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Abstract
Multimodal Emotion Recognition in Conversation
(MERC) focuses on detecting the emotions ex-
pressed by speakers in each utterance. Recent
research has increasingly leveraged graph-based
models to capture interactive relationships in con-
versations, enhancing the ability to extract emo-
tional cues. However, existing methods primarily
focus on explicit utterance-level relationships, ne-
glecting both the implicit connections within in-
dividual modality and the differences in implicit
relationships across modalities. Moreover, these
methods often overlook the role of sentimental fea-
tures in conversation history in cross-modal seman-
tic alignment. To address these issues, we propose
a novel model that employs modality-adaptive hy-
brid relational graphs to enrich the dialogue graph
by inferring implicit relationships between nodes
within each modality. Furthermore, we introduce
historical sentiment through a progressive strategy
that utilizes contrastive learning to refine cross-
modal semantic alignment. Experimental results
demonstrate the superior performance of our ap-
proach over state-of-the-art methods on the IEMO-
CAP and MELD datasets. Our code is available at
https://github.com/cgao-comp/HRG-SSA.

1 Introduction
Emotions significantly shape human interactions, decisions,
and overall well-being [Baltrušaitis et al., 2019]. With the
growing expectation for machines to perceive, understand,
and express emotions like humans, detecting emotions from
conversations using multimodal information has become in-
creasingly crucial [Geetha et al., 2024].

Multimodal emotion recognition in conversation (MERC)
aims to utilize text, acoustic, and visual modalities within a
conversational context to accurately identify the emotion ex-
pressed by the speaker in each utterance. Typically, MERC is
treated as a classification task, where researchers often start
with efficient multimodal information processing and fusion,
followed by applying a classifier for emotion detection, as

∗Corresponding Author

Oh, I thought this was your party and it turns out 
it's a party for Howard. He's just the sweetest 
little man! [surprise]

See ya Phoebe! Oh and hey, thanks for chipping in! [joy]

You chipped in?! [surprise]

Yeah, uh-huh, a 100 dollars. [neutral]

Phoebe! I can't believe you gave them money! I 
thought you agreed it was totally unreasonable that 
they asked me for that money! [surprise]

Yeah, but they didn't ask me!  [anger]

This way I'm just y'know, the exotic, generous 
stranger. That's always fun to be.  [joy]

Yeah, but you're making me look bad!  [anger]

Phoebe

Guest

Ross

u1

u2

u3

u4

u5

u6

u7

u8

Figure 1: An example of utterances in a conversation, including text,
acoustic, and visual modalities. The emotional labels of utterances
are highlighted in different colors.

demonstrated in [Li et al., 2023a; Hu et al., 2024]. Recently,
some studies have explored the use of text generation for
emotion recognition. For example, [Hu et al., 2022b] uni-
fied sentiment analysis and emotion recognition by designing
text labels and employing Transformer decoders [Vaswani et
al., 2017] to progressively generate both the results and con-
fidence scores. Based on this, [Li et al., 2023b] introduces
UniSA, a unified multimodal generative framework designed
to effectively handle various emotion-related detection tasks.

Alternatively, to address the complex relationships and de-
pendencies among diverse modalities, graph-based methods
utilize graph structures to capture intricate interactions and
offer a comprehensive understanding of sentiment. Some
standard graphs define specific rules to explicitly identify the
relationships between nodes. [Li et al., 2024] establishes
connections between nodes from different modalities; for in-
stance, a textual node is linked to all visual nodes. [Nguyen
et al., 2023] connects nodes within a specific window of the
same modality, and nodes representing different modalities of
the same utterance. Additionally, [Yi et al., 2024] replaces the
aforementioned relationships with two types of correspond-
ing hyperedges, which can connect any number of nodes,
thereby naturally encoding relationships of higher arity.

However, they have limitations in graph structure and over-
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look certain aspects of sentiment encoding: (1) Sentiment
features in the conversation history are ignored. The clas-
sification task generates discrete labels that do not inherently
convey emotional content. For instance, when ”0” is assigned
to represent happiness, no emotion-related information can
be derived from the label ”0” in isolation. Consequently, the
emotional features detected in the conversation history are
not effectively utilized in predicting the emotions of subse-
quent utterances. However, incorporating historical emotions
can provide benefits(e.g. Utterances 6 & 8 in Figure 1). (2)
Implicit relationships between utterances in the conver-
sation graph are overlooked. Blindly connecting all nodes
within the same conversation may introduce noise by linking
semantically unrelated nodes (Utterances 2 & 8, etc.), thereby
influencing emotion recognition accuracy. Conversely, estab-
lishing connections solely based on explicit relationships that
match predefined rules may lead to the neglect of implicit re-
lationships (Utterances 4 & 8, etc.), which are equally crucial
for comprehensive emotional analysis. (3) Variations in im-
plicit relationships across different modalities are disre-
garded. In fact, there are distinct differences in the implicit
relationships between nodes across various modalities. For
example, two speakers may appear simultaneously in a scene
and interact physically, but not verbally. This creates a rela-
tionship within the visual modality, while no such relation-
ship exists in the textual or auditory modalities. Applying the
relational structure of one modality uniformly across others
may result in the introduction of spurious connections or the
loss of crucial contextual information. Existing research has
yet to provide a solution to these discrepancies.

To address the challenges outlined earlier, we propose a
novel encoder-decoder framework, HRG-SSA, which com-
bines Hybrid Relational Graphs(HRG) with a Sentiment-
laden Semantic Alignment strategy(SSA). This approach
treats MERC as a text generation task, thereby endowing
the emotional labels in the conversation history with genuine
textual emotional semantics. SSA employs a two-stage con-
trastive learning process. Initially, it aligns the various modal
features of the conversation history with emotions, and subse-
quently, it aligns the semantics of each sentiment-laden modal
feature. This progressive alignment enhances the model’s
ability to fuse multimodal information during the encoding
process. Inspired by [Zhao et al., 2022], HRG employs a
modality-adaptive connection prediction module that infers
implicit relationships between nodes within a modality based
on their semantic similarity. It then integrates these inferred
relationships with explicit ones to construct a more coher-
ent and comprehensive conversation graph structure, thereby
enhancing the interaction and fusion of features within each
modality. Ultimately, a decoder incorporating dynamic fu-
sion layers is employed to effectively integrate multimodal
information, enabling the generation of the emotional polar-
ity for the current utterance. The main contributions of this
paper can be summarized as follows:

• We propose an SSA strategy that uses progressive con-
trastive learning to integrate sentiment cues into contex-
tual references, facilitating multimodal semantic align-
ment. Additionally, a novel modality-adaptive HRG in-
fers implicit connections within modalities, completing

the dialogue graph and improving modality fusion.

• We propose an end-to-end generation framework HRG-
SSA that incorporates HRG and SSA into the encod-
ing phase to enhance multimodal information represen-
tation. The decoder subsequently employs dynamic fu-
sion layers to seamlessly integrate multimodal inputs
and generate the speaker’s emotional tendency.

• Experiments on the IEMOCAP and MELD datasets
demonstrate that our method outperforms state-of-the-
art approaches in accuracy and weighted F1 score, high-
lighting its effectiveness in MERC.

2 Related Work
2.1 Transformer-Based Models for MERC
Drawing inspiration from Transformer architectures, most
of recent studies focus on designing cross-modal attention
mechanisms to effectively fuse various modalities [Rahman
et al., 2020; Huang et al., 2023; Sun et al., 2023]. [Hu-
bert et al., 2019] categorized the challenges in multimodal
data modeling into two types: misalignment within modali-
ties and across modal feature spaces. They proposed the end-
to-end Multimodal Transformer (MulT) to address these is-
sues and showed the effectiveness of the attention mechanism
in modal fusion. CENet enhances each word’s representation
by incorporating long-range emotional cues implicit in the
visual and auditory modalities [Wang et al., 2022]. SDT em-
ploys a Transformer-based model with intra-modal and inter-
modal attention mechanisms to capture interactions and dy-
namically learn modality weights through hierarchical gating
[Ma et al., 2023]. [Maji et al., 2023] designed a cross-modal
transformer block to capture interactions and temporal de-
pendencies between audio and text, while using self-attention
to prioritize key sentiment information from the fused fea-
tures. Recent studies have explored text generation for emo-
tion recognition using transformer decoders. They unified
the emotion-related classification tasks into an end-to-end
framework by unifying their label formats [Hu et al., 2022b;
Li et al., 2023b]. Although these methods have made
progress in MERC, none have recognized the potential of
emotional labels in dialogue history to enhance emotion pre-
diction in subsequent interactions.

2.2 Graph-Based Models for MERC
Sequential modeling has an upper limit in extracting features
from conversation context, prompting some researches to ex-
plore the graph structure within dialogues. These approaches
typically treat each modality of a utterance as a node and es-
tablish connections based on meaningful relationships [Hu et
al., 2024]. Early studies relied on the adjacency relationships
inherent in the conversational structure to establish edges.
For example, a common approach is to connect the nodes
within the same modality for a given conversation and link
nodes across different modalities within the same utterance
[Hu et al., 2021a; Nguyen et al., 2023]. Moreover, some
studies exploit speaker-specific relationships to establish con-
nections between the corresponding nodes [Lian et al., 2023;
Lee and Choi, 2021]. Furthermore, some researchers have
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Encoder
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Encoding 

+

×N

Softmax

Linear

Feed Forward

Multi Modal
Multi-Head Attention

Add & Norm

Text History
Multi-Head Attention

Masked
Multi-Head 
Attention

Add & Norm

Add & Norm

Add & Norm

Output
Embedding

+

Multi Modal Dynamic Fusion

Decoder

<bos_emotion> joy 

<eos_emotion>,

 and the sentiment is 

<bos_sentiment> positive 

<eos_sentiment>.

the speaker joey's 
emotion is  

Decoder

Hybrid Relational Graphs

MSA

Sentiment-laden Semantic Alignment

LMSALPSA LSSA

Multimodality Semantic 
Alignment

Primary Sentiment 
Alignment

projection

projection

T5-
Enco
der

...

Utterannce 
Text

Hisotry
 Text

Emotion
Text

Initial 

fusion

Initial 

fusion

Initial 

fusion

+

PSA

Feature Extraction and Initial Fusion(a)

(b)

(c) (d)

Implicit 

connections

detector

Implicit 

connections

detector

Implicit 

connections

detector

Sentiment Decoder

Implicit RelationImplicit RelationCognate RelationCognate RelationAcoustic modalityAcoustic modalityVisual modalityVisual modalityTextual modalityTextual modality + Concatenation+ Concatenation + Addition+ AdditionAdjacency RelationAdjacency Relation

Figure 2: Illustration of HRG-SSA framework. In the encoder, text, acoustic, and visual features are represented by green, blue, and orange,
respectively. Within the graphs structure, black solid lines denote adjacency relationships, yellow solid lines connect nodes from the same
speaker, and red dotted lines denote implicit relationships within each modality. In the decoder, N represents the number of stacked blocks.

exploratively leveraged external knowledge and rules to ex-
tract relationships within the context. For example, M3GAT
employs the spaCy toolkit to construct a dependency tree
of text utterances, leveraging the syntactic dependencies be-
tween words to build edges [Zhang et al., 2023a]. DER-GCN
constructs a multi-relational sentiment interaction graph that
incorporates relationships between speakers and heteroge-
neous elements derived from events [Ai et al., 2024]. MKE-
IGN integrates textual and visual common-sense knowledge
into the edge representation to improve the modeling of con-
versation graph relations by external knowledge [Tu et al.,
2024a]. The introduction of hyperedges effectively short-
ens the distance between interactions across different modali-
ties, making the hypergraph an innovative approach for mod-
eling complex relationships in MERC [Chen et al., 2023;
Yi et al., 2024]. Exploratively, [Pei et al., 2024] proposed a
multi-track graph convolutional network that separates mes-
sage passing by category semantics to prevent heterophilic
mixing and mitigate oversmoothing and oversquashing in
deep GNNs. However, these methods mainly focus on ex-
plicit utterance-level relationships, overlooking both the im-
plicit connections within each modality and the variations in
implicit relationships across modalities.

3 Methodology
In this section, we provide a detailed overview of each mod-
ule in the proposed HRG-SSA, as illustrated in Figure 2.

3.1 Problem Formulation
A conversation consists of a sequence of utterances: C =
{u1, u2, ..., uN}. N is the number of utterances. Each utter-
ance ui consists of three modalities: text, audio, and vision,

along with a corresponding speaker: ui = {ut
i, u

a
i , u

v
i ;Si}.

ut
i ∈ Rdt , ua

i ∈ Rda and uv
i ∈ Rdv , dt, da, dv denote repre-

sent the dimensionalities of the text, audio, and visual modali-
ties, respectively. The goal of MERC is to predict the emotion
yi expressed by the speaker Si in each utterance ui, based on
the conversation history: Ch = {u1, u2, ..., ui−1}.

3.2 Feature Extraction and Encoding
Following [Chen et al., 2023], we employ DenseNet [Huang
et al., 2017] or 3D-CNN [Yang et al., 2019] to extract fea-
tures from the visual modality, and utilize OpenSmile toolkit
[Eyben et al., 2010] to extract features from the audio modal-
ity. For the text modality, we uniformly utilize the pre-trained
T5-base [Raffel et al., 2020] encoder for feature extraction.

Unimodal Encoder: To ensure consistency in the dimen-
sionality of the representations across modalities, we employ
two projection layers to perform preliminary spatial align-
ment for the audio and visual features, as detailed below:

ha
i = Wau

a
i + bai

hv
i = Wvu

v
i + bvi

(1)

where uη
i represents the extracted feature, resulting in fixed-

size representations hη
i ∈ Rdh , η ∈ {a, v}; Wη and bη are

learnable parameters. It is worth noting that these two modal-
ities are only encoded at the utterance level.

The text modality includes both utterance-level and
context-level encoding, which are utilized for graph initial-
ization and the cross-attention module of the decoder, respec-
tively. We integrate speaker identity information by adding a
“speaker:” prefix to each utterance, followed by an end-of-
sequence token “</s>” as a suffix. For instance, the Ut-
terance 3 in Figure 1 appears as “Ross: You chipped in?!
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</s>”. We use the representation of the token “</s>” as
the utterance-level encoding, while retaining the context-level
representations:

ht
i = T5Encoder(ut

i)[indexof(“</s>”)] (2)

ht
C = T5Encoder(Ct

h) (3)

where Ct
h = {ut

1, u
t
2, ..., u

t
i−1}, indexof(“</s>”) repre-

sents the index of “</s>”.
Sentiment Encoding: To effectively leverage the senti-

ments within the conversation history, we structured the sen-
timental labels of each utterance into a standardized textual
format. The specific format is as follows: “Ross: surprise &
negative </s>”, and we use si to denote that of utterance i.
This structured representation ensures consistent integration
of emotional context throughout the dialogue. Encoding it
with the T5 encoder yields a representation rich in emotional
semantics, enabling a more nuanced understanding of the di-
alogue’s sentiment:

hs
i = T5Encoder(si) (4)

3.3 Initial Fusion and Sentiment Alignment
After encoding, we employ the cross-attention (CS-Attention
for short) [Vaswani et al., 2017] mechanism to facilitate the
initial fusion between modalities at the utterance level. For
the text modality, we use ht

i as the query, while the concate-
nation of ha

i and hv
i serves as both the key and value for at-

tentional interactions.

hav = [ha ∥ hv] (5)

Ht = CS-Attention(ht, hav, hav)

= Softmax(
(htWQ

t )(havWK
t )T√

d
)(havWV

t )
(6)

where ∥ denotes the concatenate operation; ·T represents the
transpose operation of a matrix; WQ

t ,WK
t ,WV

t are learnable
parameter matrices; d is the dimension of hidden states.

In order to improve fusion efficiency and align with the
conclusion that text plays a dominant role in multimodal af-
fective computing [Zhang et al., 2023a; Zhang et al., 2023b],
we use ht

i as the key and value for acoustic and visual modal-
ities. And we utilize ha

i and hv
i as the queries for attentional

interactions, respectively.

Hη = CS-Attention(hη, ht, ht)

= Softmax(
(hηWQ

η )(htWK
η )T

√
d

)(htWV
η )

(7)

where η ∈ {a, v}; WQ
η ,WK

η ,WV
η are learnable parameter

matrices.
Primary Sentiment Alignment(PSA): In this module, we

use historical sentiment to align contexts with their corre-
sponding sentiment expressions. Multiple sentiments are of-
ten present in a conversation, and aligning the semantics of
an utterance with its true emotional state, while distancing it
from other emotions, enhances the model’s attention to sen-
timental cues, thereby improving subsequent emotion predic-
tion. In prior work, we encoded both the speaker’s utterances

and their associated emotions to obtain hs
i . In the current

module, we treat each modal representation Hη
i , η ∈ {t, a, v}

and its corresponding hs
i as a positive pair, while pairing hη

i
with the representations of other hs

j , j ̸= i as negative pairs.
This contrastive learning strategy facilitates semantic align-
ment across modalities. Suppose there are n utterances in the
dialogue, and the comparative loss is as follows:

LPSA = −
n−1∑
i=1

∑
η∈{t,a,v}

log
esim(Hη

i ,h
s
i )/τ∑n−1

j ̸=i esim(Hη
i ,h

s
j)/τ

(8)

where the target utterance is not involved; sim(Hη
i , h

s
i ) de-

notes the cosine similarity between two vectors; log(·) de-
notes the logarithmic function; and τ is a temperature param-
eter. By minimizing this loss, modality features are effec-
tively aligned with the correct sentiment representation space.

3.4 Hybrid Relational Graphs
Graph Structure: We represent successive conversation
contexts using a hybrid relational directed graph G = (V , E),
where each node v ∈ V represents a unimodal utterance and
the set of edges E includes both explicit and implicit relation-
ships between the nodes. All nodes are initialized with their
corresponding hidden states Hη

i . And, the directed graph
structure ensures that subsequent nodes cannot be used for
emotion prediction of preceding nodes, preserving the tem-
poral causality of the conversation.

Explicit relations remain consistent across modalities; we
separately link neighboring utterances (including the utter-
ance itself) and those from the same speaker. This approach
preserves the temporal relationships underlying the pairwise
connections and enables the tracking of each speaker’s emo-
tional evolution. Implicit connections(IC) capture the hid-
den pathways of information propagation within each modal-
ity by employing a detector that evaluates the correlations be-
tween nodes. These connections complement explicit rela-
tionships and result in modality-specific edge structures.

Specifically, based on the hidden states of nodes in each
modality, the implicit unobserved relationships of modality
adaptation are computed. A single-layer feedforward neural
network, along with a mask matrix, is employed to calculate
the scores sηij between node i and j, thereby inferring those
implicit relationships.

sηij = LeakyRelu
(
mask +WT

η

[
Hη

i ∥ Hη
j

])
(9)

where η ∈ {t, a, v}; WT
η is a learnable parameter ma-

trix; LeakyReLU is a nonlinearity activation function; and
mask ∈ Rn∗n is a square matrix with −inf in the upper
triangle and zeros in the lower triangle, thus preventing back-
ward dependency. Then, a softmax function is applied to cal-
culate the attention values αη

ij for each node pair.

αη
ij =

exp(sηij)∑n
k=0 exp(s

η
kj)

(10)

where exp(·) represents the exponential function. If the value
exceeds the average score of node j predecessor, an implicit
connection is established between node i and j (i<j):

Ai,j =

{
1, if αη

ij >
1
j

0, otherwise
(11)
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where A represents the adjacency matrix.
Graph Update: The update of node representations within

the graph structure follows the graph attention network
[Veličković et al., 2018] framework, comprising two steps:
directed edge weight calculation and information aggrega-
tion. First, we take each node representation Hη

i as input
and apply the self attention mechanism [Vaswani et al., 2017]
to compute the attention distribution between a specific node
and its previously connected nodes.

ŝηij =
(W η

e H
η
i W

Q
e )(W η

e H
η
j W

K
e )T

√
d

α̂η
ij =

exp(ŝηij)∑
k∈Nj

exp(ŝηkj)

(12)

where We is a learnable linear transformation, aimed at pro-
viding sufficient expressive power to map the input features
into higher-level representations; WQ

e and WK
e are learnable

parameter matrices for attention mechanism; Nj denotes the
neighborhood of node j in the graph.

Based on the attention weights computed above, we up-
date each node by aggregating the features of its neighboring
nodes. Additionally, we stack L layers of graph updates to
facilitate information exchange across multi-hop nodes:

Hηl

i = σ

∑
j∈Ni

α̂ηl

ijW
ηl

e Hηl−1

j

 (13)

where η represents the modality; l denotes the index of the
layer; σ(·) denotes the sigmoid function. We use the output
of the final layer as the encoded representation of the hybrid
relationship graph, denoted as HηL

i .
Multimodality Semantic Alignment(MSA): Through the

previous operations, the utterance node representations have
been enriched with emotional context, and sufficient infor-
mation fusion within the modality has been achieved. In this
module, we will once again employ contrastive learning to
perform cross-modal semantic alignment. The three modal-
ities from the same modality form positive pairs pairwise,
while negative pairs are formed between different utterance
nodes. The comparative loss is as follows:

LMSA = −
n∑

i=1

∑
η∈{t,a,v}

∑
ξ ̸=η

log
esim(Hη

i ,H
ξ
i )/τ∑n

j ̸=i e
sim(Hη

i ,H
ξ
j )/τ

(14)
where n denotes the number of nodes in the graph; ξ indicates
two other modalities besides η. By minimizing this loss func-
tion, the semantics of multiple modalities for the same node
are brought into closer alignment.

Up to this point, the previous PSA module and the current
MSA module progressively refine the role of sentiment cues,
further promoting cross-modal alignment.

3.5 Decoder
This framework employs text generation tasks for emotion
classification. We organized the sentimental labels into the
fluent text format: “In the last round of the above dia-
logue, the speaker Ross’s emotion is <bos emotion>surprise

<eos emotion>, and sentiment is <bos sentiment>negative
<eos sentiment>.”, where the special tokens with pointed
brackets are placeholders for label extraction.

MultiModal Dynamic Fusion: Specifically, we utilize
the pre-trained T5-base Decoder as the decoder and intro-
duce several enhancements to optimize its performance. As
mentioned previously, we have multiple inputs: ht

C , HηL

,
and HD(representing the hidden states of the decoder in-
put). Since the classic transformer decoder can only process
two inputs with a single cross-attention layer, we introduce a
multimodal dynamic fusion structure by adding an additional
cross-attention layer in series.

First, we use ĤD, obtained from the masked self-attention
layer, as the query, while the conversation history represen-
tation ht

C serves as the key and value, passing through the
first cross-attention layer. This approach allows us to capture
event interactions and sentiment cues from the conversation
history:

HDC = CS-Attention(ĤD, ht
C , h

t
C)

= Softmax(
(ĤDWQ

c )(ht
CW

K
c )T√

d
)(ht

CW
V
c )

(15)

where WQ
c , WK

c and WV
c are learnable matrices. Next, we

use the concatenation of HηL

as both the key and value,
with HDC as the query, to extract sentiment cues from the
multimodal representation through the second cross-attention
layer:

Htav = [HtL ∥ HaL

∥ HvL

] (16)

HDCM = CS-Attention(HDC , H
tav, Htav)

= Softmax(
(HDCW

Q
m)(HtavWK

m )T√
d

)(HtavWV
m )

(17)
where WQ

m , WK
m and WV

m are learnable matrices. Once the
output is obtained, it is mapped onto the vocabulary through
a feedforward network (FFN), and the probability distribu-
tion is generated using softmax, consistent with the original
Transformer decoder:

P voc(yt) = Softmax(WsHDCM ) (18)

where t denotes the t-th time step and Ws is learnable ma-
trix. We adopt a cross-entropy loss to optimize this genera-
tion task:

Ls = −
∑
t=1

log (P voc(yt)) (19)

Training Objectives: The final training objective is a
weighted fusion of the three loss functions described above:

L = Ls + λ(LPSA + LMSA) (20)

where the hyperparameter weight λ controls the significance
of the contrastive loss.

4 Experiments
4.1 Experimental Settings
Datasets: We evaluate the performance of our model on two
popular datasets for MERC: IEMOCAP [Busso et al., 2008]
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Methods IEMOCAP MELD
Happy Sad Neutral Angry Excited Frustrated Acc w-F1 Neutral Surprise Fear Sadness Joy Disgust Anger Acc w-F1

UniMSE♣ - - - - - - 70.56 70.66 - - - - - - - 65.09 65.51
UniSA♣ - - - - - - 70.56 71.77 - - - - - - - 67.85 66.71

DialogueGCN♢ 51.57 80.48 57.69 53.95 72.81 57.33 63.22 62.89 75.97 46.05 - 19.60 51.20 - 40.83 58.62 56.36
MMGCN♢ 45.14 77.16 64.36 68.82 74.71 61.40 66.36 66.26 76.33 48.15 - 26.74 53.02 - 46.09 60.42 58.31
MMDFN♢ 42.22 78.98 66.42 69.77 75.56 66.33 68.21 68.18 77.76 50.69 - 22.93 54.78 - 47.82 62.49 59.46
AdaIGN♣ 53.04 81.47 71.26 65.87 76.34 67.79 - 70.74 79.75 60.53 - 43.70 64.54 - 56.15 - 66.79

DER-GCN♣ 58.8 79.8 61.5 72.1 73.3 67.8 69.7 69.4 80.6 51.0 10.4 41.5 64.3 10.3 57.4 66.8 66.1
M3Net♠ 54.43 81.24 66.16 65.42 75.22 63.57 68.21 68.38 79.99 60.14 15.38 35.03 64.50 26.67 54.23 67.59 65.85

HAUCL♠ 60.73 77.10 69.74 65.34 77.69 60.97 69.19 68.99 80.06 60.25 15.87 35.03 64.68 28.30 54.15 67.70 65.97
HRG-SSA-gen 66.47 83.16 73.94 68.31 82.43 69.63 74.37 74.63 80.58 58.99 13.56 41.26 63.53 26.37 54.15 67.97 66.30

HRG-SSA 71.27 84.79 74.50 70.59 82.68 68.56 75.48 75.47 80.46 59.85 21.05 41.95 63.40 30.63 55.62 68.05 66.83
♢, ♣, ♠ indicates that the results come from [Hu et al., 2022a], original papers and our replication, respectively.

Table 1: Results on IEMOCAP and MELD. Bolded values indicate the best results, and underlined values denote the second-best.

and MELD [Poria et al., 2019]. The former consists of videos
of two-person conversations between 10 actors, while the
latter is a multimodal dataset for multi-party conversations,
taken from the Friends TV series. The distribution of both
datasets is presented in Table 2. Note that since IEMOCAP
does not provide labels for emotional stance, we assigned
positive, negative, or neutral based on their emotional labels.

Dataset Dialogues Utterances Classes
train val test train val test

IEMOCAP 120 31 5810 1623 6
MELD 1039 114 280 9989 1109 2610 7

Table 2: Dataset statistics for IEMOCAP and MELD.

Implementation Details: All experiments were conducted
on a single NVIDIA RTX A6000. We used a two-stage opti-
mization strategy, first fine-tuning non-pretrained parameters
(10 epochs) and then optimizing all parameters (10 epochs),
with learning rates set to 5e-5 and 3e-5, respectively. Adam
optimizer is used for training. The values of the remaining
key hyperparameters are shown in the Table 3.

Dataset Epoch Batch size λ L τ Warmup ratio
IEMOCAP 20 8 0.001 1 1.0 0.2

MELD 20 8 0.001 3 1.0 0.2

Table 3: Main hyperparameters for HRG-SSA.

Baselines and Metrics: To evaluate the performance of
our approach, we compare it with the following state-of-the-
art methods: (1) Transformer-Based models: UniMSE [Hu et
al., 2022b] and UniSA [Li et al., 2023b]; (2) Graph-Based
models: DialogueGCN [Ghosal et al., 2019], MMGCN [Hu
et al., 2021b], MMDFN [Hu et al., 2022a], M3Net [Chen et
al., 2023], AdaIGN [Tu et al., 2024b], DER-GCN [Ai et al.,
2024], HAUCL [Yi et al., 2024]. For details on the baseline
methods, please refer to section 2. Evaluation is conducted
using the most widely adopted metrics in this field: accuracy
(Acc) and weighted F1 score (w-F1).

4.2 Performance Comparison
Table 1 presents the results on the IEMOCAP and MELD
datasets. The suffix “gen” indicates that predicted historical
emotions are used in the experiments; otherwise, groundtruth
emotions are used. The comparison between them suggests
that higher prediction accuracy of historical emotions leads
to improved future predictions. And our proposed HRG-SSA
outperformed all the baseline models. Compared to HAUCL,
HRG-SSA achieves improvements of 6.29% in ACC and
6.48% in w-F1 on IEMOCAP, and 0.34% in ACC and 0.86%
in w-F1 on MELD. The model shows greater improvement
on IEMOCAP, likely due to its simpler setup with fewer emo-
tion categories and two-person dialogues. In contrast, MELD
is more complex, with challenges like imbalanced emotion
labels, leading to smaller gains.

4.3 Ablation Study
To more comprehensively evaluate the effectiveness of our
proposed HRG-SSA method, we conducted ablation experi-
ments to examine the contributions of PSA, MSA, and IC, as
well as the impact of each modality on emotion recognition
accuracy. The results are presented in Table 4.

Methods IEMOCAP MELD

Acc w-F1 Acc w-F1

(Ours) 75.48 75.47 68.05 66.83
w/o PSA 73.94 73.93 67.82 66.66
w/o MSA 74.61 74.63 67.73 66.88

w/o IC 73.81 73.68 67.85 66.72
T 74.43 74.49 67.32 65.57

T + A 74.74 74.63 67.85 66.48
T + V 73.62 73.41 67.24 65.70

Table 4: Performance of HRG-SSA for ablation study. “w/o” de-
notes “without”, while “T, A, V” represent the text, acoustic, and
visual modalities, respectively.

In the table, “w/o PSA” and “w/o MSA” indicate the re-
moval of the two losses, LPSA and LMSA, respectively,
while “w/o IC” denotes the exclusion of all implicit connec-
tions. The results demonstrate that removing any of the afore-
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Figure 3: Sensitivity analysis of HRG-SSA on the λ and L. All experiments were conducted with other parameters fixed at optimal values.

mentioned modules leads to a decrease in emotion recogni-
tion accuracy, highlighting the positive contribution of each
module. Moreover, removing PSA or MSA alone causes a
significant performance drop, indicating that the two mod-
ules complement each other and validating the effectiveness
of the progressive semantic alignment strategy.

The results in Table 4 indicate that the model performs
well with only the text modality. Adding audio improves ac-
curacy, while the inclusion of visual information reduces it.
We believe that speech and text share some semantic over-
lap, enabling them to complement each other. However, the
visual information in the datasets depicts a large scene, with
the speaker’s facial expression being only a small part of it.
This may hinder the model’s ability to focus effectively, lead-
ing to a decrease in accuracy. The collaboration of the three
modalities results in a significant improvement, highlighting
the subtle collaborative mechanism among them and offering
us a more comprehensive and multidimensional perception.

4.4 Sensitivity Analysis
We selected two key parameters in HRG-SSA for sensitiv-
ity analysis on the IEMOCAP and MELD datasets, as illus-
trated in Figure 3. The left subfigure illustrate the impact of
the number of stacked graph layers on model performance.
Both graphs exhibit a trend of increasing and then decreasing
performance, suggesting that both overly shallow and overly
deep graph stacks hinder effective node information aggrega-
tion. Performance is notably poor when the number of layers
is 0 (i.e., without the hybrid relationship graphs), emphasiz-
ing its importance. Additionally, the optimal performance of
IEMOCAP and MELD is achieved at 1 and 3 layers, respec-
tively. This can be attributed to the intrinsic properties of
the datasets. IEMOCAP, which comprises two-person dia-
logues, inherently establishes implicit relationships through
multi-hop node interactions, thus diminishing the necessity
for deeper nesting. In contrast, MELD is a multi-party con-
versation dataset and contains a certain amount of invalid
spoken content, raising the cost of information mining. The
right subfigure show the effect of the loss weight λ and both
datasets achieve the best performance at 0.001.

4.5 Visualization
Since we believe that text plays a key role in the MERC task,
we take the example shown by Figure 1 in section 1, and draw

a hybrid relationship graph constructed by its textual modal-
ity, as well as the distribution of attention among the nodes,
as shown in Figure 4. The figure provides a clear visual repre-

Figure 4: Heatmap of attention distribution among nodes in the hy-
brid relationship graph of the text modality constructed in the exam-
ple shown in Figure 1. The horizontal and vertical axes are aligned,
with text content omitted.

sentation of the model’s mechanism. The red dashed line with
arrows highlights the implicit connections mined by HRG-
SSA, and “0” indicates no edges between nodes. Our model
accurately identifies the full range of emotions by leveraging
implicit connections and more rational attention allocation,
while the baseline model HAUCL misclassifies U5 as Angry.

5 Conclusion
In this paper, we propose an end-to-end framework for MERC
based on comparative learning and graphs. This framework
aims to effectively utilize historical sentiment and empha-
size implicit relationships within modalities. Our proposed
method HRG-SSA complements the dialog graph by mining
implicit relationships within each modality, thereby facilitat-
ing the alignment of sentiment-rich multimodal information.
This improves the model’s ability to extract sentiment cues
and enhances accuracy. In the future, we will further explore
the variability factors within each modality to further improve
the performance of the model by constructing adaptive mul-
timodal heterogeneous maps, as well as enhancing the inter-
pretability of the model.
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