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Abstract
Face video editing presents significant challenges,
requiring precise preservation of facial identity,
temporal consistency, and background details. Ex-
isting methods encounter three major challenges:
difficulty in achieving accurate facial reconstruc-
tion, struggles with challenging real-world videos
and reliance on a crop-edit-stitch paradigm that
confines editing to localized facial regions. In re-
sponse, we introduce DiffFERV, a novel diffusion-
based framework for realistic face video editing
that addresses these limitations through three core
contributions. (1) A specialization stage that ex-
tends large Text-to-Image (T2I) models’ general
prior to faces while retaining their broad genera-
tive capabilities. This enables robust performance
on non-aligned and challenging face images. (2)
Temporal modeling, implemented through two dis-
tinct attention mechanisms, complements the spe-
cialization stage to ensure joint and temporally con-
sistent processing of video frames. (3) Finally,
we present a holistic editing pipeline and the con-
cept of preservation features, which leverages our
model’s enhanced priors and temporal mechanisms
to achieve faithful edits of entire video frames with-
out the need for cropping, excelling even in real-
world scenarios. Extensive experiments demon-
strate that DiffFERV achieves state-of-the-art per-
formance in both reconstruction and editing tasks.

1 Introduction
Face video editing aims to modify specific attributes of a face
in a video, such as age, gender, or hairstyle, while preserv-
ing the original facial identity, motion, and background. It
has gained significant attention due to its applications in en-
tertainment, virtual avatars, and content creation.

The advent of GANs [Goodfellow et al., 2020], particu-
larly StyleGAN [Karras et al., 2021], has spurred progress in
facial image editing through latent space manipulation [Shen
et al., 2020]. Despite their popularity, GAN-based methods
face a critical drawback: the inability to accurately recon-
struct the original face during GAN inversion [Abdal et al.,

2019]. Moreover, when extended to facial videos, GAN-
based methods typically rely on per-frame editing followed
by smoothing techniques [Yao et al., 2021], and often suffer
from limited temporal consistency. On the other hand, Diffu-
sion Models [Ho et al., 2020], which have surpassed GANs
in generating high-quality and diverse images, have inspired a
range of diffusion-based editing methods. Among them, Dif-
fusion Video Autoencoders (DVA) [Kim et al., 2023] targets
Face video editing. It achieves improved reconstruction and
editing performance over previous methods.

However, we identify three limitations of DVA and GAN-
based methods. First, while GAN methods suffer from poor
identity preservation, DVA also fails to maintain intricate
facial details despite superior reconstruction ability. Sec-
ond, existing methods struggle with challenging real videos,
typically those with extreme poses or out-of-distribution
styles. This is because they are trained on domain-specific
datasets that generally lack diversity in real-world varia-
tions. Third, previous methods necessitate a crop-edit-stitch
pipeline which leads to incapability in handling edits extend-
ing beyond the face and introduces risks of stitching artifacts
or misalignment between edited face and background. This is
because current methods are confined to editing only the fa-
cial region due to their reliance on well-aligned, face-centric
training data. Fig. 1 showcases these drawbacks.

To address these challenges, we propose DiffFERV, a
Diffusion-based Facial Editing method for Real Videos. Un-
like previous approaches that rely on face-specific training
data, DiffFERV leverages the rich generative priors of pre-
trained Text-to-Image (T2I) models. We implement a spe-
cialization stage, where we fine-tune the denoising network
on the facial domain while adopting prior preservation tech-
niques. By doing so, we maintain and extend these robust pri-
ors to face editing. This stage lays the groundwork to over-
come issues of poor generalizability on real-world data and
the restrictive cropping paradigm. Furthermore, we comple-
ment the specialized network with temporal modeling. We
leverage contextual frames and optical flow priors to inte-
grate two attention mechanisms that ensure respectively lo-
cal smoothness and global consistency across edited frames.
Finally, we eliminate previous dependence on cropping and
external predictors by proposing a holistic editing pipeline.
We introduce the concept of preservation features: latent in-
version features that encode facial details, motion, as well
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Figure 1: Comparison on challenging scenarios. Left: man → woman. Right: young. For the left profile (extreme pose) video, baseline
deviates from the person’s identity and generates blurriness and stitching artifacts in the hair. For the right out-of-distribution video, baseline
neglects original facial makeup and produces apparent misalignment between facial and background regions.

as background of the input video. By deliberately reusing
them during sampling, our method achieves superior recon-
struction and edit capability without requiring facial crop-
ping. Extensive evaluations demonstrate that DiffFERV ex-
cels in preserving facial identity, ensuring temporal consis-
tency, especially when handling challenging real-world data.
DiffFERV sets a new benchmark for robust, generalizable,
and high-quality face video editing. The code is available at
https://github.com/MunchkinChen/DiffFERV.

Contributions (1) We successfully adapt pretrained gen-
eral T2I models to the specialized task of face editing, en-
abling robust handling of real-world complex scenarios. (2)
We equip the specialized image-based model with temporal
modeling, ensuring temporally consistent edits. (3) We lever-
age the rich diffusion latent features and propose a holistic
editing pipeline that eliminates the need for face-centric crop-
ping while guaranteeing preservation of motion, background,
and facial details. (4) Through extensive qualitative and quan-
titative experiments, we demonstrate the superiority of Diff-
FERV over existing GAN- and diffusion-based baselines.

2 Related works
2.1 Face Image Editing
Advances in Generative Adversarial Networks [Goodfellow
et al., 2020] have inspired a plethora of methods for fa-
cial image editing. They aim to disentangle and manipu-
late GAN’s rich latent space. Some explore interpretable
directions through linear methods such as hyperplane sepa-
ration [Shen et al., 2020]. Others model non-linear trans-
formations with parameterized networks [Yao et al., 2021].
Some [Patashnik et al., 2021] leverage CLIP [Radford et al.,
2021] to optimize latent codes towards open-vocabulary se-
mantic priors. These works require a pre-editing stage of
GAN inversion, either optimization- [Abdal et al., 2019] or
encoder-based [Tov et al., 2021]. However, these inversion
techniques frequently struggle to accurately preserve facial
identity, representing a bottleneck for GAN-based methods.

Recent progress in Diffusion Models [Ho et al., 2020] has
also driven development of diffusion-based face image edit-

ing methods. Most works formulate a face generation process
conditioned on guidance features such as semantic embed-
dings [Preechakul et al., 2022], segmentation masks [Huang
et al., 2023], or even aligned StyleGAN latents [Li et al.,
2024]. Editing is then addressed by altering the disentangled
condition. Per-subject tuning with customization techniques
is frequently employed [Lin, 2024] to preserve the origi-
nal facial identity. Another parallel work, FADING [Chen
and Lathuilière, 2023], proposes an additional attribute-aware
tuning strategy for pretrained T2I models and then performs
diffusion image editing. This specialization-editing approach
is similar to ours but is limited to age transformations.

2.2 Face Video Editing
Face video editing (FVE) methods typically extend image
baselines with varying scales of temporal consistency ap-
plied at different stages. For example, Latent Transformers
(Lattrans) [Yao et al., 2021] employ optical-flow-aware crop-
ping, per-frame editing, and Poisson blending for stitching.
STIT [Tzaban et al., 2022] hypothesizes an inherently smooth
manifold of inversion encoders and enhances global consis-
tency by tuning the generator. TCSVE [Xu et al., 2022b]
further optimizes latent codes with explicit temporal guid-
ance. Diffusion Video Autoencoders (DVA) [Kim et al.,
2023] is the first to use Diffusion Models for FVE. It extends
[Preechakul et al., 2022] to videos by conditioning the diffu-
sion process on facial identity and motion landmarks features.
Note that when handling real-world videos, all these methods
must first preprocess by cropping and aligning the facial area.

2.3 Diffusion-based Generic Video Editing
Early methods [Wu et al., 2023; Liu et al., 2024] perform
one-shot tuning and generate new edits with the overfitted
network. Another common paradigm involves first invert-
ing videos into initial noise, then sampling the edited re-
sults. Optimization-based inversion techniques [Mokady et
al., 2023] are usually employed to ensure accurate recon-
struction [Jeong and Ye, 2024]. Other approaches propagate
edits from selected anchor frame(s) via feature fusion [Yang
et al., 2023] or correspondences matching [Geyer et al.,
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Figure 2: Overview of DiffFERV. Left: Specialization Stage (Sec 3.2) where pretrained model’s generative priors are extended to face domain.
Right: network architecture with Temporal Modeling (Sec 3.3) and holistic editing based on Preservation Feature Manipulation (Sec 3.4).

2024]. Some works also use auxiliary structural guidance
from the original video, such as depth maps, edges [Yang et
al., 2024], or optical flow [Cong et al., 2024; Liang et al.,
2024]. These generic methods focus more on global style
changes or object swaps and do not address details such as
facial identity and background, thus underperforming face ex-
perts in FVE.

3 Methodology
In this section, we provide a comprehensive description of
DiffFERV’s methodology. Section 3.1 introduces the neces-
sary preliminaries. Section 3.2 describes the specialization
stage, which extends a general generative model to the facial
domain. Section 3.3 elaborates on the techniques employed
to endow the specialized model with temporal modeling ca-
pabilities. Finally, Section 3.4 presents our holistic editing
framework, which utilizes preservation features to achieve
precise reconstructions and faithful modifications. Fig. 2 pro-
vides an overview of the proposed pipeline.

3.1 Preliminaries
Diffusion Probabilistic Models [Ho et al., 2020] learn to
approximate a data distribution by reversing a Markovian
noise corruption process. It is composed of a forward and
a reverse process. The forward process is a Gaussian noise
perturbation to data point x0 over T timesteps:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (1)

with ᾱt the noise schedule. The reverse process learns to de-
noise step by step through a parameterized model ϵθ(xt, t):

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I) (2)

where µθ(xt, t) is mean function and σt variance term.

Latent Diffusion Models (LDM) [Rombach et al., 2022a]
are a type of Diffusion Models that operate in the latent space
of an image auto-encoder [Kingma, 2013] D(E(·)) to achieve

lower computation complexity. Our work is based on the pub-
licly available Stable Diffusion. In particular, it adopts a U-
Net architecture for the denoising network ϵθ(xt, t, ψ(P)),
where the generation is conditioned on text prompt P en-
coded by text encoder ψ(·).
Attention mechanism [Vaswani, 2017] is a key compo-
nent in ϵθ. It computes the relationship between query, key,
and value representations.

Attention(Q,K,V) = AV = softmax

(
QK⊤
√
dk

)
V (3)

where Q,K,V are query, key, and value matrices and A
is the attention map. In Stable Diffusion, each U-Net layer
contains a self-attention and a cross-attention block. Self-
attention captures dependencies within the image features:
Q = xWQ,K = xWK ,V = xWV where x is the latent
image feature and WQ,WK ,WV learned projectors. Cross-
attention, on the other hand, computes the key and value from
ψ(P) to integrate text conditions into image features.

3.2 Specializing a General T2I Model for Face
Editing

Pretrained T2I models [Rombach et al., 2022a] are trained on
massive text-image datasets [Schuhmann et al., 2022].They
inherently possess the visual diversity and semantic richness
needed to manage complex, real-world scenarios. We aim
to harness this rich generative prior to enhance face editing,
which is currently limited to well-aligned faces and struggles
with complex cases. To this end, we introduce a special-
ization stage to extend a general T2I model to handle faces
more proficiently. This stage is illustrated on the left side of
Fig. 2. It involves fine-tuning the T2I model’s denoising net-
work ϵθ(xt, t, ψ(P)) with a high-quality face image dataset.
For each image I , we use a Vision Language Model (VLM)
to generate a descriptive text prompt PI . The model is fine-
tuned on the curated image-text pairs using the Latent Diffu-
sion Loss [Rombach et al., 2022a].
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LLDM = Ex0,ϵ∼N (0,I),t∼Uniform(1,T ) [∥ϵ− ϵθ(xt, t, ψ(PI))∥2]
(4)

To retain the broad generative priors established during
pretraining—critical for handling diverse real-world scenar-
ios—we carefully design the specialization process to avoid
catastrophic forgetting. Specifically, we incorporate a portion
of the pretraining data into the fine-tuning data, maintaining
a balance between learning face-specific features and retain-
ing the model’s original versatility. To mitigate overfitting on
cropped, centered faces, we apply zooming and rotation aug-
mentations to the training face data. As a result, the special-
ization stage establishes the foundation to address the previ-
ous limitations of poor generalizability to real-world data and
the restriction to processing only cropped and aligned faces.

3.3 Temporal Modeling
After the specialization stage, our specialized T2I model can
handle proficiently diverse facial images. However, directly
applying it to individual video frames with image editing
techniques introduces temporal inconsistencies.

To address this, we extend the model into a spatial-
temporal architecture for consistent cross-frame editing. We
first add a pseudo-temporal channel to the original 2D convo-
lutions. We then incorporate two spatial-temporal attention
schemes to ensure respectively local temporal continuity and
global temporal consistency. The two mechanisms are illus-
trated in the orange and blue blocks in Fig. 2.

Sliding-Window-based Cross-Frame Attention
Given a video ofm frames, where the latent feature for frame
i is denoted by vi, naive per-frame editing scheme computes
self-attention with each frame attending to itself. Formally,

Q = viWQ,K = viWK ,V = viWV (5)

To extend this spatial-only self-attention to the temporal
domain, some previous work [Jeong and Ye, 2024] adopt
dense spatio-temporal attention where each frame attends to
all other frames. Differently, we propose a more efficient
Sliding-Window-based Cross-Frame Attention (SWCFA). In
our approach, each frame attends only to a fixed number of
its neighboring frames within a defined window length:

QSWCFA = viWQ

KSWCFA =
[
vmax(i−w

2 ,1) . . .vmin(i+w
2 ,m)

]
WK

VSWCFA =
[
vmax(i−w

2 ,1) . . .vmin(i+w
2 ,m)

]
WV

(6)

where [·] denotes concatenation and w the window size.
SWCFA achieves efficient bidirectional temporal modeling
and ensures local continuity in each temporal adjacency.

Trajectory-based Temporal Attention
While SWCFA ensures smooth transitions between adjacent
frames, it falls short in capturing long-term temporal depen-
dencies. To enhance global consistency, previous approaches
include an additional fixed anchor frame in the cross-frame
attention [Wu et al., 2023]. This yields suboptimal results
when there are discrepancies between the anchor frame and

other frames. Others [Guo et al., 2024] introduce new tempo-
ral layers that perform 1D attention along the temporal axis.
Formally, for patch p on the i-th frame, and its feature vi,p:

Qtemp = vi,pWQ

Ktemp = [v1,p . . . vm,p]WK

Vtemp = [v1,p . . . vm,p]WV

(7)

Despite being effective, this strategy necessitates extensive
additional training of the temporal layers on video data.

Differently, we draw inspiration from recent works [Yang
et al., 2024; Cong et al., 2024] that utilize optical flow pri-
ors to enforce temporal consistency and introduce Trajectory-
based Temporal Attention (TTA), a method to enhance global
consistency without additional training.

We first predict the optical flow of the input video to derive
a set of temporal displacement trajectories. We follow the
post-processing proposed by [Cong et al., 2024] to ensure that
each frame patch is uniquely assigned to a single trajectory.
Temporal attention is then computed along these trajectories.
In other words, each patch attends to all patches on the same
temporal trajectory. For a given trajectory {p1 . . . pi . . . pm}
where pi denotes the patch index on the i-th frame,

QTTA = vi,pi
WQ

KTTA = [v1,p1
. . . vm,pm

]WK

VTTA = [v1,p1 . . . vm,pm ]WV

(8)

TTA leverages the natural motion prior of the input video to
aggregate content efficiently along the entire temporal axis,
thereby enhancing global temporal consistency.

3.4 Holistic Editing via Preservation Feature
Manipulation

Given a real face video and a desired editing direction, FVE
aims to achieve accurate, consistent edits while preserving the
facial identity, motion, and background information. Existing
methods rely on a crop-edit-stitch approach, depending on
external face recognizors and landmark detectors to preserve
these relevant information. In contrast, we propose leverag-
ing preservation features that are inherently encoded in the
intermediate features during diffusion inversion. These fea-
tures retain the input video’s facial details, motion, as well as
background information, thus eliminating the need for crop-
ping or external predictors.

Inversion with Preservation Feature Caching
A common paradigm of diffusion-based editing is to first in-
vert an image or video with DDIM inversion [Song et al.,
2021] and then begin editing from the inverted noise. How-
ever, DDIM inversion leads to inaccurate reconstructions of
real videos due to accumulated errors amplified by classifier-
free guidance [Mokady et al., 2023]. Such inaccuracies are
particularly problematic for face editing tasks, where fine-
grained preservation of original visual details is crucial.

The multi-step denoising process of Diffusion Models gen-
erates intermediate features across timesteps, which can be
viewed as a high-dimensional latent space. (Note that this
latent space refers not to the VAE latent space where LDM
operates, but to the union of intermediate network features
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Figure 3: Comparison of global edit results (+age) and local edit results (+lipstick). Lattrans and STIT produce inconsistent identities, while
DVA struggles with detail preservation and introduces artifacts. DiffFERV preserves facial details accurately and achieves realistic edits.

across timesteps.) We hypothesize that this latent space en-
codes both fine-grained facial information and background
details. By identifying and leveraging these features, we can
(1) accurately reconstruct the original content and (2) perform
high-fidelity edits without cropping (since the background is
also encoded in these features). We refer to these features as
preservation features.

Our hypothesis aligns with findings in prior studies on im-
age generation [Tumanyan et al., 2023], which demonstrate
that intermediate attention maps during the generation pro-
cess contain detailed spatial information about the generated
content. On top of these insights, we further claim—and
empirically validate—that (1) intermediate attention features
during inversion encode fine-grained spatial details of the
original real video, and (2) when inverting with our model
with temporal modeling proposed in Section 3.3, these fea-
tures additionally maintain inter-frame correspondence, pre-
serving consistency and motion in the input video.

Based on these two findings, we perform T -step DDIM
inversion on the input video using our temporally enhanced
specialized model and a text description Porig of the input
video. During the inversion process, we identify three dis-
tinct types of preservation features and cache them at each
diffusion step t.

Appearance Features We define appearance features Fapp
as the key and query embeddings QSWCFA,KSWCFA in
SWCFA (Equation 6), which capture fine-grained spatial de-
tails of both facial (therefore identity) and background in-
formation. These features are also temporally aware due to
SWCFA’s cross-frame modeling nature.

Fapp =
[
Qinv

SWCFA,t,K
inv
SWCFA,t

]
t=1...T

Motion Features We define motion features Fmotion as the
key QTTA and query KTTA in TTA (Equation 8), which pre-
serve the temporal feature correspondence along trajectories
across the entire video, thereby retaining motion.

Fmotion =
[
Qinv

TTA,t,K
inv
TTA,t

]
t=1...T

Semantic Features As demonstrated by [Hertz et al.,
2023], cross-attention maps Across encode spatial correspon-
dence between image patches and text semantics. Retaining
them during inversion helps preserve the original semantic
layout. Therefore, we utilize them as our semantic features,

Fsem =
[
Ainv

cross,t

]
t=1...T

Fapp,Fmotion,Fsem then serve as a foundation for recon-
structing the original video during edit sampling.

Sampling with Preservation Feature Injection
We start the editing sampling with the initial noise obtained
from DDIM inversion. We use a new text prompt Pedit that
specifies the desired changes. The cached Fapp,Fmotion,Fsem
are incorporated during sampling to recover the input video’s
identity, motion, background as well as semantic layout.

At each sampling step t, cached Fapp[t] = (Qinv
SWCFA,t,

Kinv
SWCFA,t) and Fmotion[t] =

(
Qinv

TTA,t,K
inv
TTA,t

)
are injected

into the sampling process by overriding their counterparts(
Qedit

SWCFA,t,K
edit
SWCFA,t

)
and

(
Qedit

TTA,t,K
edit
TTA,t

)
in the SWCFA

and TTA attentions. For Fsem[t] = Ainv
cross,t, we adopt the

strategy from [Hertz et al., 2023]: for text tokens shared be-
tween Porig and Pedit, the cross-attention maps in the editing
path Aedit

cross are replaced with the cached maps Ainv
cross to re-

tain the original semantic layout. Otherwise, cross-attention
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Input psp e4e PTI DVA DiffFERV

Figure 4: Comparison of reconstruction results. Note that DiffFERV
is the only method to successfully reconstruct the person’s necklace.

maps for novel words in the editing prompt are preserved in
the editing path. The preservation feature caching and injec-
tion are depicted on the right side of Fig. 2.

We notice that the features captured at different timesteps
during inversion exhibit varying levels of granularity: larger
t focus on low-level details like textures, while smaller t
emphasize higher-level structural components. To balance
fidelity and editing effectiveness, we introduce a timestep
threshold τapp: Fapp[t] is injected only when t > (1− τapp)T .
We use a higher τapp for texture-level edits (e.g., mild age
changes, hair color adjustments) and lower τapp for shape-
altering edits (e.g., gender changes, hairstyle modifications).

Note that our method addresses edits effectively without
over-aligning to the original video. This is because the editing
guidance specified in Pedit is injected via the cross-attention
values Vedit

cross, which are untouched during preservation fea-
ture manipulation. Additionally, the value vectors in the
spatio-temporal attentions Vedit

SWCFA,V
edit
TTA also remain unal-

tered. This essentially allows the original structure and mo-
tion to guide the aggregation of new semantic edits.

4 Experiments
4.1 Implementation Details
For specialization, we initialize with the pretrained weights of
Stable Diffusion 1.5 1. We utilize the FFHQ dataset [Karras et
al., 2019] as our training dataset. We employ Pixtral 2 for au-
tomatic captioning. Within our dataset, we integrate 10% of
image-text pairs sampled from the LAION-2B-en [Rombach
et al., 2022b] dataset . We opt for Adam [Kingma, 2014] op-
timizer with a batch size of 8 and a learning rate of 2.5e− 6.

For temporal modeling, we configure window length to
w = 3 for SWCFA and leverage GMFlow [Xu et al., 2022a]
for optical flow prediction in TTA. During editing, we use
DDIM [Song et al., 2021] sampling and inversion with T =
50 timesteps. A negative prompt [Ban et al., 2025] scheme
is adopted, where the original prompt serves as the nega-
tive prompt to enhance editing effectiveness, with guidance
scale set to 5. We use τapp = 0.9 for texture-level edits and
τapp = 0.7 for shape-altering edits.

4.2 Evaluation Protocol
We evaluate DiffFERV on CelebV-HQ [Zhu et al., 2022].
We include both reconstruction and editing tasks. We devise
two protocols to evaluate editing performance. (1) Global
editing: age manipulation (+−age), gender transformation

1https://huggingface.co/ruwnayml/stable-diffusion-v1-5
2https://huggingface.co/mistralai/Pixtral-12B-2409

Model MSE ↓ SSIM ↑ LPIPS ↓
psp 0.070 0.701 0.140
e4e 0.086 0.662 0.182
PTI 0.055 0.758 0.138
DVA 0.010 0.983 0.017
DiffFERV 0.010 0.985 0.008

Table 1: Comparison of reconstruction metrics

(+−man), and emotion changes (+−smiling) (2) Local edit-
ing: hairstyle (+blond, +bang), makeup (+lipstick), and ac-
cessories (+glasses).

Metrics We employ MSE, SSIM [Wang et al., 2004], and
LPIPS [Zhang et al., 2018] to evaluate reconstruction ac-
curacy across multiple scales. For editing tasks, evalua-
tion spans four dimensions: (1) faithfulness, assessed using
Non-target Attribute Preservation Rate (NAPR) and Identity
Preservation (IDP) scores [Yao et al., 2021] (2) effectiveness,
measured by Target Attribute Change Rate (TACR) [Yao et
al., 2021] (3) temporal consistency, using temporally-local
(TL-ID) and temporally-global (TG-ID) identity preservation
metrics [Tzaban et al., 2022], and (4) editing quality, gauged
by CLIP-Score [Wang et al., 2023] for realism.

4.3 Comparisons with State-of-the-Art Methods
For reconstruction, we compare against GAN-based inversion
methods psp [Richardson et al., 2021], e4e [Tov et al., 2021],
PTI [Dong et al., 2023] and diffusion-based DVA [Kim
et al., 2023]. In editing tasks, we benchmark DiffFERV
against three state-of-the-art face video editing methods: La-
tent Transformers (Lattrans) [Yao et al., 2021], STIT [Tzaban
et al., 2022], and Diffusion Video Autoencoders (DVA). We
adhere to each method’s respective official implementation,
including the crop-edit-stitch process.

Qualitative Results
In Fig. 4, we present reconstruction results. All three GAN
methods fail to preserve facial identity and lose background
information. DVA and DiffFERV perform better in recon-
struction, with DiffFERV excelling in detail preservation: it
is the only to accurately recover the necklace detail.

Fig. 3 provides a visual comparison of global edits (+age)
and local edits (+lipstick). Lattrans and STIT produce out-
puts that are visually different from the original identity, and
create inconsistencies in identities across frames in the ag-
ing case. DVA achieves better identity consistency but still
fails to maintain eye detail in the aging case and incorrectly
reproduces the mouth shape in the lipstick case. Addition-
ally, DVA introduces cropping artifacts, including unnatu-
ral jawline seams in the lipstick example. In contrast, our
method preserves facial details with precision and achieves
realistic edits. Notably, for the aging case, DiffFERV is the
only method that addresses consistent changes even beyond
the facial region, such as adding white hair, highlighting the
benefits of our holistic editing approach.

Quantitative Results
Table 1 shows that DiffFERV achieves the highest scores
across all reconstruction metrics. This validates our quali-
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Model
Faithfulness Effectiveness

Global Local Global Local
IDP↑ NAPR↑ IDP↑ NAPR↑ TACR↑ TACR↑

Lattrans 0.515 0.908 0.602 0.868 0.829 0.559
STIT 0.512 0.887 0.536 0.893 0.845 0.457
DVA 0.559 0.839 0.641 0.851 0.834 0.305
DiffFERV 0.563 0.865 0.677 0.915 0.870 0.492

Table 2: Comparison of faithfulness and effectiveness metrics

Model
Temporal Consistency Quality

Global Local Global Local
TL-ID↑ TG-ID↑ TL-ID↑ TG-ID↑ CLIP↑ CLIP↑

Lattrans 0.690 0.664 0.696 0.659 0.693 0.698
STIT 0.674 0.635 0.627 0.601 0.643 0.673
DVA 0.666 0.618 0.658 0.621 0.611 0.676
DiffFERV 0.753 0.706 0.735 0.706 0.707 0.719

Table 3: Comparison of temporal consistency and quality metrics

tative observation and proves that our proposed preservation
feature manipulation improves reconstruction capability.

In Table 2, we present faithfulness and effectiveness met-
rics. DiffFERV achieves the overall best performance in
faithfulness, with a notably higher identity preservation score
compared to baselines. For NAPR and TACR, we observe
a trade-off, as no single method dominates both metrics.
While Lattrans achieves the highest global NAPR and local
TACR and DiffFERV leads in global TACR and local NAPR,
Lattrans exhibits significantly lower IDP, underscoring Diff-
FERV’s superior overall performance. Table 3 highlights
DiffFERV’s large-margin improvement in temporal consis-
tency and editing quality metrics. This proves the effective-
ness of our specialization stage and temporal modeling, in
ensuring high-quality and coherent edits.

4.4 Ablation Studies
Specialization Stage Table 4 and Fig. 5 present a compar-
ison of results using the original SD1.5 weights versus our
specialized model. We observe that specialization leads to
substantial improvements in editing effectiveness and fidelity
for global edits, although it results in a lower faithfulness
metric for local edits. We posit that this discrepancy arises
because the unspecialized model struggles to generate the
necessary local changes effectively and produces outputs that
closely resemble the original. Fig. 5 validates our hypothe-
sis, proving that the specialized model excels in generating
face-related concepts that were previously unmanageable.

Input +bangs +sunglasses
w/o spec. DiffFERV w/o spec. DiffFERV

Figure 5: Ablation of specialization stage (spec.)

Model Global Local Global Local
IDP↑ NAPR↑ IDP↑ NAPR↑ TACR↑ TACR↑

w/o Spec. 0.545 0.864 0.707 0.923 0.845 0.442
DiffFERV 0.563 0.865 0.677 0.915 0.870 0.492

Table 4: Ablation of specialization stage (spec.)

In
pu

t
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C
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TA

Figure 6: Ablation of temporal modeling

Temporal Modeling We evaluate the contributions of
SWCFA and TTA to temporal consistency and identity fi-
delity. Table 5 and Fig. 6 show that SWCFA is critical for
maintaining local temporal continuity, while TTA further en-
hances global consistency. Interestingly, this temporal con-
text also improves faithfullness and editing success rate, as
observed in Fig. 6. We hypothesize that this occurs because
the cross-frame awareness and optical flow prior from the
original video aids in managing challenging frames by sup-
plying richer temporal contextual information.

Time Threshold for Appearance Feature Caching Fig. 7
displays the results of aging edits at varying τapp thresholds.
As τapp increases, edits align more closely with the original
face but exhibit weaker transformations. Users can freely ad-
just this parameter according to their need for a trade-off be-
tween editing effectiveness and faithfulness.

Input 0.2 0.4 0.6 0.8

Figure 7: Comparison of editing results at different τapp

SWCFA TTA
Temporal Consistency Faithfulness

Global Local Global Local
TL-ID↑ TG-ID↑ TL-ID↑ TG-ID↑ IDP↑ IDP↑

× × 0.643 0.620 0.619 0.599 0.499 0.628
✓ × 0.721 0.680 0.693 0.648 0.520 0.639
✓ ✓ 0.753 0.706 0.735 0.706 0.563 0.677

Table 5: Ablation of temporal modeling
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