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Abstract

Spatial transcriptomics, comprising spatial location
and high-throughput gene expression information,
provides revolutionary insights into disease discov-
ery and cellular evolution. Spatial transcriptomic
clustering, which pinpoints distinct spatial domains
within tissues, reveals cellular interactions and en-
hances our understanding of the intricate architec-
ture of tissues. Existing methods typically con-
struct spatial graphs using a static radius based
on spatial coordinates, which hinders the accurate
identification of spatial domains and complicates
the precise partitioning of boundary nodes within
clusters. To address this issue, we introduce a
novel spatially resolved transcriptomics data clus-
tering network (TSstc). Specifically, we employ
a tailored spatial-scale modulation approach, con-
structing different spatial graphs incrementally as
the radius of the spatial domain expands, and a
Spatiality-Aware Sampling (SAS) strategy is pro-
posed to aggregate node representations by consid-
ering the spatial dependencies between spots. We
then use GCN encoders to learn gene embedding
with gene graphs and multiple spatial embeddings
with spatial graphs. During training, we incor-
porate cross-view correlation-based tailored spatial
regularization constraints to preserve high-quality
neighbor relationships across spatial embeddings at
different scales. Finally, a zero-inflated negative bi-
nomial model is utilized to capture the global prob-
ability distribution of gene expression profiles. Ex-
tensive experimental results demonstrate that our
approach surpasses existing state-of-the-art meth-
ods in clustering tasks and related downstream ap-
plications.

1 Introduction

Spatial transcriptomics technology [Song and Su, 2021; Zhai
et al., 2023; Rao et al., 2021] provides a novel approach to
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Spatial graphs

A: Static radius

B: Tailored spatial-scale
modulation

Figure 1: It is a histopathological image composed of numerous
spots with different colors representing distinct clusters. The way
A displays a standard static radius-based approach for constructing
spatial graphs. The way B illustrates our proposed tailored spatial-
scale modulation method for constructing spatial graphs.

studying the functions and interactions of cells within tissues.
Offering quantitative gene expression data alongside the spa-
tial location of cells overcomes the limitations of single-cell
sequencing [Mrabah et al., 2023], particularly the loss of
spatial information. In recent years, spatial transcriptomics
has been widely applied across various fields, including em-
bryonic development [Rossant and Tam, 2022], disease re-
search [Moore et al., 20241, and plant science [van Dijk et
al., 2021].

Accurate identification of spatial domains within transcrip-
tomic data enables a deeper understanding of the distribu-
tion patterns of cell populations in tissues and their biolog-
ical functions at specific spatial locations. Early methods for
spatial domain identification primarily relied on gene expres-
sion data for clustering analysis, such as K-means [Ahmed et
al., 2020], Louvain [Zhang er al., 20211, and Seurat [Pereira
et al., 2021] algorithms. However, these methods neglected
spatial relationships between cells, often leading to discon-
tinuous domain identification, where adjacent cells were mis-
takenly assigned to separate domains.

Consequently, researchers have increasingly explored deep
clustering methods integrating gene expression data with spa-
tial location information. For example, stGCL [He et al.,
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Figure 2: The architecture of TSstc. (A) Graph Construction module: we employ a tailored spatial-scale modulation approach to construct
different spatial graphs A, incrementally as the radius of the spatial domain expands. (B) Multi-view Feature Extraction module: we

v

aggregate node representations to obtain different spatial feature matrixes X5, by the Spatiality-Aware Sampling (SAS) strategy. Then, we

v

use GCN encoders to learn gene embedding Zgene and multiple spatial embeddings Zj,,. Concurrently, the Cross-view Fusion module is
proposed to integrate them for Z;. (C) Spatial Domain Constraints module: we incorporate cross-view correlation-based tailored spatial

v

regularization constraints to preserve high-quality neighbor relationships across spatial embeddings Zyg,,, at different scales and utilize a

ZINB decoder model to reconstruct the original expression matrix.

2024] constructs a heterogeneous graph coordinating module
that maintains view independence during the fusion process.
StMMR [Zhang et al., 2024] introduces a multimodal geo-
metric method to effectively fuse histological, gene expres-
sion, and spatial location information. SCGDL [Liu et al.,
2023a] applies a Bayesian Gaussian mixture model to gener-
ate spatial domains. Recently, many methods based on Graph
Neural Networks (GNNs) have also been proposed, such as
MAFN [Zhu et al., 2024], SpaGCN [Hu et al., 2021], and
Spatial-MGCN [Wang et al., 2023]. However, these methods
construct spatial graphs using a conventional approach with a
static radius based on spatial coordinates, as shown in Fig. 1
A. For the central node, considering all nodes within the cir-
cle as neighbors, including those from other clusters, hinders
the accurate identification of spatial domains and complicates
the precise partitioning of boundary nodes in clusters. The ra-
dius used to construct the graph is crucial: if it is too small,
fails to capture adequate spatial neighbors; and too large, it
introduces noise into the spatial domain.

To address this issue, we propose a novel spatially resolved
transcriptomics data clustering network (TSstc) with tailored
spatial-scale modulation, as illustrated in Fig. 2. Specifi-
cally, we employ a tailored spatial-scale modulation approach
that incrementally constructs different spatial graphs A7, as
the spatial domain radius expands. Additionally, we intro-
duce a Spatiality-Aware Sampling (SAS) strategy to aggre-
gate node representations by accounting for the spatial de-
pendencies between spots. Next, we use graph convolutional
network (GCN) encoders to learn gene embeddings Zgen.

from gene graph and multiple spatial embeddings Z,, from
spatial graphs. The Cross-view Fusion module is then ap-
plied to integrate the gene embedding and spatial embedding
features for Z¢. During training, we incorporate cross-view
correlation-based tailored spatial regularization constraints
across spatial embeddings Z7,, at different scales to remove
noisy neighbors while preserving high-quality neighbor rela-
tionships. Finally, we utilize a zero-inflated negative binomial
(ZINB) model to reconstruct the original expression matrix,
capturing the global probability distribution of gene expres-
sion profiles. Extensive experimental results demonstrate that
our approach outperforms existing state-of-the-art methods in
various spatial transcriptomic tasks and related downstream
applications.

The main contributions of this work are summarized as fol-
lows:

* We propose a novel network for clustering spatially
resolved transcriptomics data, termed TSstc. To our
knowledge, we are the first to explore spatial graph con-
struction scales and address the challenge of identifying
boundary nodes within clusters.

* We design a tailored spatial-scale modulation approach
that incrementally constructs spatial graphs and employs
the Spatiality-Aware Sampling (SAS) strategy to aggre-
gate node representations. Additionally, we implement
cross-view correlation-based tailored spatial regulariza-
tion constraints to preserve high-quality neighbor rela-
tionships across spatial embeddings at different scales.

* We conducted experiments on three benchmark datasets
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to validate the effectiveness of our proposed method.
The results demonstrate the superiority of TSstc com-
pared to state-of-the-art methods.

2 Related Work

2.1 Spatial Transcriptomics Techniques

Spatial transcriptomics (ST) techniques [Khan et al., 2024;
Yang et al, 2024c], widely used in fields such as em-
bryonic development [Rossant and Tam, 2022], disease re-
search [Moore et al., 20241, and plant science [van Dijk et al.,
2021], provide insights that traditional transcriptomics can-
not offer due to its lack of spatial resolution. ST enables the
capture of quantitative gene expression data while preserv-
ing the spatial locations of cells, thereby overcoming the spa-
tial information loss inherent in single-cell sequencing. As
a result, significant efforts have been made to develop deep
learning networks that utilize spatial domains. Hu et al. [Hu
et al., 2021] proposed a graph convolution-based network
that aggregates gene expression of each spot and its neigh-
boring spots to identify coherent spatial domains. Wang et
al.[Wang et al., 2023] introduced an attention mechanism to
combine gene expression and spatial embeddings, followed
by spatial regularization to constrain the integrated features.
However, these methods typically map aggregated features
into a unified representation, overlooking gene heterogene-
ity. Xiao et al. [He et al., 2024] constructed a heteroge-
neous graph coordinating module that maintains view inde-
pendence during the fusion process. Zhu et al.[Zhu er al.,
2024] designed a Cross-view Fusion Module to dynamically
integrate multiple features and employed a CCR strategy to
reduce irrelevant information. Recently, Graph Neural Net-
works (GNNs) have shown remarkable effectiveness in han-
dling non-Euclidean structural data, leading to their growing
application in spatial transcriptomic clustering. Notable ex-
amples include SEDR [Xu er al., 2024], DeepST [Xu er al.,
2022], CCST [Li et al., 2022], GraphST [Long et al., 2023],
and others. These approaches leverage graph deep learning
to accurately model the spatial distribution and interactions
of gene expression within cells, thereby improving the preci-
sion of spatial domain delineation.

2.2 Deep Learning-based Multi-view Clustering

In recent years, deep learning-based multi-view clustering
methods have attracted significant attention. These meth-
ods can be broadly categorized into three groups: genera-
tive adversarial network-based (GAN) [Yang et al., 2024b;
Yang et al., 2022], variational autoencoder-based (VAE) [Li
et al., 2023; Yuan et al., 2023], and graph convolutional
network-based (GCN) [Xiao et al, 2025]. Specifically,
GANSs generate realistic view data samples to improve clus-
tering performance. Li et al. [Li er al., 2019] used an ad-
versarial module to capture the multi-view data distribution
and disentangle the latent space. Meanwhile, VAEs map in-
put data into a probabilistic distribution in the latent space,
from which latent variables are sampled. Xu et al. [Xu et
al., 2021] have defined view-common and view-specific vari-
ables within a generative model, extracting a common cluster-
ing factor through an approximation of the discrete Gumbel-

Softmax distribution. Additionally, recent literature also ben-
efits from the strong representation power of graph convolu-
tional networks, showing a strong tendency to utilize GCNs
to further improve clustering performance. Zhou et al. [Zhou
et al., 2024] developed a self-encoding framework that incor-
porates view-specific GCN networks to learn high-level rep-
resentations of each view’s data features while considering
prognosis prediction results. In our proposed method, TSstc,
we aim to explore how to integrate gene information and spa-
tial relationships to improve clustering performance.

3 Methodology

In this section, we first provide an overview of the TSstc
model. We then describe the individual modules of the pro-
posed model in detail, followed by an explanation of the train-
ing loss function.

3.1 Overview of TSstc

Our proposed TSstc model consists of four main components:
the Graph Construction module, the Spatiality-Aware Sam-
pling (SAS) module, the Feature Extraction module, and the
Spatial Domain Constraints module.

The TSstc model is trained on spatial transcriptomic
datasets, which include the gene feature matrix Xgene €
RN*P and the 2D spatial coordinates S, € RY*?2, where N
denotes the number of cells and D denotes the dimension of
each cell. We construct the gene graph A j¢pe € RNV*N and
different spatial graphs {AY,,}7_; € RN*N incrementally
as the radius of the spatial domain expands. Then, we aggre-
gate node representations to obtain different spatial feature

matrixes {X? }"_; € RYV*P by the SAS module and we

spa
utilize GCN to learn the latent representations Z ge,e € RY >4

and Z?,, € RV*4 To obtain more comprehensive cross-
view features Z ¢, TSstc uses an attention fusion module to in-
tegrate the gene and spatial features. Furthermore, we use the
Spatial Domain Constraints module to preserve high-quality
spatial neighbor relationships and capture the global proba-
bility distribution of gene expression profiles.

3.2  Graph Construction Module

Compared to directly constructing spatial graphs with a fixed
radius based on spatial coordinates S., we employ a tailored
spatial-scale modulation approach to construct multiple spa-
tial graphs. For each dataset, we analyze the spatial distribu-
tion of spots and incrementally construct spatial graphs Ay,
as the Euclidean distance-based radius R" increases, thereby
evaluating the connectivity between two specified spots as
follows:
AV { 1, if Lj; < R
SPaij 0, otherwise

where LY. represents the Euclidean distance of spot ¢ and j,
calculated based on the spatial coordinates Se.

Then we measure the cosine similarity between two points
1 and j by calculating the similarity of gene expression vec-
tors Xgene, and Xyene,. We then construct the K-NN [Guo et
al., 2003] neighbor graph, denoted as A g, using a binary

. (D
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classification system, where:

L,
Ageneij = { O’

We utilize the tailored spatial-scale modulation approach
to construct various spatial graphs A¢ , that identify spatial
domains of spots. Additionally, the gene graph A ., is con-
structed to capture the similarity between spots.

if 7 is a neighbor of ¢
otherwise

@)

3.3 Spatiality-aware Sampling (SAS) Module

Understanding the spatial domain of the target spot and sam-
pling its spatial neighborhood is crucial for spatially resolved
transcriptomics data. We propose the Spatiality-Aware Sam-
pling (SAS) module and combine the various spatial graphs
A, to perform an aggregation operation on the features of
the target spot and its spatial neighborhood, yielding the spa-

tial feature representation X¢ , before training, where:

X,., = AGGREGATION ({X jene, 1 v; € N;}), (3)

spa;
where N; represents the spatial neighborhood of spot ¢, and
the aggregation function can take various forms, such as
mean, max, sum, attention, and ensemble, which learn the
spatial feature representations. In this case, we choose the
mean operation.

3.4 Feature Extraction Module

In general, spatially resolved transcriptomics data are prone
to noise and redundant information. To filter out this noise
and retain more discriminative features in the latent space, we
use the GCN e encoder and GCN,,,q(,) encoders [Yang
et al., 2024a; Qin et al., 2024] to learn specific features of the
gene graph and spatial graph, respectively. The propagation
rule is defined as follows:

Z!(Jle—ir_Lle) =0 <;&93”6Z§]le)newgl)) ’ (4)
L1 ~o e ® g rp®
Zlh =0 (AL, 20 WS ). 5)

We simplify the gene and spatial normalized adjacency ma-
trix as A, which is given by A = (D)~ 2(I + A)(D) 2,
where D;; = Zj (A;; +1,;), and the identity matrix I €

RY*N ensures self-loops for each spot. The matrices ng)

and Wg(l) are the weights for the I-th layer and o (-) is the
Relu activation function.

In this subsection, we introduce the Cross-view Attention-
induced Feature Fusion module, which allocates variable
weights to effectively integrate gene expression and spatial
embedding features. Specifically, we integrate the latent rep-
resentations Zgene € RY*? and {Z3,,}7_, € RN*4 o ob-
tain the global cross-view feature Z; € RV >,

To incorporate the (v + 1)-th view information, we con-
catenate the d-dimensional feature vectors of nga and Zgene

along the feature dimension to form Z¢ € RV*(dx(v+1)) " Ap
attention weight matrix H € RV > (v+1) is then generated by
the network as follows:

H=¢(W3-§(W7-Z°+by) + by), 6)

where ¢ (-) denotes the Softmax function, § (-) is the Tanh
activation function, and W1, Wy, by, and b, are parameters
of the fusion network.

Next, a broadcasting mechanism is applied to ensure di-
mensional compatibility, followed by the application of at-
tention weights to each feature vector. Finally, the weighted
feature vectors are summed to yield the fused feature vector
Z; € RV*4 a5 follows:

Zf = Z HY . nga = Hlast : denea (7)

where HY denotes the v-th column of the attention weight
matrix H and H;; is its last column.

3.5 Spatial Domain Constraints Module

Raw spatial transcriptomics data include spots with spatial
relationships and location information, making it crucial to
preserve these relationships in the latent space. Spatial-
MGCN [Wang et al., 2023] and MAFN [Zhu e al., 2024]
use spatial graph-based regularization loss to enforce em-
bedding constraints. However, if the spatial graph contains
noisy nodes or connections between nodes from different
clusters, the regularization loss hinders the learning of high-
quality embedding features. To address this, we propose
a cross-view correlation-based tailored spatial regularization
constraint loss to preserve high-quality neighbor relationships
across spatial embeddings at different scales. We begin by
evaluating the sample correlation S” between the gene fea-

tures Zgern. and each spatial feature nga, as follows:
T
zZ Zgene,
S% — ( ‘s:ai) ( g9 .7) ,Vi,j c [I;N]a (8)
T 125l | Zgene, |

where S?. represents the cosine similarity between the i-th
node embedding in the v-th spatial view and j-th node em-
bedding in the gene view. For each spot in the spatial embed-
ding feature Z,,, we select its neighboring nodes with high
expression values based on the correlation matrix S" to refine
the spatial graph. This process removes some connections
that may originate from different clusters or contain noise,
with low expression values. We then apply regularization loss

to the spatial embedding features, as shown below:

w3 (3 (e () - 35 e (- (520,) ).

i=1 \jERY kERY
(©)]

where R} denotes the set of spatial neighbors for spot ¢ in
the v-th spatial embedding. It is generally accepted that data
spots in close physical proximity should also be close in latent
space, while non-adjacent spots should be distant.

As done in previous methods [He er al., 2024; Zhu et al.,
2024], we use the ZINB decoder module [Wang et al., 2023]
to reconstruct the gene expression matrix, assuming that the
gene expression matrix X ¢, and the spatial expression ma-
trix X, follow a ZINB distribution. For simplicity, we de-
note them as X in the following equations:

Painb (X5 | b)) = ZINB (X5 | 735, vij, 055, bi)

10
=0+ (1 —m;) P (X5 | b5) s (10)
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Datasets \ DeepST GraphST SCANPY SCGDL SpaGCN  Spatia-MGCN  stLearn stCluster  Ours
151507 54.76 39.09 2043 49.83 39.21 63.05 49.21 64.21 68.53
151508 42.36 49.36 15.34 34.75 33.78 46.72 51.33 53.75 54.73
151509 43.47 52.13 19.04 32.75 35.14 54.22 45.68 47.24 63.24
151510 51.14 49.57 14.99 31.47 37.45 5142 44.24 46.34 58.74
151670 33.75 46.24 10.24 26.57 33.47 35.25 23.75 50.49 53.95
151671 52.67 61.27 12.24 31.75 42.57 59.37 68.44 70.14 72.11
151672 48.62 63.24 12.96 34.27 52.77 77.14 34.58 68.24 75.36
151674 55.39 43.25 22.75 27.63 31.36 60.43 38.99 55.42 63.24

HBC | 53.13 53.78 49.15 35.32 55.65 63.43 55.26 57.88 63.83
MBA | 25.63 40.59 23.43 25.95 31.65 42.46 38.42 36.88 44.82

Table 1: The comparative performance of our method against others across ten datasets is evaluated using metrics ARI. The best performance

is denoted by bold font, while an underline indicates the second-best.

where prp (X5 | b;) is given by:

Prb (X5 | 0i) = NB (Xij | vij, 035, bi)
_ I(Xy+6i5) ( 0ij ) ¢ ( Vij )X” (1)
T T(Xa+1D)0(045) \ Oij+vig vij+0i; '

Here, m;; and v;; are the zero-inflation and mean parame-
ters, respectively, while 6;; and b; represent the discretization
of the decoder output and the bias vector. The latent repre-
sentation Z ¢, and nga serve as input to the ZINB decoder,
yielding estimates for these parameters. The negative log-
likelihood of the ZINB distribution is used as the reconstruc-
tion loss:

MNsTNt

1
Lo = _m Z Zlnpzinb (Xij | b:). (12)

i=1 j=1

3.6 The Total Loss Function
Our total loss function is defined as follows:

L=Lr+alc. (13)

The parameter « represents the weighting factor used to
balance the influences of Lz and L¢.

4 Experiments

This section assesses the performance of our approach on
three benchmark datasets and compares its clustering effec-
tiveness with that of eight state-of-the-art methods for spatial
transcriptomics.

4.1 Datasets

We evaluate our method on three widely used spatial tran-
scriptomics datasets. The first dataset is the LIBD human
dorsolateral prefrontal cortex DLPFC [Maynard et al., 2021],
comprising 8 slices each containing 33,538 genes and 5-7 re-
gions. The second dataset is the 10x Visium dataset of human
breast cancer [Maynard et al., 2021] which contains 20 re-
gions and 36,601 genes. The third dataset is mouse brain an-
terior tissue [Buache et al., 2011], annotated with 52 regions
and containing 32,285 genes. Preprocessing for these datasets
follows a method similar to that described in MAFN [Zhu et
al., 2024]. We exclude spots outside the primary tissue areas

and use the SCANPY [Wolf et al., 2018] toolkit to filter out
genes with minimal expression or variance, selecting the top
3,000 genes with the highest variability [Zeng et al., 2023].
Finally, gene normalization is performed by applying a scal-
ing factor.

4.2 Compared Methods

To validate the effectiveness of our method, we compare
it against eight approaches: SCANPY [Wolf et al., 2018],
SpaGCN [Hu et al., 2021], DeepST [Xu et al., 2022],
GraphST [Long et al., 2023], SCGDL [Liu et al., 2023b],
Spatial-MGCN [Wang et al., 2023], stLearn [Pham er al.,
2023], stCluster [Wang et al., 2024]. All comparative ex-
periments are conducted using default parameters.

4.3 Training Details and Metrics

We conduct experiments to evaluate the proposed TSstc on
the PyTorch platform using a single NVIDIA GeForce RTX
3090. Identifying the optimal spatial domain is crucial for
different datasets. First, we analyze the spatial distribution
of spots and incrementally construct spatial graphs as the
Euclidean distance-based radius R increases. Next, we in-
put these spatial graphs into the GCN and train TSstc on all
benchmark datasets for at least 150 iterations until conver-
gence. We apply a weight decay of 0.0005 and use the Adam
optimizer with a learning rate of 1e-3 to optimize our model.
The parameter « is set to 10. To validate the effectiveness of
clustering, we use the Adjusted Rand Index (ARI) [Meild,
2007] and Normalized Mutual Information (N M) [Knops
et al., 2006] as evaluation metrics.

4.4 Clustering Results and Analysis

Table 1 summarizes the performance of TSstc in terms of
ARI compared to other methods across ten datasets, with
NDMTI provided in the supplementary materials. From this
table, we observe the following:

(1) In the DLPFC dataset, TSstc outperforms nearly all
methods across 8 slices, achieving 4.32% higher ARI scores
in 151507 slice compared to stCluster [Wang et al., 2024],
which uses graph contrastive learning. Several methods show
significant drops below 40% on specific slices, reducing their
reliability in scientific and clinical settings. In contrast, TSstc
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Figure 3: A: The manually annotated layer structure and the corresponding histopathological image of the Human Breast Cancer dataset. B:
Spatial domain detection results for various methods. C: UMAP visualization of the experimental results.

: ‘
751 —— 151507 N\ 75| —— 151507
70| —=— 151508 = 157508 _— T
65 | % 151509 701 1509
—— 151510 65| —— 151510 _4
60 —— 15167 i 5&6(?% >~
Z | —~/15 £60
504 51674 ./l
v M
““— MBA /\1
40 i ——

2 23 234
Radius of Spatial Graphs (units=102)

2345 23456 2 23 234 234523456
Radius of Spatial Graphs (units=102)

Figure 4: A comparison of the ARI and N M I metrics across dif-
ferent radius combinations for all datasets.

outperforms the average of competing methods by 23%,
demonstrating the effectiveness of the tailored spatial-scale
modulation approach.

(2) In the Human Breast Cancer dataset, our tailored
spatial-domain modulation improves ARI by 0.4% and
NMI by 1.94% compared to the best-performing model,
Spatial- MGCN [Wang et al., 2023]. We also detect the spatial
domain, and TSstc clusters similar spots effectively, leading
to well-defined boundaries, as shown in Fig.3. In contrast,
DeepST[Xu et al., 2022] and GraphST [Long et al., 2023] fail
to preserve spatial coherence, despite their strong local rep-
resentation capabilities. By using the Spatiality-Aware Sam-
pling (SAS) mechanism, TSstc integrates spatial information
at multiple scales, ensuring a biologically meaningful con-
nection between neighboring spots based on expression pat-
terns. In the Mouse Brain Anterior dataset, Tab. 1 compares
TSstc with other methods, and the supplementary materials

show the spatial domain detection results. TSstc achieves the
highest ARI of 44.82%, outperforming other methods, while
stLearn [Pham et al., 20231, stCluster [Wang et al., 2024],
and SpaGCN [Hu et al., 2021] report lower ARI scores of
38.42%, 36.88%, and 31.65%, respectively.

4.5 Ablation Studies

This section presents an ablation study to examine the impact
of each component in our TSstc model. The ablation exper-
iments are categorized into four sections, and Tab. 2 shows
ARI performance across ten real datasets, with N M [ results
provided in the supplementary materials.

Effect of Lr As shown in Tab. 2, w/o L refers to the
removal of the spatial domain constraints module. In the
151672 slice, this results in a 27% decrease in performance
compared to TSstc, emphasizing the importance of spatial
domain constraints in preserving spatial relationships and lo-
cation details and integrating L into the spatial embedding
features ensures the retention of high-quality spatial neigh-
borhood information.

Effect of Lo w/o L represents the removal of the ZINB
decoder module. Analysis of the third row in Tab. 2 indicates
that incorporating L improves the average performance by
over 9.9%, further validating the effectiveness of the ZINB
decoder. This module reconstructs the gene expression ma-
trix, mitigating noise issues caused by the discrete and sparse
nature of spatial transcriptomics data.

Effect of SAS module w/o SAS refers to the omission
of the Spatiality-Aware Sampling (SAS) module. In the Hu-
man Breast Cancer dataset, TSstc achieves approximately
7% higher ARI scores compared to w/o SAS, demonstrat-
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Datasets | 151507 151508 151509 151510 151670 151671 151672 151674 HBC MBA
w/o Lr 55.24 43.75 51.96 47.34 41.57 64.37 48.75 49.27 4723 32.66

w/o Lo 56.37 46.37 55.37 49.37 43.11 58.76 62.34 48.37  58.77 42779

w/o SAS | 64.37 49.37 58.77 51.34 47.99 62.37 67.77 60.71  57.24 3897
w/o TSM | 66.37 51.37 61.73 52.79 52.44 68.37 73.88 51.22  58.74 41.96
TSstc | 68.53 54.73 63.24 58.74 53.95 72.11 75.36 63.24 64.83 44.82

Table 2: This table presents the ablation study in term of ARI for each component, where w/o Lr, w/o Lo, w/o SAS, and w/o TSM,

respectively.
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Figure 5: This figure presents a comparison of the ARI and NM I
metrics for various values of « across ten datasets.

ing the module’s effectiveness. By leveraging the SAS mech-
anism, TSstc integrates spatial information across multiple
scales, ensuring a biologically meaningful association be-
tween neighboring spots based on expression patterns.

Effect of TSM module To evaluate the effectiveness of
our tailored spatial-scale modulation (TSM) module, we re-
place it with a static radius, following the approach used in
Spatia-l MGCN [Wang ef al., 2023]. The results show that
w/o TSM leads to a 4% lower ARI in the Mouse Brain Ante-
rior dataset, with consistently lower ARI scores across other
datasets. Furthermore, we evaluate the effect of different spa-
tial graph combinations across all datasets, as shown in Fig. 4.
For each dataset, spatial graphs are incrementally constructed
as the Euclidean distance-based radius R increases, facilitat-
ing the identification of the optimal spatial graph combina-
tion. For the 151672 slice, the radius combination {2, 3,
4, 5} yields spatial graphs that achieve approximately 4%
higher ARI scores and 3% higher N M scores compared
to the second-best combination. For the 151507 slice, the ra-
dius combination {2, 3, 4} achieved the best scores. Overall,
these findings highlight the importance of the TSM module
in identifying the optimal spatial domain, effectively captur-
ing spatial relationships, and enhancing the understanding of
cellular survival patterns.

4.6 Parameter Sensitivity Analysis

This section investigates the impact of the parameter o on
clustering performance by varying its values within the set
{0.01, 0.1, 1, 10, 100} across the DLPFC 8 slices, Human
Breast Cancer, and Mouse Brain Anterior datasets. « serves
as a weighting factor that balances the influences of L and
Lc. As shown in Fig. 5, in the 151507 slice, the ARI in-
creases gradually with «, while in the Mouse Brain Anterior

datasets, it decreases or remains constant. The Human Breast
Cancer dataset shows minimal performance changes, indicat-
ing that its clustering performance is less sensitive to varia-
tions in «. In our experiments, the parameter « is fixed at 10.

—_— ] =T

Figure 6: Heatmap of the top 10 differentially expressed genes
(DEGs) between Healthyl and DCIS/LCISS for the Human Breast
Cancer dataset.

4.7 Downstream Applications

We explore tumor tissue heterogeneity by examining the top
10 differentially expressed genes (DEGs) in the Healthy1 and
DCIS/LCISS clusters, as shown in Fig. 6. The identified
gene expression variations highlight regional molecular dif-
ferences, underscoring TSstc’s ability to capture the complex
heterogeneity of Human Breast Cancer tissues. We also con-
duct several downstream applications, including UMAP visu-
alization and gene imputation. Detailed results are provided
in the supplementary materials.

5 Conclusion

In this paper, we propose a novel spatially resolved tran-
scriptomics data clustering network (TSstc) to accurately
identify spatial domains and precisely partition the bound-
ary nodes within clusters. Specifically, we introduce a tai-
lored spatial-scale modulation approach that incrementally
constructs spatial graphs as the spatial domain radius ex-
pands, and a Spatiality-Aware Sampling (SAS) strategy is
proposed to aggregate node representations. We incorpo-
rate cross-view correlation-based tailored spatial regulariza-
tion constraints and employ a zero-inflated negative binomial
model to capture the global probability distribution. Exten-
sive experiments demonstrate that our method outperforms
state-of-the-art clustering approaches and benefits related to
downstream applications. For future work, we plan to explore
the spatial distribution patterns of spots to refine clustering
performance.
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