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Abstract
Smart contract is a kind of self-executing code
based on blockchain technology with a wide range
of application scenarios, but the traditional gener-
ation method relies on manual coding and expert
auditing, which has a high threshold and low effi-
ciency. Although Large Language Models (LLMs)
show great potential in programming tasks, they
still face challenges in smart contract generation
w.r.t. effectiveness and security. To solve these
problems, we propose FSM-SCG, a smart contract
generation framework based on finite state machine
(FSM) and LLMs, which significantly improves the
quality of the generated code by abstracting user re-
quirements to generate FSM, guiding LLMs to gen-
erate smart contracts, and iteratively optimizing the
code with the feedback of compilation and security
checks. The experimental results show that FSM-
SCG significantly improves the quality of smart
contract generation. Compared to the best baseline,
FSM-SCG improves the compilation success rate
of generated smart contract code by at most 48%,
and reduces the average vulnerability risk score by
approximately 68%.

1 Introduction
Blockchain, with its characteristics of immutability, trans-
parency, and decentralization, has demonstrated a wide range
of applications in various fields such as finance, supply chain,
data sharing, etc [Wang et al., 2018]. As a key component
for realizing blockchain systems, the automatic generation of
smart contracts has become one of the focuses in current re-
search [Khan et al., 2021].

Smart contracts require precise coding and verification to
ensure their effectiveness and security [Almakhour et al.,
2020]. Due to the irreversible nature of smart contract execu-
tion, any vulnerabilities or errors in the code could lead to se-
rious security risks, or even financial losses [Luu et al., 2016;
Sayeed et al., 2020]. Therefore, the ability to quickly and reli-
ably generate fully functional and secure smart contracts has
become a critical issue. Previously, the generation of smart

∗Corresponding authors: Jiawei Jiang, Hao Wang

Method Pattern CPR(↑) VRS(↓)
Direct R2C 36.9% 7.44
CML R2M2C 47.5% 6.36

IContractML R2M2C 46.3% 6.21
FSM (Ours) R2F2C 49.3% 6.05

FSM-SCG (Ours) R2F2C 95.1% 2.36

Table 1: Comparing the existing smart contract generation methods.
FSM-SCG stands for our proposed approach, while FSM refers to
the variant that only uses the proposed SmartFSM as an interme-
diate representation to aid smart contract generation. Higher CPR
indicates better effectiveness, and lower VRS means better security.
We evaluate the methods on the LlaMa3.1-8b model.

contracts relies on manual coding and professional audits of
experts, requiring developers to have extensive blockchain
programming skills and experience [Mao et al., 2019].

In recent years, LLMs have demonstrated significant po-
tential in programming tasks, such as code generation, pro-
gram repair, and code translation [Poesia et al., 2022; Jiang
et al., 2024b]. Motivated as such, LLMs have also shifted
the paradigm of smart contract generation. Existing works on
LLMs for generating smart contracts mainly focus on direct
generation from user requirements to code (R2C) [Napoli et
al., 2024; Chatterjee and Ramamurthy, 2024]. Other works
transform requirements into intermediate models to guide
LLMs in code generation (requirements-to-model-to-code,
R2M2C) [Wöhrer and Zdun, 2020; Petrović and Al-Azzoni,
2023; Qasse et al., 2023].

As shown in Table 1, when the LLMs directly generate
smart contracts based on user requirements, the code has a
low compile pass rate (CPR) and a high vulnerability risk
score (VRS). When intermediate states, such as the Contract
Modeling Language (CML), IContractML, and the FSM in
our proposed method, are introduced to guide the LLMs to
generate smart contracts, all metrics significantly improve.

Challenges. Despite pioneering efforts to generate smart
contracts using LLMs, there are notable limitations concern-
ing their essential features.

• Effectiveness: Smart contracts typically use low-resource
programming languages, such as Solidity, Vyper, and
Move, which lack sufficient documentation, libraries, and
community support. Consequently, in the internal repre-
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sentation space of LLMs, the distribution of low-resource
programming languages is often more concentrated com-
pared to high-resource programming languages, such as
Python or JavaScript [Li et al., 2024]. This gap causes
more syntax errors and incomplete logic in smart contracts,
reducing compilation success.

• Security: Existing research [Chatterjee and Ramamurthy,
2024; Jiang et al., 2024a] has found that LLMs frequently
overlook security issues when generating smart contract
code. This oversight stems from the use of general-purpose
LLM services (e.g., ChatGPT, OpenAI Codex), which are
not designed for the blockchain domain, potentially intro-
ducing security vulnerabilities in the generated contracts.

To address these limitations, we try to study the following
question in this work — How to leverage LLMs to generate
effective and secure smart contracts?

Our Solution FSM-SCG. Formal methods enable precise
modeling of requirements and systems to ensure high relia-
bility and security. FSM, as a formal method, can capture
the state changes and condition triggers in smart contract to
guide secure and reliable generation[Suvorov and Ulyantsev,
2019]. Therefore, we consider incorporating FSM into the
smart contract generation process. Additionally, inspired by
the Chain-of-Thought (CoT)[Wei et al., 2022] and Structured
Chain-of-Thought (SCoT)[Li♂ et al., 2023] techniques, we
divide the smart contract generation process into two sub-
tasks: generating FSMs from user requirements and gen-
erating smart contracts from FSMs. Our approach follows
a requirement-to-FSM-to-code (R2F2C) generation pattern,
guided by FSM throughout the process, which we call FSM-
SCG. The workflow begins by fine-tuning LLM to enhance
its ability to generate FSMs from user requirements, and then
generate smart contracts from FSMs. Then, we format user
requirements to guide LLMs generate FSMs. After this, the
generated FSMs undergo format and graph checks. Once ver-
ified, FSMs are input into LLMs to generate the correspond-
ing smart contract code. The resulting contracts are evaluated
in terms of effectiveness and security. These validations are
utilized as feedback to refine the generation results.

To summarize, we make the following contributions.

• We propose a smart contract generation framework called
FSM-SCG upon LLMs. By abstracting user requirements
as FSM, FSM-SCG can significantly improve the genera-
tion of smart contracts.

• We construct a fine-tuning dataset to improve the ability of
LLMs to generate FSMs and smart contracts. Additionally,
we conduct compilation and security checks, and use them
as feedback to optimize the generation of smart contracts.

• Experimental results show that FSM-SCG1 significantly
enhances the effectiveness and security of smart contracts.
Using LlaMa3.1-8B, the compilation success rate reaches
95.1%, 48% higher than the best baseline. Security risks
are greatly reduced, with the vulnerability risk score drop-
ping by 68% on average.

1This paper’s code is available at https://github.com/pluto-ms/
FSM-Smart-Contract-Generation.

2 Preliminaries
2.1 Smart Contract Generation Process
There are two approaches to generating smart contracts using
LLMs. The first is the direct generation approach, which in-
puts user requirements directly for the LLM to generate corre-
sponding smart contract code. The second is the intermediate
representation approach, where the LLM first transforms user
requirements into an abstract model, then generates smart
contract code from this model, effectively decomposing the
task into two steps. The direct generation approach priori-
tizes rapid implementation and user interaction, while the in-
termediate representation approach focuses on modeling and
abstraction, making it better suited for complex requirements.
Our work adopts the second approach, utilizing FSM as the
intermediate representation.

2.2 Finite State Machine
FSM is an abstract computational model used to represents
the dynamic behavior of a system by recognizing input se-
quences and transitioning between states according to prede-
fined rules.

A Mealy state machine is a type of FSM. Its main charac-
teristic is that the output depends not only on the current state
but also on the input signal, allowing for an instantaneous and
precise response when the input changes. Typically, a Mealy
state machine can be defined as a quintuple (S,X, Y, δ, λ):
• S represents the set of states;
• X represents the set of inputs;
• Y represents the set of outputs;
• δ : S × X → S is the state transition function, which

defines the transition rules under different inputs;
• λ : S ×X → Y is the output function that determines the

system output based on the current state and input.
The Mealy state machine, although it can represent the

state transfer of smart contracts well, has limited guidance
for the contract generation task.

3 FSM Guided Smart Contract Generation
In this part, we first provide an overview of our solution FSM-
SCG. Then, we introduce its key designs, including an en-
hanced FSM to encode more information for smart contracts,
the prompts tailored for generating FSM and smart contract,
and the refinement of smart contract using feedback from
compilation and security checks.

3.1 FSM-SCG Overview
Figure 1 provides an overview of FSM-SCG, including the
following key processes. We also provide the detailed algo-
rithm of FSM-SCG in Appendix A of [Luo et al., 2025].
Fine-Tuning Process. To enhance the ability of LLMs in
generating smart contracts, we build a fine-tuning dataset
Dft that uses FSM as an intermediate representation to gen-
erate smart contracts based on user requirements (see Sec-
tion 3.2). Based on this dataset, we optimize the pretrained
LLM Mpre using the supervised full parameter fine-tuning
(FPFT) method [Kenton and Toutanova, 2019]. In FPFT, all
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Figure 1: An overview of our FSM-SCG framework.

model parameters are updated during training, enabling the
model to learn the task-specific domain. In this manner, the
LLM can better understand user requirements, translate them
into FSMs, and master the domain-specific syntax and se-
mantics of smart contracts. Together, these adaptations sig-
nificantly improve the quality of the generated code.

Requirement Processing. This module takes the natural lan-
guage descriptions of the desired smart contract from the user,
where the user requirements are denoted as R. We trans-
form R into the Requirement-FSM Prompt PR→F , which can
guide the LLM to generate the FSM F describing the desired
smart contract.

FSM Generation. The Requirement-FSM Prompt PR→F is
fed into the fine-tuned LLM Mft. The Mft analyzes the func-
tionality requirements and logic within the user requirements,
extracts the states and their transition conditions, and gener-
ates the corresponding FSM F .

FSM Check. This module conducts format and graph checks
on FSM F . The format check ensures syntactic and content
integrity, while the graph check verifies logical correctness of
states and transitions. Finally, the FSM-Code Prompt PF→C

is generated to produce the smart contract C.

Smart Contract Generation. The checked FSM F and
FSM-Code Prompt PF→C are fed into fine-tuned LLM Mft

to guide the generation of smart contract C. Since F is rig-
orously checked in terms of format and logic, Mft can effi-
ciently encapsulate its states and events in smart contracts.

Feedback Driven Refinement. Generated smart contracts C
are evaluated for effectiveness and security. We use Py-solc-
x to check for compilation errors Ic and Slither [Feist et al.,
2019] to detect vulnerabilities Is. These issues are fed back
into the LLM via compilation Pc and security Ps prompts to
guide refinement, producing refined smart contracts Cr.

3.2 Fine-tune Dataset Construction
Existing work has not provided open-source datasets [Liu et
al., 2024; Zhao et al., 2024; Luo et al., 2024], making it dif-
ficult to reproduce their results. Moreover, these works con-
sider a single task or scenario and thus cannot encompass the
diverse requirements of practical smart contract generation.

To tackle these two problems, we construct an open-source
fine-tuning dataset that covers various tasks and adopts a dia-
logic format.

We collect smart contract source code from platforms
like Etherscan and use GPT-4o to generate the correspond-
ing user requirements and FSM, forming a dataset of 30k
items, each containing requirements (R), FSM (F), and code
(C). From this, we derive sub-datasets by rearranging ele-
ments—R2F2C, R2F, F2C, C2F, and R2C. Additionally, the
A2C dataset maps extracted annotations to function code.
These datasets support training LLMs for various smart con-
tract generation tasks. We present the dataset details in Ap-
pendix B of [Luo et al., 2025].

3.3 Enhanced FSM for Smart Contract
Limitations of Mealy. As in Section 2.2, the Mealy machine
abstracts state transitions and outputs but lacks explicit rep-
resentation of functions, variables, and state-output interac-
tions, limiting its ability to capture smart contract complexity.
SmartFSM. To enhance the capability of FSM to represent
smart contracts, we propose SmartFSM, an enhancement to
the Mealy state machine that more accurately models the
structure and functionality of smart contracts. SmartFSM di-
vides the representation of contracts into five sections, i.e.,
basic information, states, variables, functions, and events,
which we introduce as follows.
• Basic information. This section contains the background

and functional descriptions of the contract, providing an
overall overview of the contract for LLM.

• States. This section lists all possible states of the contract
to help the LLM understand the states and transfer logic.

• Variables. This section records important data in the smart
contract, serving as the conditions for state transfer.

• Functions. Each functional module of a smart contract is
usually a function that receives external inputs and may
trigger state transfers. The function part resembles the
input-output mechanism in Mealy state machine.

• Events. This section records the key operations and state
changes that occur in the contract. The triggering of each
event reflects the operational state of the contract and is
similar to the output function in the Mealy state machine.
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Dividing smart contract into five sections, SmartFSM re-
tains Mealy machine state transfer capabilities while better
representing variables, functions, and underlying details. We
provide an example in Appendix C of [Luo et al., 2025].

3.4 Checking of SmartFSM
The SmartFSM generated by LLMs may have errors like in-
complete structure or incorrect logic. Therefore, we verify
its correctness through three steps: SmartFSM information
extraction, format check, and graph check.

SmartFSM Information Extraction. From SmartFSM, we
extract the following sets: The state set S = {s1, s2, . . . ,
sn}, representing all possible states. The trigger set X =
{x1, x2, . . . , xm}, representing all triggers causing state tran-
sitions. The target state set T = {t1, t2, . . . , tk}, where
T ⊆ S, representing all possible target states. The transi-
tion set ∆ = {(s, x, t) | s ∈ S, x ∈ X, t ∈ T}, representing
all transitions as triples.

Format Check. This step uses static analysis methods to ver-
ify the completeness and correctness of the SmartFSM. The
correct FSM should satisfy the following conditions: (i) the
initial state s0 must be defined within the state set (s0 ∈ S);
(ii) the target states in transitions must be defined within the
state set (∀(s, x, t) ∈ ∆, t ∈ S); (iii) the triggers must be
defined within the event set (∀(s, x, t) ∈ ∆, x ∈ X).

Graph Check. Format check ensures that the SmartFSM fol-
lows the formatting rules but it does not ensure the SmartFSM
is logically correct. Graph check is used to check logical cor-
rectness as the states and state transfers of FSM can be ex-
pressed as graphs. We first use the extracted states to con-
struct a directed graph, where the nodes represent the states,
the edges represent state transitions, and the states are con-
nected through state transitions. A SmartFSM can be con-
sidered correct if it satisfies the following conditions: (i) All
states in the SmartFSM can be reached from the initial state
via some path p (∀s ∈ S, ∃p : s0 → s); (ii) The state graph
should have loops but no self-loops, to ensure that states can
transition correctly (t ̸= s).

3.5 Prompts for FSM and Contract Generation
Prompt engineering is crucial for effectively using LLMs.
Figure 2 shows the prompts for FSM and contract generation.

Prompt for FSM Generation. To construct FSM accurately
from user requirements, we carefully design the prompt to
make the LLM focus on the structure of the FSM and ensure
that no unnecessary information is generated. The prompt
comprises the following components:
• Task description: Guide the LLM to generate smart con-

tracts based on user requirements.
• Output constraints: Request the LLM to return only the

FSM content, without outputting any other information.
• FSM integration: The prompt explicitly provides the JSON

format of the FSM. By providing a predefined format, the
prompt helps the LLM understand the expected structure
and syntax of FSM. This also reduces the possibility of for-
matting errors and deviations from the intended structure.

Figure 2: The prompts for FSM and contract generation.

• Requirement integration: The prompt includes placehold-
ers for user requirements.
The prompt, by providing a task description, limiting the

output, and offering a structured template, enables the LLM
to understand the requirements and generate FSMs, while
minimizing the possibility of redundant or irrelevant content.

Prompt for Smart Contract Generation. In order to gener-
ate a smart contract that meets user requirements, conforms to
the specific FSM, and adheres to coding standards, we design
the following prompt.
• Task description: As shown in Figure 2, the prompt directs

the LLM to generate smart contract based on the previously
generated FSM. The LLM can leverage the session context
to extract the smart contract content and accurately imple-
ment the logic and structure defined in the FSM, without
requiring the FSM to be included in the prompt.

• Output constraints: Request the LLM to return the smart
contract, without outputting any other information.
The proposed prompt hence maintain logical consistency

between the design phase (FSM) and the implementation
phase (smart contract). This stratified approach ensures that
the behavior represented in the FSM, such as state transitions
and triggers, is reflected in the code.

3.6 Contract Refinement with Feedback

Compilation Feedback. As shown in Figure 3, we com-
pile the generated code by Solidity compiler. If errors are
detected, we return the errors to the LLM along with a con-
textual prompt to help improve the quality of generated code.
In the prompt, we inform the LLM about the details of the
errors and desired improvements for regeneration. The feed-
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Figure 3: Examples for compilation and security feedback.

back not only provides the specific reasons for failure but also
offers explicit correction guidance. As Figure 3 shows, dur-
ing the compilation process, we identify address errors within
the functions and provide the errors in the compilation feed-
back prompt to guide the LLM in regenerating the contract.
Security Feedback. To ensure code security, we use Slither
to detect vulnerabilities such as reentrancy and locked as-
sets. Detected issues, including type and code segment, are
recorded in a security feedback prompt. Figure 3 shows a
"Locked Ether" vulnerability, where the contract can receive
but not transfer funds. Using a predefined prompt template,
we integrate details to guide regeneration.

The above feedback procedure is iterated until compilation
errors and security vulnerabilities are eliminated.

3.7 Comparison to Prior Works
Compared to the prior works [Napoli et al., 2024; Chatterjee
and Ramamurthy, 2024; Petrović and Al-Azzoni, 2023; Qasse
et al., 2023], our approach has the following advantages.
FSM as an Intermediate Representation. Our experiments
show that FSM outperforms IContractML[Petrović and Al-
Azzoni, 2023] and CML[Wöhrer and Zdun, 2020], as it con-
cisely captures requirements and state transitions. In contrast,
IContractML is overly complex with redundant details, while
CML lacks state transition representation.
Fine-Tuning and Feedback. We use supervised FPFT ap-
proach to enhance smart contract generation and introduce
a novel feedback mechanism. Effectiveness and security
checks provide feedback to improve contract quality.

4 Experimental Evaluation
4.1 Experiment Settings
Base LLMs. We evaluate our method using both closed-
source models (GPT-4o, GeMini1.5-Flash, Qwen-plus)
and open-source models (LlaMa3.1-405B/8B, Qwen2.5-7B),
covering different parameter scales.
Baselines and Our Method. We select three representative
methods for smart contract generation as baselines.
• Direct. A series of research on smart contract generation

uses LLMs to generate smart contract code based on user
requirements directly [Napoli et al., 2024; Chatterjee and
Ramamurthy, 2024].

• IContractML. IContractML generates model language via
LLMs, then derives contract code. [Petrović and Al-
Azzoni, 2023; Qasse et al., 2023]. It represents methods
that introduce an intermediate representation.

• CML. Contract Modeling Language (CML), a high-
level DSL, has been used in traditional smart contract
generation[Wöhrer and Zdun, 2020], but not for guiding
LLMs. We adopt CML as an intermediate representation
and use it as a baseline for comparison.
We compare the performance of the three variants of the

methods proposed in this paper with the baseline.
• FSM. We employ the SmartFSM proposed in Section 3.3

as an intermediate representation to guide LLMs to gener-
ate smart contracts. However, it does not incorporate itera-
tive feedback mechanisms or involve fine-tuning the LLM.

• FSM-SCG*. FSM-SCG* extends FSM by incorporating
compilation and security feedback to iteratively optimize
smart contracts, improving their effectiveness and security
without fine-tuning the LLM.

• FSM-SCG. FSM-SCG further enhances FSM-SCG* by
fine-tuning the LLM on our fine-tuning dataset.

Environment and Parameters. We fine-tune instruction
versions of LlaMa3.1-8B and Qwen2.5-7B models using 8
NVIDIA A6000-48GB GPUs. FPFT runs for 3 epochs using
AdamW (lr=5e-5). FSM-SCG includes one compilation and
one security feedback round.

4.2 Performance Metrics
CPR. Compilation pass rate (CPR) reflects the effectiveness
of the generated smart contracts.

CPR = Ncompiled/Ntotal × 100%

where Ncompiled is the number of successfully compiled smart
contracts, and Ntotal is the total number of contracts.
ZRCP and HRCP. Zero risk contract percentage (ZRCP) and
high risk contract percentage (HRCP) quantify the security.

ZRCP = Nzero/Ntotal, HRCP = Nhigh/Ntotal

where Nzero is the number of contracts with zero risk scores,
Nhigh is the number of contracts with high-severity vulnera-
bilities, and Ntotal is the total number of contracts.
VRS. Vulnerability risk score (VRS) indicates the risk level,
and a high VRS may be caused by many vulnerabilities or
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Figure 4: Compilation Pass Rate (CPR) of smart contracts generated
by each method on different LLMs. All methods generate contracts
from the same 1,000 user requirements.

high severity of those vulnerabilities.

V RS =

∑n
i=1(SeverityScorei × ConfidenceScorei)

n

where n is the total number of detected vulnerabilities,
SeverityScorei is the severity score of vulnerability i,
which can be 3 (high), 2 (medium), or 1 (low); and
ConfidenceScorei is the confidence score of vulnerability i,
which can be 3 (high), 2 (medium), or 1 (low).

4.3 Main Experiments

Effectiveness. We evaluate methods using the CPR of gen-
erated contracts. We sample 1,000 high-quality requirements
from dataset for testing. For each requirement, LLM gener-
ates three code samples, which are compiled to compute CPR.
Figure 4 presents the results.
• Closed-source LLMs. The FSM method uses SmartFSM as

an intermediate representation to guide LLMs, outperform-
ing Direct, CML, and IContractML in most cases on both
closed-source and open-source LLMs. The FSM-SCG*
method, adding generation feedback, achieves the best re-
sults among all baselines.

• Open-source LLMs. Due to fine-tuning limitations, FSM-
SCG is applied only to LlaMa3.1-8B and Qwen2.5-7B,
achieving significant CPR improvements, surpassing even
GPT-4o. For example, the CPR of LlaMa3.1-8B rises from
36.9% to 95.3%, proving its effectiveness in enhancing
smart contract compilation success.
Our method outperforms baselines by structuring require-

ments into SmartFSM, covering all states and events to en-
hance contract generation.

Security. We evaluate security of each method in contract
generation using ZRCP, HRCP, and VRS metrics. We sample
1,000 high-quality requirements from dataset for testing. For
each requirement, LLM generates three code samples. Se-
curity is assessed through performance testing, as shown in
Table 2, with the following observations:

Model Approach ZRCP(↑) HRCP(↓) VRS(↓)

GPT-4o

Direct 30.32% 15.47% 3.6720
CML 35.04% 12.83% 3.4135

IContractML 34.82% 13.54% 3.4775
FSM 35.81% 11.90% 3.3235

FSM-SCG* 42.75% 8.63% 2.7649

GeMini1.5-Flash

Direct 28.90% 36.48% 4.8316
CML 28.42% 28.72% 4.8043

IContractML 29.58% 26.94% 4.7821
FSM 32.69% 23.76% 4.5622

FSM-SCG* 36.90% 18.58% 3.9462

Qwen-plus

Direct 27.39% 22.74% 4.2730
CML 35.39% 23.07% 4.2956

IContractML 37.90% 20.91% 4.2561
FSM 38.18% 18.12% 4.1063

FSM-SCG* 41.77% 14.35% 3.6983

LlaMa3.1-405B

Direct 28.22% 15.51% 6.0433
CML 30.51% 17.47% 4.4756

IContractML 29.30% 15.28% 4.1419
FSM 34.39% 16.65% 3.9342

FSM-SCG* 39.84% 13.62% 3.4529

Qwen2.5-7B

Direct 16.85% 22.43% 7.9704
CML 19.01% 20.33% 5.7987

IContractML 20.67% 16.03% 4.9844
FSM 22.01% 19.62% 5.2419

FSM-SCG* 30.72% 14.76% 4.0981
FSM-SCG 50.53% 6.62% 2.4832

LlaMa3.1-8B

Direct 27.10% 21.68% 7.4416
CML 30.74% 32.21% 6.3598

IContractML 31.34% 37.80% 6.2111
FSM 33.27% 20.28% 6.0461

FSM-SCG* 35.20% 14.87% 4.2540
FSM-SCG 53.21% 5.15% 2.3621

Table 2: Evaluation results for Security. We highlight the best
method in bold and the second-best with underline.

• Closed-source LLMs. Although FSM lacks a feedback
mechanism, it enhances contract security, outperforming
Direct, CML, and IContractML in ZRCP and ranking sec-
ond in HRCP and VRS. This shows SmartFSM improves
secure contract generation, with FSM-SCG* achieving the
best overall results.

• Open-source LLMs. After applying FSM-SCG, the per-
centage of smart contracts without security vulnerabilities
(ZRCP) increases to 53.21% on Qwen2.5-7B and 50.53%
on LlaMa3.1-8B, while high-risk vulnerabilities (HRCP)
decrease to 5.15% and 6.62%, respectively.
Our method surpasses baselines in security by ensuring

valid state transitions, preventing unsafe changes, handling
exceptions, and reducing vulnerabilities.

4.4 Ablation Study
We conduct ablation studies (Table 3) to assess the contribu-
tions of key components, including the feedback mechanism,
A2C fine-tuning, and the overall fine-tuning process.
• Effect of SmartFSM. Replacing SmartFSM with Mealy
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Model Approach CPR(↑) ZRCP(↑) HRCP(↓) VRS(↓)

Qwen
2.5-7B

Direct 54.6% 16.85% 22.43% 7.9704
Mealy FSM 59.8% 19.23% 25.46% 6.2762
Our FSM 62.7% 22.01% 19.62% 5.2419
FSM-SCG 93.6% 50.53% 6.62% 2.4832
- w/o Feedback 88.5% 35.71% 14.46% 3.4567
- w/o A2C 90.9% 44.00% 8.69% 3.0942
- w/o FT 75.2% 30.72% 14.76% 4.0981

LlaMa
3.1-8B

Direct 36.9% 27.10% 21.68% 7.4416
Mealy FSM 37.3% 29.37% 23.03% 6.6347
Our FSM 49.3% 33.27% 20.28% 6.0461
FSM-SCG 95.1% 53.21% 5.15% 2.3621
- w/o Feedback 91.3% 38.12% 11.94% 3.1061
- w/o A2C 92.8% 44.40% 8.73% 2.8349
- w/o FT 71.3% 35.20% 14.87% 4.2540

Table 3: Ablation studies for fine-tuning and refinement with feed-
back. We highlight the best method in bold.

Method Model CPR(↑) VRS(↓)

FPFT Qwen2.5-7B 93.6% 2.48
LlaMa3.1-8B 95.1% 2.36

LoRA Qwen2.5-7B 80.5% 3.37
LlaMa3.1-8B 75.8% 3.56

Table 4: The impact of fine-tuning methods on the effect.

FSM leads to performance degradation. As shown in the
table, SmartFSM outperforms Mealy FSM w.r.t. all metrics
because it better expresses user requirements and guides
LLMs in generating smart contracts.

• Effect of Feedback. Removing the feedback significantly
reduces CPR and worsens security metrics. For example,
the CPR of LlaMa3.1-8B drops from 95.1% to 91.3%, and
VRS increases from 2.36 to 3.11. This shows that feedback
improves the compilation success rate and contract security
by iteratively refining the generated contracts.

• Effect of A2C Fine-Tuning. Removing the A2C dataset
from our fine-tuning dataset and fine-tuning the LLM
causes a performance drop as the A2C dataset improves
LLM’s ability to associate code with annotation.

• Effect of Entire Fine-Tuning. Without fine-tuning, all
metrics degrade significantly, highlighting its importance
to improve CPR and security. Fine-tuning helps the model
grasp Solidity complexities, meet functional requirements,
and address security vulnerabilities.

• Effect of Fine-Tuning Method. We compare FPFT and
LoRA [Hu et al., 2022; Xia et al., 2024] and include
the experimental results in Table 4. FPFT outperforms
LoRA by updating all parameters for better task adaptation,
while LoRA’s limited updates hinder adaptability. Thus,
we choose FPFT for our experiments. The detailed discus-
sion is in the Appendix D of [Luo et al., 2025].

4.5 Parameter Sensitivity
We also test FSM-SCG’s parameter sensitivity. (see Ap-
pendix D of [Luo et al., 2025]).

• Effect of Feedback Count. Varying the feedback count
from 0 to 5, the largest improvement occurs from 0 to 1, as
most errors are simple and need minimal iterations. Hence,
feedback count is set to 1 for balance.

• Effect of Fine-Tuning Epochs. We fine-tune FSM-SCG
from 1 to 5 epochs. Performance improves notably up to
3 epochs but plateaus thereafter, as the model converges
early and saturates with further training. To balance effi-
ciency and performance, we select 3 epochs.

5 Related Work
Automatic Generation Methods for Smart Contracts.
Smart contract generation methods include Model-Driven
generation (MD)[López-Pintado et al., 2017; Tran et al.,
2018] , Domain-Specific Languages (DSL)[Clack et al.,
2019; Skotnica and Pergl, 2019] , and Visual Programming
Languages (VPL)[Mavridou and Laszka, 2018; Mao et al.,
2019]. MD enhances design-code consistency by converting
domain models into smart contracts but requires specialized
knowledge. DSL simplifies contract development within spe-
cific domains but lacks broader applicability and robust veri-
fication. VPL uses graphical interfaces to lower development
barriers but offers limited functionality and scalability.
Generation of Smart Contracts Using LLMs. The develop-
ment of LLMs has made automatic smart contract generation
a research focus[Yang et al., 2024]. Chatterjee et al.[Chat-
terjee and Ramamurthy, 2024] explored using descriptive and
structured prompts to generate smart contracts, finding qual-
ity issues and neglect of security by most LLMs. Petrović
and Al-Azzoni[Petrović and Al-Azzoni, 2023] proposed a
model-driven framework using ChatGPT, but it suffers from
long response times and high costs. Chen et al.[Yong et al.,
2024] improved contract quality by combining AST-LSTM
representation, clustering models, prompt dataset optimiza-
tion, and fine-tuning LLaMA2-7B. Qasse et al.[Qasse et al.,
2023] extended DSLs with chatbots, improving functionality
but facing challenges with input errors and accuracy. How-
ever, LLMs still face issues like incorrect syntax, security vul-
nerabilities, and limited adaptability in this domain [Huang et
al., 2024b; Huang et al., 2024a].
Anatomy of Prior Works. Most prior works, except [Chat-
terjee and Ramamurthy, 2024], rely on a single LLM for
smart contract generation, and none has fine-tuned LLMs for
this task. Analyzing a single LLM is insufficient, therefore,
our work employs six LLMs within the FSM-SCG frame-
work. We assess contract generation through compilation
checks, security analysis, and use case testing. A feed-
back mechanism further enhances trustworthiness by guiding
LLMs to refine output, distinguishing our approach and im-
proving performance [Zhang et al., 2024; Wang et al., 2024].

6 Conclusion
In this work, we propose an FSM-guided framework for smart
contract generation with LLMs, improving effectiveness and
security. We release a fine-tuning dataset to better align
LLMs with user needs and integrate compilation and security
checks into a feedback mechanism for improved reliability.
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