent subset of Ψ. Next, one can show that any
consistent subset Φ of Ψ satisfies P1-P4. Note that elements of
a set of statements satisfy P3 and P4 individually, then the set
also satisfies P3 and P4. We can now show that any cardinality-
maximal subset Φ of Ψ that is consistent satisfies P5. Assume
for contradiction that another set of statements Φ′ satisfys
P1-P4 and Φ′ |= Φ and Φ ̸|= Φ′. One can now show Φ∪Φ′ is
inconsistent which implies Φ ̸|= Φ′ — a contradiction.

We have shown that any middle ground is equivalent to a
consistent subset of Ψ, and any cardinality-maximal consistent
subset of Ψ is a middle ground. By Proposition 4, any two
middle grounds are either equivalent or their union is inconsis-
tent. Now, any non-cardinality-maximal consistent subset Φ of
Ψ is consistent with one that is cardinality-maximal and thus
is a middle ground. Hence, any middle ground is equivalent
to a cardinality-maximal consistent subset of Ψ.

4 Middle Grounds for Preferences
Here, we instantiate the general framework of Section 3 for
the satisfaction system Λ with the language of preferences
(Definition 6) and hierarchical models (Definition 3). We also
consider the special case of Λ where we consider the class
of lexicographic models (Definition 4). We start by formally
defining all necessary notions and then analyse the complexity
of deciding the existence of a middle ground.

4.1 Hierarchical Preferences
Variables and Alternatives: Let V be a set of m variables
(or features) which describe alternatives. For each variable
v ∈ V , let v denote its domain, i.e., the set of possible values
of v. Assume that v is finite and contains more than one
element. An alternative is an element of V =

∏
v∈V v i.e.,
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an assignment to all the variables. For alternative α ∈ V and
variable v ∈ V , let α(v) ∈ v be the value α assigns to v.
Example 2 (cont.). As before, we consider a setting similar
to that in the Moral Machine Experiment [Awad et al., 2018].
More concretely, let the alternatives be described by three
variables with values between 0 and 5 as domains, such that
V = adult× child× dog. Consider the alternatives:

α = (1, 4, 0), β = (2, 3, 3), γ = (1, 3, 5).

Then, α describes a set of 1 adult, 4 children, and 0 dogs.
Similarly, β and γ specify sets of adults, children, and dogs.

A hierarchical model consists of a hierarchy over variables.
At each level of the hierarchy, we combine the variable assign-
ments by a commutative and associative operator

⊕
. Here,

we assume that value domains of variables are compatible,
i.e., there exists an operator

⊕
that can combine any subset

of variables in a meaningful way, and there exists a natural
order relation over the value domains as well as over values of
combinations of variables. We can then compare alternatives
by a lexicographic order. That is, we compare alternatives first
based on the value combinations of the first-level variables;
only if these are equal is the combination of the next most
important variables considered, and so on.
Definition 3 (Hierarchical Model). A hierarchical model, or
simply model, π over variables V , is defined to be a non-empty
sequence of the form (Y1, . . . , Yk). Here Y1, . . . , Yk ⊆ V are
k non-empty sets of variables in V .
Definition 4 (Lexicographic Model). A lexicographic model
is a hierarchical model with singleton variable sets. With an
abuse of notation, we write such sequences as (v1, . . . , vk),
where v1, . . . , vk ∈ V .

Our definitions are very similar to the models defined
by Wilson et al. (2015), but differ in two points. First, we
assume that neither hierarchical nor lexicographic models can
be empty sequences. The corner case of empty models is
a technical detail but, as becomes clearer in the following,
does not contribute meaningful inference of preference state-
ments. A more important difference is that, by our definition,
hierarchical models may have non-disjoint sets of variables.
That is, it would be possible to express that the number of hu-
mans is most important and the number of children is second
most important, since children would appear in two levels of
the importance order. Our definition is, in this latter point, a
generalisation of the models defined in [Wilson et al., 2015].

For any hierarchical models together with a commutative
and associative operator

⊕
we define an order relation ⪰π

over alternatives (omitting
⊕

for readability).
Definition 5 (Order Relation ⪰π). Let V be variables and⊕

a commutative and associative operator on the variable
domains. Assume that there exists a total order relation ≥
on the variable domains and on

⊕
-combinations of variable

values. For a model π = (Y1, . . . , Yk) over variables V the
binary relation ⪰π on V is defined as follows.
For alternatives α, β ∈ V , we have α ⪰π β if and only if

(i) for all i = 1, . . . , k,
⊕

y∈Yi
α(y) =

⊕
y∈Yi

β(y), or

(ii) there exists i ∈ {1, . . . , k} s.t.

•
⊕

y∈Yi
α(y) >

⊕
y∈Yi

β(y) and
•
⊕

y∈Yj
α(y) =

⊕
y∈Yj

β(y) for all j < i.

The order relation ⪰π is a total pre-order on V , i.e., reflex-
ive, transitive and total. The order relation is not necessarily
complete as it, e.g., does not necessarily include all variables.
Thus, two alternatives might appear to be equivalent under ⪰π

whereas they are different elements in V .
The corresponding strict relation ≻π is given by α ≻π β if

and only if (ii) is satisfied, i.e., there exists i ∈ {1, . . . , k}
such that

⊕
y∈Yi

α(y) >
⊕

y∈Yi
β(y) and for all j < i,⊕

y∈Yj
α(y) =

⊕
y∈Yj

β(y). The corresponding equivalence
relation ≡π is given by α ≡π β if and only if (i) is satisfied,
i.e., for all i = 1, . . . , k, α(Yi) = β(Yi).
Example 3 (cont.). Consider the alternatives in Example 2. If,
it is desirable to save as many living beings as possible, then
the natural order is “the more the better”. As the domains
are compatible (they are all the same) we could for example
take the usual addition as the operator

⊕
. Consider π =

({adult, child}, {child}). This hierarchical model expresses
that the number of humans to be saved from a car crash is
the most important. Only if they are equal do we consider the
number of children. Dogs are irrelevant in the comparison.
Under the order relation induced by π, we have that α is
strictly preferred to γ (and β), α ≻π γ and thus α ̸⪯π γ.
Definition 6 (Preference Language L, [Wilson et al., 2015]).
We define the language of non-strict and strict preference
statements that are simple comparisons of alternatives V as:

L = {α ≥ β | α, β ∈ V } ∪ {α > β | α, β ∈ V }
We add parenthesis around preference statements when

they appear in sequence, e.g. (α ≥ β), (γ < δ), for visualiza-
tion. As Wilson et al. (2015), we define the meaning of these
statements, and a satisfaction relation |= between hierarchical
models π and statements, in correspondence to ⪰π .
Definition 7 (Satisfaction Relation |=). Let π be a hierarchical
model, and α, β ∈ V alternatives.

• We say that π satisfies the non-strict statement α ≥ β,
denoted by π |= α ≥ β, if and only if α ⪰π β.
That is, under π, α is at least as preferred as β.

• We say that π satisfies the strict statement α > β, denoted
by π |= α > β, if and only if α ≻π β.
That is, under π, α is strictly preferred to β.

Through L, a stakeholder can express indifference between
α and β via the statements α ≥ β and β ≥ α together. Further,
as Wilson et al. (2015) already state, because ⪰π is a total
pre-order over the alternatives, π ̸|= α ≥ β is equivalent to
π |= β > α. For this reason, we omit the definition of negated
statements in L. The notion of entailment is as in Definition 1.
Example 4 (cont.). The statement β > α, i.e., β is strictly
preferred to α, intuitively implies that any model π of the state-
ment contains at least one set of individuals (that are important
to the stakeholder) from which there are strictly more beings
saved in β than in α, e.g., ({adult, child}, {dog}) |= β > α.
While ({adult, child}, {dog}) |= α > γ, we cannot deduce
α > γ from β > α ({β > α} ̸|= γ > α) because also
({dog}) |= β > α and ({dog}) ̸|= α > γ.
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4.2 Non-Uniqueness and Non-Existence
As a first result, we note that there may be more than one
middle ground for preference statements in L.

Theorem 6. There exist sets of stakeholder statements in L
that admit multiple non-equivalent middle grounds.

Proof Sketch. Consider the following alternatives de-
fined over four binary variables V = {x, y, z, w}:

x y z w
α = 1 0 0 0
β = 0 1 0 0
α′ = 0 0 1 0
β′ = 0 0 0 1
γ = 1 0 1 0
δ = 0 1 0 1

For simplicity, we as-
sume that the value of
any ⊕-combination of
variables is the same for
all alternatives and omit
such values in the table
on the left.

Consider two stakeholders expressing non-trivial statements:

Φ1 = {(α > β), (α′ > β′)}, Φ2 = {(β > α), (β′ > α′)}.

The stakeholder’s statements are consistent individually, but
inconsistent together. Thus, the union of Φ1 and Φ2 cannot
be a middle ground. One can show that there are at least two
non-equivalent middle grounds for Φ1 and Φ2 with help of the
two statements ψ1 = γ > δ and ψ2 = δ > γ. In particular:

1. ψ1 and ψ2 are individually non-trivial;

2. ψ1 and ψ2 are inconsistent together;

3. for all i, j ∈ {1, 2} and all ϕi ∈ Φi, there is π such that
π |= ψj and π |= ϕi;

4. for i ∈ {1, 2}, Φi |= ψi.

To conclude, we claim that there are at least two non-
equivalent middle grounds: one that contains ψ1 and another
one that contains ψ2. Indeed, Points (1), (3), (4) and Theo-
rem 5 imply that that there is a middle ground for Φ1 and Φ2

that contains ψ1 (plus possibly other statements, so as to sat-
isfy P5) and a middle ground for Φ1 and Φ2 that contains ψ2.
Point (2) implies that there is no middle ground that contains
both ψ1 and ψ2 (otherwise P1 would be violated). So there
are two non-equivalent middle grounds for Φ1 and Φ2.

Further, we show that a middle ground may not exist.

Theorem 7. There exist sets of stakeholder statements in L
that admit no middle ground.

Proof. Consider alternatives defined over two binary variables
V = {x, y}, and an operator ⊕ that resembles the logical ∧:

x y x⊕ y
α = 1 0 0
β = 0 1 0
γ = 1 1 1
δ = 0 0 0

By the convention 1 > 0, any
hierarchical model entails α ≥
δ, β ≥ δ and γ > δ, as well as
γ ≥ α and γ ≥ β. Further, no
model satisfies δ > γ.

The set of non-trivial statements in this case is given by N =
{(γ > α), (γ ≤ α), (γ > β), (γ ≤ β), (α > β), (α ≥
β), (α < β), (α ≤ β), (α > δ), (α ≤ δ), (β > δ), (β ≤ δ)}.

Consider two stakeholders with preference statements:

Φ1 = {α ≥ γ} and Φ2 = {β ≥ γ}.

These statements are consistent individually, but inconsistent
together. In particular, the only hierarchical model that satis-
fies Φ1 is ({x}). Thus Φ1 entails non-trivial statements {(γ >
β), (α ≥ γ), (α > β), (α ≥ β), (α > δ), (δ ≥ β)} ⊆ N .
None of these statements is consistent with Φ2. By symmetry,
the only hierarchical model satisfying Φ2 is ({y}) and none
of the entailed statements from Φ2 are consistent with Φ1.

By P4 any statement in the middle ground is entailed by
some stakeholders statements. However, by P3 and because
the stakeholders have only one statement each, the middle
ground needs to be consistent with the stakeholders statements.
As argued above, there is no such middle ground.

4.3 Deciding Existence of a Middle Ground
Through Proposition 2 we have established that for the exis-
tence of a middle ground it is sufficient to check whether there
exists a set of statements that satisfies P1, P3, and P4. Further,
we found that, by Proposition 3, it is sufficient to only check
for the existence of single (non-trivial) statements that satisfy
P3 and P4. For preference statements of language L we can
further narrow down which statements shall be investigated to
determine existence of a middle ground.

As a consequence of Proposition 3, and because (α > β) |=
(α ≥ β), we have the following relation between strict and
non-strict statements satisfying P3 and P4.
Corollary 8. Let Φ1, . . . ,Φn ⊆ L be non-trivial sets of state-
ments. If the strict statement α > β satisfies P3 and P4 then
its non-strict version α ≥ β satisfies P3 and P4.

Here the non-strict version, while satisfying P3 and P4,
might be trivial (i.e., violating P1) even if the strict statement
is non-trivial. However, we can observe that this can only
happen in a specific case.
Lemma 9. If α > β is non-trivial then either α ≥ β is
non-trivial or

•
⊕

y∈Y α(y) ≥
⊕

y∈Y β(y) for all Y ⊆ V , and

• there exists Y ⊆ V with
⊕

y∈Y α(y) =
⊕

y∈Y β(y).

Thus, if a strict statement is non-trivial, its “non-strict ver-
sion” cannot be a contradiction. Further, it can only be a
tautology, if there is a variable set that is indifferent.

The discussion above together with Propositions 2 and 3
allows us now to specify sets of non-trivial strict and non-strict
statements that are sufficient to check w.r.t. P3 and P4 to
guarantee the existence of a middle ground.
Corollary 10. Let Φ1, . . . ,Φn be non-trivial sets of state-
ments. There exists a middle ground that includes a strict
or a non-strict statement if and only if one of the following
statements satisfies P3 and P4:

{α ≥ β | α, β ∈ V s.th. α ≥ β non-trivial}
∪{α > β | α, β ∈ V s.th. α > β non-trivial, α ≥ β trivial}.

While we can exactly determine the sets of statements in
Corollary 10 and they are finite, they are exponentially large
on the number of variables. As we see next, checking the
postulates of the definition of a middle ground is not in P
for hierarchical models, unless P=NP and P=coNP. Thus, we
consider lexicographic models, which are a special case of
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hierarchical models. For these we can narrow down the set
of preference statements that need to be checked for satis-
fying P3 and P4 to only 2 · |V | statements. Since checking
the satisfaction of P3 and P4 is polynomial for lexicographic
models [Wilson et al., 2015], the existence of a middle ground
is decidable in polynomial time.

Hierarchical Models
To analyse the complexity of deciding the existence of a mid-
dle ground for hierarchical models, we first show that it is
NP-complete to decide consistency for hierarchical models.

Wilson et al. (2015) show that deciding Γ |= α ≥ β is
coNP-complete for their definition of hierarchical models
which they call HCLP models, even if Γ is a set of non-strict
statements [Wilson et al., 2015]. Consequentially, deciding
consistency of a set of statements Γ is NP-complete under
HCLP models. However, as outlined before, HCLP models
are slightly differently defined than hierarchical models and
the construction of the reduction from 3SAT to prove their
central result is not transferable to hierarchical models. In par-
ticular their Lemma 2 does not hold if variable sets in models
are allowed to be non-disjoint.

To show NP-completeness of deciding consistency of a set
of statements w.r.t. our definition of hierarchical models, we
instead use a reduction from the Subset Sum Problem.1 An
instance of Subset Sum consists of a multi-set of integers S
and a target integer T . The task is to decide whether there
exists a multi-set A ⊆ S such that the sum of its element is T ,
i.e.,

∑
a∈A a = T . This problem is NP-complete even if all

integers in S are positive [Kleinberg and Tardos, 2006].

Theorem 11. Deciding consistency of a set of preference
statements is NP-complete w.r.t. hierarchical models with
operators ⊕ that can be computed in time polynomial in the
number of variables.

Proof. To see that the consistency problem is in NP, we show
that one can check in time polynomial in the number of vari-
ables and statements, whether a given hierarchical model
π = (Y1, . . . , Yk) satisfies a set of given preference statements
Γ ⊆ L. That is, for every non-strict statement (α ⪰ β) ∈ Γ
we need to check whether

⊕
y∈Yi

α(y) ≥
⊕

y∈Yi
β(y) for all

i = 1, . . . , k, and, for every strict statement (α ≻ β) ∈ Γ, we
need to additionally check whether there exists i ∈ {1, . . . , k}
with

⊕
y∈Yi

α(y) ≥
⊕

y∈Yi
β(y). By our assumption on ⊕

this can be computed in polynomial time.
We show the completeness of the problem by a reduction

from Subset Sum with positive integers. For this, let S be a
multiset of positive integers and T ∈ N a target. We construct
three preference statements that, when satisfied together, force
a hierarchical model to contain a variable set that corresponds
to a solution of Subset Sum for S and T .

1The same proof can also be used to show NP-completeness for
HCLP models with an addition for the (trivial) case of the empty
HCLP model. It thus offers a more concise alternative to the proof
of Wilson et al. (2017). More generally, it shows that deciding
consistency is NP-complete even for models containing only one set
of variables, and only three preference statements.

Variables: We construct a variable va for each a ∈ S and
one variable vT . Denote the set of variables by V . Then
|V | = |S|+ 1. Let the domain of each variable be N.
Operator: The operator ⊕ is the normal addition.
Preference Statements: Consider preference statements

Φ = {(αT > βT ), (αΣ ≥ βΣ), (βΣ ≥ αΣ)}
for alternatives αT , βT , αΣ, βΣ that are defined as follows:

αT (vc) =

{
0 if c ∈ S
1 if c = T

βT (v) = 0 ∀v ∈ V

and αΣ(vc) =

{
c if c ∈ S
0 if c = T

βΣ(vc) =

{
0 if c ∈ S
T if c = T.

Satisfaction: We first show that if there exists a hierarchical
model satisfying Φ then there exists a Subset Sum solution.
Then we show the reverse.

Assume that there is a hierarchical model π with π |= Φ.
Because αT > βT is a strict statement, but all variables are
indifferent under αT and βT except vT , π must contain vT
in some variable set. Let C be the first such variable set in
π with vT ∈ C. Then by π |= (αΣ ≥ βΣ), either (1) C is
preceded by another variable set C ′ in π, or (2) C contains
other variables and

∑
vc∈C αΣ(vc) ≥

∑
vc∈C βΣ(vc) = T .

By π |= (βΣ ≥ αΣ) and because integers in S are positive,
case (1) is not possible. Thus assume that case (2) holds
and let A = {a ∈ S | va ∈ C \ {vT }}. Then

∑
a∈A a =∑

vc∈C\{vT } αΣ(vc) ≥ T . Further, by π |= (βΣ ≥ αΣ) and
because there is no other variable set preceding C in π, we
have T =

∑
vc∈C βΣ(vc) ≥

∑
vc∈C αΣ(vc) =

∑
a∈A a. So,

if π |= Φ then π contains a set of variables C corresponding
to T and integers A ⊆ S such that T =

∑
a∈A a.

For the reverse, assume there exists a multiset A that is
a subset of integers S with T =

∑
a∈A a. Then, as shown

before, the hierarchical model π = ({va | a ∈ A} ∪ {vT })
satisfies Φ. Thus there exists a hierarchical model satisfying Φ
iff there exists a subset of S that sums to T . Because construc-
tion of Φ is polynomial in the size of the Subset Sum instance,
and Subset Sum is NP-complete, so is deciding consistency
for hierarchical models and preference statements.

Recall that for preference statements Γ, α > β, we have
Γ |= (α > β) if and only if Γ ∪ {α ≤ β} is inconsistent
[Wilson et al., 2017]. Similarly, Γ |= (α ≥ β) if and only
if Γ ∪ (α < β) is inconsistent. Then Theorem 11 has the
following consequences for the complexity of deduction and
testing middle ground.
Corollary 12. Deciding Γ |= φ for preference statements Γ
and φ w.r.t. hierarchical models is coNP-complete.
Corollary 13. Let Φ1, . . . ,Φn be non-trivial sets of state-
ments. Let Φ be a given set of statements and consider the
satisfaction relation w.r.t. hierarchical models. Then, deciding
whether Φ satisfies (P1) is NP-complete and deciding whether
Φ satisfies (P4) for Φ1, . . . ,Φn is coNP-complete.

Lexicographic Models
For lexicographic models, we are able to decrease the set of
statements in Corollary 10 that need to be considered to deter-
mine existence of a middle ground to a polynomial size. We
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first show that it is sufficient to consider binary variables. In-
formally, this follows from the fact that lexicographic models
only consider ordinal relations between the variable assign-
ments and not their actual values.

Proposition 14. Given statement ϕ = (α ≥ β), let ϕb =
(αb ≥ βb) be the result of replacing α(v) and β(v) in ϕ by

• 1 and 0, respectively, if α(v) > β(v);

• 0 and 1, respectively, if α(v) < β(v); and

• 0 and 0, respectively, if α(v) = β(v), for all v ∈ V .

Under the assumption that 1 > 0, we have for all lexico-
graphic models π, that π |= ϕ iff π |= ϕb.

We can further decrease the set of statements to consider
for testing existence of a middle ground as follows.

Theorem 15. Consider inference based on lexicographic mod-
els on variables V . Let 0⃗ denote the vector of |V | zeros and let
0⃗v be the same as 0⃗ but with 1 at the position corresponding
to a variable v ∈ V . Similarly, let 1⃗ denote the vector of |V |
ones and let 1⃗v = 1⃗ − 0⃗v. There exists a middle ground for
non-trivial sets of statements Φ1, . . . ,Φn if and only if one of
the following statements satisfy P3 and P4:

{⃗1v ≥ 0⃗v | v ∈ V } ∪ {⃗1v > 0⃗ | v ∈ V }.

Proof. Suppose there exists a middle ground for Φ1, . . . ,Φn

that includes a non-trivial statement ϕ. By Proposition 14, and
under the assumption that 1 > 0 we have for all lexicographic
models π, that π |= ϕ iff π |= ϕb. Here ϕb is the statement
over binary variables as defined in Proposition 14. We can
thus focus our following argumentation on ϕb instead of ϕ.

Assume that ϕb is a non-strict statement α ≥ β. Then
because it is non-trivial, and in particular not a tautology, there
exists variable v such that α(v) < β(v). Any lexicographic
model that satisfies α ≥ β must include another variable v′
preceding v or not include v at all. Thus, any such model also
satisfies 1⃗v ≥ 0⃗v , i.e., (α ≥ β) |= (⃗1v ≥ 0⃗v).

Now assume that ϕb is a strict statement α > β. Then
because it is non-trivial, by Lemma 9, it entails either (1) a
non-trivial non-strict statement or (2) there exists a variable
v such that α(v) = β(v)(= 0) and α(v′) ≥ β(v′) for all
variables v′ ∈ V \ {v}. In case (1), by our arguments above,
α > β also entails a non-trivial non-strict statement 1⃗v ≥ 0⃗v
for some v ∈ V . For case (2), we show that α > β entails
the statement 1⃗v > 0⃗. Because α > β is a strict statement
and because α(v) = β(v) the lexicographic model that only
includes v does not satisfy α > β. Thus, any lexicographic
model satisfying α > β must also include some other variable
v′. Any such model then also satisfies 1⃗v > 0⃗.

As shown above, any middle ground of statements entails
a statement in {⃗1v ≥ 0⃗v | v ∈ V } ∪ {⃗1v > 0⃗ | v ∈ V }. By
Proposition 3, this statement satisfies P3 and P4.

For the converse direction, assume there exists a statement
in {⃗1v ≥ 0⃗v | v ∈ V } ∪ {⃗1v > 0⃗ | v ∈ V } that satisfies
P3 and P4. Because all such statements are by construction
non-trivial, they also satisfy P1. Then by Proposition 2 there
exists a middle ground.

Algorithm 2: Existence of Middle Ground
Input :Sets of non-trivial preferences Φ1, . . . ,Φn.
Output :‘yes’ if it exists, ‘no’ otherwise.

1 if
⋃n

i=1 Φi is consistent then return
⋃n

i=1 Φi ;
2 Lb := {(⃗1v ≥ 0⃗v), (⃗1v > 0⃗) | v ∈ V };
3 Ψ3 := {φ ∈ Lb | ∀ψ ∈

⋃n
i=1 Φi : {φ,ψ} consistent};

4 Ψ4 := {φ ∈ Lb | ∃i ∈ {1, . . . , n} : Φi |= φ};
5 if Ψ3 ∩Ψ4 = ∅ then return ‘no’;
6 else return ‘yes’;

Wilson et al. (2015) establish that checking consistency
or inference is polynomial-time solvable for lexicographic
models and strict and non-strict preference statements. In
consequence, we can check in polynomial-time whether a
statement satisfies P3 or P4. By Theorem 15, we only need to
do this for 2 · |V | many statements for lexicographic models.

Corollary 16. Let Φ1, . . . ,Φn be non-trivial sets of state-
ments. Checking whether there exists a middle ground w.r.t.
lexicographic models that includes a (non-trivial) strict or
non-strict statement is polynomial-time solvable.

We summarise the algorithm to decide existence of a middle
ground in Algorithm 2. Here, the set of statements Lb has
cardinality 2 · |V |. To construct Ψ3 we need to perform 2 ·
|V | · |

⋃n
i=1 Φi| consistency checks between two statements.

To construct Ψ4 we need to perform 2 · |V | · n checks to see if
a statement can be deduced from a stakeholder’s statements.

One can also employ Algorithm 1 to construct a middle
ground for lexicographic models. In case the stakeholders
statements are inconsistent (which can be checked in polyno-
mial time), by Proposition 14, one can then focus on binary
statements instead of the complete language L. The number of
strict and non-strict statements over |V | variables with binary
domains is O(22|V |−1). We then need to check every one of
the O(22|V |−1) statements on whether they satisfy P1, P3 and
P4. Thus, while each of these tests individually can be done
in polynomial time, Algorithm 1 remains exponential even for
lexicographic models. It remains an open question whether
there exist tractable algorithms to solve this problem.

5 Conclusion
We investigate the notion of middle ground, exploring its prop-
erties, including the fact that it may not exist or be unique. We
establish necessary conditions for its existence and describe
an algorithmic procedure for both existence checking and con-
struction. Our case study focuses on preference statements,
with a notable application in moral preferences and hiring:
while the general problem is coNP-complete, we show that
deciding existence is tractable for lexicographic models.

Our postulate P3 concerns statements in the middle ground
individually and not the whole set. It remains open whether
a stronger version of this or other postulates lead to more
tractable algorithms or a unique middle ground. Other fu-
ture work may analyse the tractability of constructing middle
grounds for lexicographic models and explore the concept for
non-preference-based languages, such as propositional logic.
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